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Abstract
The motion of a suspension of red blood cells (RBCs) flowing in a Y-shaped bifurcating
microfluidic channel is investigated using a validated low-dimensional RBC model based on
dissipative particle dynamics. Specifically, the RBC is represented as a closed torus-like ring
of ten colloidal particles, which leads to efficient simulations of blood flow in microcirculation
over a wide range of hematocrits. Adaptive no-slip wall boundary conditions were
implemented to model hydrodynamic flow within a specific wall structure of diverging
three-dimensional microfluidic channels, paying attention to controlling density fluctuations.
Plasma skimming and the all-or-nothing phenomenon of RBCs in a bifurcating microfluidic
channel have been investigated in our simulations for healthy and diseased blood, including
the size of a cell-free layer on the daughter branches. The feed hematocrit level in the parent
channel has considerable influence on blood–plasma separation. Compared to the
blood–plasma separation efficiencies of healthy RBCs, malaria-infected stiff RBCs (iRBCs)
have a tendency to travel into the low flow-rate daughter branch because of their different
initial distribution in the parent channel. Our simulation results are consistent with previously
published experimental results and theoretical predictions.

1. Introduction

Plasma and red blood cells (RBCs) are the two major
components of whole human blood. A healthy RBC has a
biconcave shape when not subject to any external stress and
is approximately 8.0 μm in diameter and 2.0 μm in thickness
[1]. Lateral migration of RBCs takes place in blood flow at a
low Reynolds number, leading to the formation of two phases,
namely a flow core consisting mainly of RBCs and a cell-free
layer (CFL) adjacent to the channel wall devoid of RBCs. Most
blood test analyses in medical laboratories are often performed
on cell-free samples, which require the separation of RBCs
from the whole blood. Therefore, blood–plasma separation
needs to be achieved. However, the thickness of a CFL is too

small to extract cell-free plasma from whole blood sample.
A simple but effective solution to blood–plasma separation
problems is to introduce blood flow in a diverging microfluidic
channel [2–4].

Over the last few decades, several studies have focused
on detailed and accurate models for describing blood flow
in bifurcating microfluidic tubes and channels [5–11]. For
a suspension of RBCs flowing through an asymmetric
bifurcation, the volume fractions in the two daughter branches
are not equal; the volume fraction of RBCs increases in
the daughter branch with a higher flow rate, whereas the
volume fraction of RBCs decreases (even reaching zero) in
the daughter branch with a lower flow rate. This phenomenon
is sometimes called the bifurcation law or the Zweifach–Fung
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effect [5, 6]. Considering the forces acting on the RBCs situated
centrally at the branch point of a capillary blood vessel, Fung
stated that both the pressure and shear forces tend to pull
the RBCs into the high flow-rate branch [6]. However, in
two recent studies, Barber et al [12] and Doyeux et al [11]
found that the RBC in the vicinity of the pure flow separating
streamline is attracted toward the low flow-rate branch.

The theoretical critical flow-rate ratio between the two
daughter branches for the complete RBC separation from the
whole blood (all-or-nothing phenomenon) is approximately
2.5 when the channel width is of the same size as the RBC
diameter [6]. However, experimental results on the blood–
plasma separation show that for the 2.5 flow-rate ratio between
the two daughter branches, only 88.7% of the cells travel into
the higher flow-rate daughter branch, while a 6.0 minimum
flow-rate ratio is required to obtain successful blood–plasma
separation [2]. In fact, at a branch point of the bifurcation,
RBCs are distributed into different branches depending on
several key factors such as the size of parent channel [13, 14],
the flow-rate ratio of daughter branches [5, 6, 15], the feed
hematocrit distribution [3, 13, 16, 17], the plasma viscosity
[18, 19] and the RBC properties including deformability and
aggregability of RBCs [12, 20]. When blood flows through
a bifurcation, RBCs travel into different daughter branches
with different hematocrit levels. The blood–plasma separation
can be qualitatively explained by considering the non-uniform
RBC distribution in the parent channel, the deviation of RBC
trajectories from the flow streamlines in the bifurcation region,
the hydrodynamic interactions between the RBC and the
channel inner wall, etc.

Despite the fact that the phenomena of blood flow in
microcirculation has been studied for many years, several
important aspects of hydrodynamic blood flow in diverging
vessels remain unexplored [1, 10, 21], requiring a more
fundamental study on the motion of RBCs in bifurcating
microfluidic channels. Such studies could lead to better
understanding of microvascular transport of RBCs in healthy
and diseased states. Dynamic simulation can predict how
blood flow behaves in microfluidic channels and by extension
to microvascular networks. An investigation of the in vitro
behavior of blood flow occurring in microfluidic channels
is helpful in understanding the role of RBCs in oxygen
delivery processes. Moreover, an insight into the details of
flow behavior of individual RBCs taking place in complex
microfluidic channels is necessary to develop skills in
designing microfluidic devices for blood–plasma separation
and is required to understand the asymmetry in RBC
trajectories between the bifurcation and the confluence [10].

However, quantitative modeling of blood flow in
microcirculation is difficult because of the huge number of
degrees of freedom in modeling the RBC spectrin network and
because of the hundreds of millions of particles to represent
blood flow. Several computational approaches, including
continuum- and particle-based numerical models [22–28],
have been developed recently and applied to RBC simulations.
They may qualitatively capture the mechanical properties of
an individual RBC; however, it is still difficult to perform
blood flow simulations because of prohibitively expensive

computations. A systematic coarse-graining procedure, which
reduces the number of degrees of freedom in the RBC model,
has been presented in [29–31]. Two different RBC models,
the multi-scale RBC (MS-RBC) [29, 30, 32] and the low-
dimensional RBC (LD-RBC) [31, 32] models, have been
developed and employed to conduct efficient simulations of
RBCs in microcirculation. In particular, the LD-RBC model,
which models one RBC as a closed torus-like ring of ten
colloidal particles, allows the simulation of blood flow over
a wide range of hematocrit levels (Hct) at computational costs
that are considerably below those for the MS-RBC model.

The LD-RBC model offers a good method in investigating
the in vitro behavior of blood flow in microfluidic channels.
In this study, we present extensive simulations on the motions
of RBCs for healthy and malaria-infected blood in Y-shaped
bifurcating microfluidic channels. Our interest is in the
demonstration of the bifurcation law in the microfluidic
channel and in the prediction of particle flux distribution.
We employ the dissipative particle dynamics (DPD) method,
which is a Lagrangian method that can be derived from
systematic coarse graining of molecular dynamics [33, 34].
It can scale efficiently to microvessels and can also be used
to model the structure of RBCs down to the spectrin level
[29–31, 35].

The rest of this work is organized as follows: section 2
describes the simulation method used and the RBC model
employed. Section 3 presents and discusses the simulated
results. Finally, section 4 summarizes the findings and presents
relevant conclusions.

2. Model and method

We study the motions of RBCs in Y-shaped bifurcating
microfluidic channels with the help of the LD-RBC model
based on the DPD simulation technique. For completeness,
the method and the model are briefly reviewed below, whereas
details on the DPD method and the LD-RBC model are
available elsewhere [31, 33]. Through the DPD approach, a
RBC in this study is modeled as a ring of ten colloidal particles
connected by worm-like chain (WLC) springs, see figure 1.
Colloidal particles are simulated as single DPD particles,
similar to the solvent particles but of a larger size. In the LD-
RBC model, we adopt an exponential conservative force for
colloid–colloid, colloid–solvent and colloid–wall interactions,
whereas we keep the conventional DPD linear conservative
force for solvent–solvent and solvent–wall interactions. Such
hybrid conservative interactions produced colloidal particles
disperse in solvent without overlap, which is quantified by
calculating the radial distribution function of colloidal particles
[33]. Exponential and linear conservative forces are defined as

Fe
i j = ai j

1 − ebi j

(
ebi jri j/re

c − ebi j
)
, (1)

Fl
i j = ai j

(
1 − ri j

rl
c

)0.25

, (2)

where ri j is the distance between two neighboring particles,
and ai j and bi j are adjustable parameters for the strength
of conservative force. In addition, re

c and rl
c are the cutoff
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(a) (b)

Figure 1. (a) A sketch of the low-dimensional closed torus-like RBC model. (b) RBC axial (DA) and transverse (DT) diameters under
deformation for RBCs in healthy and diseased schizont states (reprinted with permission from [56]).

Table 1. Parameters of the LD-RBC model in DPD simulations.

Interactions Fe
i j (equation (1)) Fl

i j (equation (2)) γ rc

S–S 2.5 × (1 − ri j)
0.25 4.5 1.5

S–W 2.5 × (1 − ri j)
0.25 4.5 1.5

S–C 2500.0
1−e20.0 × (e20.0×ri j/1.0 − e20.0) 900.0 1.5

C–W 500.0
1−e20.0 × (e20.0×ri j/2.3 − e20.0) 900.0 2.5

C–C (same cell) 500.0 × (1 − ri j)
0.25 4.5 1.2

C–C (different cell) 2500.0
1−e20.0 × (e20.0×ri j/2.0 − e20.0) 4.5 2.0

radii of the exponential and the linear conservative forces,
respectively. To construct the RBC model, however, we allow
particles in the same cell to overlap, i.e. colloidal particles
in the same cell still interact with each other through a soft
linear conservative force. Following Pan et al [31], parameters
related to the interaction between two DPD particles, including
cell (denoted as C), solvent (denoted as S) and wall (denoted
as W) particles, are summarized in table 1. The RBC diameter
in DPD units is equal to D0 = 4.0. Therefore, one DPD unit of
length corresponds to approximately 2.0 μm in physical units.

The WLC spring force interconnects all colloidal particles
in each RBC and has the form

FWLC = kBT

λP

⎡
⎣ 1

4
(
1 − ri j

Lmax

)2
− 1

4
+ ri j

Lmax

⎤
⎦ , (3)

where λP and Lmax are the effective persistence length and
the maximum length of the spring, respectively. The bending
resistance of the LD-RBC model is introduced via an angular
bending potential between two consecutive springs. The
potential is expressed as

Vbend = kb(1 − cos θ ), (4)

where kb and θ are the bending stiffness constant and the angle
between two consecutive bonds, respectively. The bending
force is then derived from

Fbend = −∇Vbend. (5)

To probe the RBC mechanical response at different
malaria stages, we subject the RBC to stretching deformation
analogously to that in optical tweezer experiments. The
stretching force is applied in opposite direction to two particles

separated by the distance of one diameter of the ring. In a
previous study, Pan et al [31] found that an increase of Nc

results in better agreement but after Nc = 10, the change is
very small. Here, we choose Nc = 10 to gain sufficiently good
agreement and keep the computation cost low. In the LD-
RBC model, λp determines Young’s modulus and along with
Lmax gives the right elastic properties of RBC. The bending
stiffness kb is adjusted to match both axial and transverse RBC
deformations, with experimental results being good agreement
with the experimental data.

In the DPD approach, it is convenient to use reduced
units. The unit of length is defined by the cutoff radius rc,
the unit of mass by the masses of particles, while the unit of
energy is defined by kBT . In this study, the values λP = 5.0 ×
10−4 and Lmax = 2.6 μm are used for healthy RBCs. Regarding
the elastic contribution to the interaction energy, the bending
stiffness is given by kb = 50.0 kBT for healthy RBCs, which is
approximately 2.1 ×10−19 J. This is a widely accepted value
as the bending modulus experimentally measured lies between
1.0×10−19 and 7.0×10−19 J [37]. The fitted Young’s modulus
is 20.0 μN m−1, which is comparable with the experiments in
[36] and the spectrin-level RBC model in [37]; see figure 1.

An external body force is exerted on each fluid particle to
generate a hydrodynamic flow in the bifurcating microfluidic
channel. In this study, an externally applied body force in the
x direction of the fluid particles is of the form

Fext
i = gxi, (6)

where g is the magnitude of the body force, and xi is a vector
unit in the flow direction.

The microfluidic channel, as illustrated in figure 2, has a
bifurcation and a confluence. A wide channel with a length
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Figure 2. Schematic representation of the DPD domain. Q0 represents the flow rate of the parent channel, and Q1 and Q2 are the flow rates
of the upper and the lower daughter branches, respectively.

l0 = 400.0 μm and a width w0 = 40.0 μm is first created
on the left side of the microfluidic system. The depth of
the microfluidic channel is 10.0 μm for simulations of RBC
flows and 20.0 μm for solid spherical particles. Both periodic
and no-slip wall boundary conditions are applied in this
direction for different simulations. Specifically, we apply the
no-slip wall boundary condition in z direction and simulate
the motion of solid spherical particles in bifurcations to test
the attraction effect. For microfluidic experiments of blood–
plasma separation, the ratio between the diameter of RBC
and the depth of the microfluidic channel is small [2]. In the
current study, the flow-rate ratio is introduced by varying the
widths of the two daughter channels in the y direction. The
simulations of blood flow in bifurcation microfluidic channel
with the periodic boundary condition in the z direction can
simulate the blood–plasma separation but the computational
cost should be considerably lower than simulations with the
no-slip wall boundary condition. Thus, in the majority of
simulations we use the periodic boundary condition in the
z direction; however, in a few simulations we also simulated
the same systems with no-slip boundary condition along the
span. The wide channel bifurcates into two narrow channels
with varying widths (w1 : w2) to introduce different flow-rate
ratios, forming a Y-shaped channel. A mirror–image Y-shaped
microfluidic channel with confluence is then created on the
right domain of the microfluidic channel to satisfy the periodic
flow assumption along the flow direction. No-slip boundary
condition is applied at the solid wall to model blood flow in
the microfluidic channel.

Extra care is taken in modeling the blood flow accurately
in the bifurcating microfluidic channel. First, an extra bounce-
back rule, i.e. the velocity of a DPD particle that collides
with the wall is reflected back into the microfluidic channel,
is applied to the fluid and colloidal particles to prevent them
from entering the solid wall domain. Second, zero velocity
at the solid wall is implemented by freezing multi-layers
of DPD particles and keeping them at the same particle
density as the fluid particles. Third, an adaptive boundary
condition is adopted for each fluid particle to control their
density fluctuations [38, 39]. Specifically, we employ multi-
layered frozen DPD particles at the solid wall, and introduce
a wall force acting on fluid particles to control particle density
fluctuations close to the solid wall. The magnitude of the
adaptive force depends on the distance of the fluid particles
from the wall and is iterated according to the estimated density
fluctuations. For more details on the implementation of the
solid wall boundary, we refer to [38, 39].

Figure 3. Optimization of the lateral distribution function of RBCs
for Hct = 20.0%. ftarget(y) is the desired distribution function
obtained from the simulation of RBCs flowing in a straight-only
microfluidic channel that has the same size with the parent channel
of bifurcation; finitial(y) is obtained directly from the simulation of
RBCs flow in bifurcating microfluidic channel and computed at a
station near the extreme left end (here, xi = 100.0 μm) and
foptimized(y) corresponds to the distribution function after
incorporating the lateral FW

xi
acting on the RBCs.

The initial distribution of RBCs in the parent channel
influences the blood–plasma separation efficiency. In order
to evaluate the lateral migration of the RBCs, a distribution
function is introduced to represent their spatial distribution
along lateral positions (y-axis direction), which can be defined
as follows:

f (y) =
∑80

k=1Nk(y, y + dy)∑60
y=20

∑80
k=1Nk(y, y + dy)

, (7)

where Nk(y, y+dy) is the number of RBCs between the lateral
positions y and y+dy in the kth bin at a given condition, while∑60

y=20

∑80
k=1(y, y + dy) is the total number of RBCs, summed

over the channel width w0 and all the RBC bins. We note
that f (y) is a distribution function representing the fraction
of the number of RBCs between y and y + dy, such that∫ 60

y=20 f (y) dy = 1.0. In figure 3, we present plots of f (y)

over w0 for Hct = 20.0%. We denote by ftarget(y) the desired
distribution function obtained from the simulation of RBCs
flowing in a microfluidic channel that has the same size with
the parent channel; finitial(y) is obtained directly from the
simulation of RBCs flowing in the bifurcating microfluidic
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channel and computed at a station near the extreme left end
(here, xi = 100.0 μm is adopted). Compared to the desired
f (y), the RBCs in the bifurcation have somewhat narrow
distribution across the microfluidic channel, indicating RBC
drift away from the channel wall so that the number of RBCs
around the center of the channel is slightly increased.

In order to impose a RBC distribution in the parent channel
equal to ftarget(y), we include an additional lateral force,
FW

xi
, on RBCs to redistribute them in the cross-flow (y-axis)

direction. Specifically, the external lateral force acting on the
RBCs is calculated according to FW

xi
= Axiw(y)

( finitial,xi (y)

ftarget(y)
−1

)
.

In the simulations, we assume that the desired f (y) values
in the parent channel are equal at each station. Axi is a
constant of order 1, and w(y) is a weighting function, i.e.
w(y) = exp(−|y − yc|) designed to cause stronger deviations
at small lateral distances from the location of the RBC centroid
to the center of the parent channel (yc = 40.0 μm). At each
time step, the lateral force FW

xi
is added to the RBCs at several

different stations along the x-axis direction ranged from the
confluence to the far right end of the microfluidic channel;
specifically, we choose xi = 700.0, 800.0 and 900.0 μm in the
current study. The corrected result is shown in figure 3; we see
that the quality of the optimized solution (triangles) improves
as it reproduces the target ftarget(y) curve.

The simulations are performed using a modified version
of the atomistic code named LAMMPS [40]. The time
integration of the motion equations is computed through a
modified velocity–Verlet algorithm with λ = 0.5 and time step
�t = 4.0 × 10−4τ , where τ is a characteristic time in DPD
units. It takes 5.0 × 107 time steps for a typical simulation
performed in the current study. In terms of computing time,
on average, it takes about 1.3 million CPU core hours for a
typical simulation on the Blue Gene/P system at the Argonne
Leadership Computing Facility (ALCF).

3. Results and discussion

3.1. Verification and validation for benchmark problems

To validate the results, first a single phase flow
(without RBCs) in the bifurcating microfluidic channel is
simulated and compared with a numerical Navier–Stokes
(NS) solution, which is obtained using the (continuum-
based) spectral element simulation solver NEKTAR [45].
Numerical simulations are carried out in a three-dimensional
geometry representing the microfluidic channel used in DPD
simulations. The mesh used in the simulations consists
of quadrilateral elements. The Reynolds number is then
calculated to help us evaluate the value of body force exerted
on the fluid particles. From this simulation, we find that the
simulated value of the Reynolds number at a body force of g �
0.02 is a very close approximation to a typical experimental
Reynolds number value of 0.01 [41]. Therefore, we have
chosen the value, g � 0.02, in the following simulations; this
may change slightly in bifurcating channels with asymmetric
daughter branches to keep a constant flow rate at the parent
channel.

Figure 4 shows velocity profiles in the cross-flow
(y-axis) direction at several different stations for both

NEKTAR (continuum) and LAMMPS (atomistic) results. In
figure 4, zero velocities at the wall, as well as quasi-parabolic
(or flat plug-like) shapes of the velocity profiles are shown.
There are no visible differences between the atomistic and
continuum results.

To validate the DPD flow in microfluidic channel, we
simulate the motion of a solid spherical particle through
a cylindrical microfluidic tube under a hydrodynamic flow.
A solid spherical particle is simulated as a single colloidal
particle by adopting the exponential conservative force, as
expressed in equation (1). In general, the transport of a solid
spherical particle suspended in a fluid flowing through a
cylindrical capillary has been reported in terms of two wall
correction factors [42–44]. The first wall correction factor, K1,
is defined as the ratio of the terminal falling velocity in a
bounded fluid to that in an unbounded one. The second wall
correction factor, K2, is a factor in the drag force on a stationary
particle held in a flowing fluid. In this study, K1 is obtained
for a solid spherical particle moving with constant velocity in
a quiescent fluid as in sedimentation, and K2 is obtained for a
fixed solid spherical particle in a Poiseuille flow. In figure 5,
we show the wall correction factors, K1 and K2, and the lag
factor, G = K2/K1, over a range of solid spherical particle to
cylindrical capillary diameter ratios, p, obtained from the DPD
simulations and compared with the NS–ALE model in [43] and
analytical solutions in [42]. From figure 5, we find that our
computed values of K1, K2 and G are in good agreement with
those obtained by the NS–ALE model in [43] and analytical
results in [42] for p � 0.8, where the maximum relative error
is of the order of 5.0%. For example, the relative errors for
K1 for p = 0.2 and 0.6 are 0.7% and 4.8%, respectively. The
relative errors for K2 for p = 0.2 and 0.6 are 0.5% and 4.9%,
respectively.

3.2. Validation of DPD flow in bifurcating microfluidic
channels

The dependence of distribution of solid spherical particles in
bifurcating microfluidic channels on flow-rate ratio between
the two daughter branches is investigated next through DPD
simulations. Here, we introduce some notation used in the
following discussion. The flow rate at the parent channel is
denoted by Q0, and Q1 and Q2 are the flow rates at the upper
and lower daughter branches, respectively (see figure 2). N1

and N2 are the numbers of RBCs entering the upper and lower
daughter branches, while N0 = N1 + N2 RBCs enter the parent
channel. The ratio of N1/N0 describes the particle recovery
efficiency. The flow-rate ratio, φd = Q1/Q2 = Q1/(Q0 − Q1),
is controlled by the value of wd = w1/w2 by varying the
widths of the two daughter branches. In this study, the ratio
between the diameter of solid spherical particle and the width
of the parent channel is chosen to p = 0.46, which is the same
as the one used in experiments by Yang et al [2]. The width
of the parent channel is w0 = 40.0 μm; hence, the diameter of
solid spherical particles in the simulation is 18.4 μm.

The percentage recovery efficiencies of solid spherical
particles with respect to flow distribution and/or flow-rate ratio
between two daughter branches are shown in figure 6. For the
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Figure 4. Verification of DPD flow in bifurcating fluidic channel. Top: stations where velocity profiles of the DPD results and the NS
solutions are compared. Bottom: velocity profiles of the DPD results and the NS solutions obtained for the center plane of bifurcating
microfluidic channel at different stations. Blue and gray particles represent solvent and wall particles, respectively. For clarity, the solvent
particles are not shown in the following figures.

18.4 μm diameter solid spherical particles, 83.9% particle
recovery efficiency is obtained for φd = 2.5. For φd = 6.5, a
97.8% particle recovery efficiency is obtained. This result is
compared well with previous experimental observations [2];
see figure 6. Furthermore, 100.0% particle recovery efficiency
is achieved using φd = 8.6.

In the two recent two-dimensional theoretical studies,
Barber et al [12] and Doyeux et al [11] found that a RBC in
the vicinity of the pure flow separating streamline is attracted
toward the low flow-rate branch due to the strong confinement
in the z direction. Doyeux et al also showed that the attraction
toward the low flow-rate branch is weak for spheres of radius
R � 0.5 or smaller. In particular, their experimental results
suggested that particles of radius R � 0.3 behave like fluid
particles. To evaluate the attraction effect, we simulate solid
spherical particles in same geometric bifurcations but applying
the no-slip wall boundary condition instead of the periodic
boundary condition in the spanwise z direction; the results
are also shown in figure 6. In these cases, the diameter of
solid spherical particles in the simulation is 18.4 μm with the

depth of the microfluidic channel d0 = 20.0 μm, resulting
in a strong confinement in the z direction. Consistent with
the theoretical results, more solid spherical particles enter
into low flow-rate branch compared to those in bifurcations
with the periodic boundary condition along the z direction,
indicating that the attraction directs the solid spherical particles
toward the low flow-rate branch. For example, for Q1/Q0 =
0.2, the particle recovery efficiency is around 6.4% and 8.9%
for solid spherical particles in bifurcations with periodic and
wall boundary conditions in the z-axis direction, respectively.
The corresponding theoretical values are around 6.2% and
12.4% for p = 0.42 under the no-attraction assumption and
with the attraction, respectively. For Q1/Q0 = 0.4, the value
of N1/N0 shifts from 29.9% with the periodic boundary
condition to 35.6% with the wall boundary condition along
the z direction; it rises from 34.6% under the no-attraction
assumption up to 37.2% with the attraction according to theory
in [11]. In the study of solid spherical particles in bifurcations
with the periodic boundary condition in the z direction, the
confinement is the same in the y direction but quite weak in the
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(a)

(b)

Figure 5. Validation of DPD flow in microfluidic tube by
considering (a) wall correction factors and (b) lag factor for a solid
spherical particle moving through a cylindrical microfluidic channel.
p represents the ratio between the diameter of solid spherical
particle and the diameter of the cylindrical microfluidic tube.

z direction. Hence, there is no strong attraction effect and our
simulation results are comparable with previous experimental
observations [2] and also with theoretical predictions obtained
under the no-attraction assumption [11]. In general, to improve
particle recovery efficiency at lower flow-rate ratio, a higher
p is needed, while a higher value of φd is required to increase
particle recovery efficiency at a fixed ratio between particle
diameter and channel width.

3.3. Motion of RBCs in bifurcating microfluidic channels

3.3.1. Effect of RBC deformability on blood–plasma
separation. The blood–plasma separation depends on the
RBC deformability. The malaria-infected RBCs (iRBCs) lose
their deformability because of an increase in membrane
stiffness [46]. Thus, blood flow may be significantly affected
by altered RBC structural and mechanical properties occurring
in malaria. According to a previous simulation study [31],
the LD-RBC model is able to capture linear as well as
nonlinear RBC elastic responses; see figure 1(b). Therefore,
the developed LD-RBC model can be used for the simulation

(a)

(b)

Figure 6. Validation of DPD flow in Y-shaped bifurcating channel
by considering the solid spherical particles distribution N1/N0 with
respect to (a) flow distribution Q1/Q0 and (b) flow-rate ratio φd

between two daughter branches. p represents the ratio between the
diameter of solid spherical particle and the width of the parent
channel, and the symbols PBC and WBC represent the periodic
boundary condition and wall boundary condition, respectively.

of blood flow in malaria. In making a comparison, we examine
the motions of iRBCs in bifurcating microfluidic channels.

Blood flow in malaria is simulated as a mixture of healthy
and malaria-infected RBCs. Specifically, we choose iRBCs at
the final state (schizont). Parameters specified for modeling
iRBCs are the same as those for healthy RBCs, except for
the following three parameters: aii = 2750.0, λp = 5.0 ×10−5

and kb = 500.0 kBT . The LD-RBC model does not use the
membrane shear modulus, and Young’s modulus of the RBC
membrane is determined by λp and kb. According to a previous
simulation study by Pan et al [31], the proper fitting Young’s
modulus is 20.0 μN m−1 and 199.5 μN m−1 at kb = 50.0 kBT
and 500.0 kBT for RBCs in healthy and diseased schizont
states. These values are in agreement with the values obtained
in experiments in [36] and the spectrin-level RBC model in
[37]. The adopted value of kb = 500.0 kBT for iRBCs at the
schizont stage is thus ten times larger than kb = 50.0 kBT for
healthy RBCs, which is used for characterizing the membrane
stiffness of iRBCs at the schizont stage.
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(a)

(b)

Figure 7. (a) Separation efficiency of a mixture of healthy and
malaria-infected RBCs at different parasitemia level for wd = 3.0
(solid) and 5.4 (empty). (b) Separation efficiency of healthy RBCs at
different feed hematocrit level for wd = 3.0.

The percentage of iRBCs, with respect to the total number
of RBCs in a unit volume, is the parasitemia level. In the
current study, we do not try to relate the simulation results
to any clinical blood tests. Instead, we aim to span the full
range of the parasitemia levels to evaluate their influence on
particle recovery efficiency of blood flow. At low parasitemia
levels, the differences in measured properties may be small
and difficult to detect. Thus, the parasitemia levels employed
here are higher than those used in typical experimental blood
tests.

DPD simulations are performed where RBC deformability
is reduced by incorporating healthy RBCs within three
different parasitemia levels (0.0%, 50.0% and 100.0%).
Figure 7(a) shows separation efficiencies of healthy RBCs
and iRBCs with respect to the width ratio between the
two daughter branches. At a fixed value of wd , separation
efficiencies of iRBCs are lower than those of healthy RBCs.
As described by Hou et al [4], stiff iRBCs are less compliant
to the hydrodynamic force andundergo migration toward
the side wall under physiological conditions. Thus, healthy
RBCs within a bifurcating microfluidic channel tend to have
equilibrium positions closer to the center of a bifurcating

Table 2. CFL thickness in the parent channel and separation
efficiency of RBCs at different feed hematocrit level for wd = 3.0.

Feed hematocrit level (Hct, %) 10.0 20.0 30.0 40.0

CFL thickness (h, μm) 5.47 4.13 2.78 2.14
Separation efficiency (N1/N0, %) 100.0 91.8 84.6 78.7

microfluidic channel than iRBCs do. This means that highly
deformable healthy RBCs are not distributed uniformly across
the bifurcating microfluidic channel as expected of stiff iRBCs,
but they are distributed closer to the middle of a bifurcating
microfluidic channel, yielding even higher volume fractions in
the wider daughter branch than iRBCs.

3.3.2. Effect of feed hematocrit distribution on blood–
plasma separation. The blood–plasma separation effect also
depends strongly on the hematocrit distribution of RBCs in the
parent channel [3, 13, 16, 17] and the trajectories of individual
RBCs [12]. To illustrate this effect, the motion of RBCs
flowing in a bifurcating microfluidic channel is simulated by
changing the feed hematocrit level. Figure 7(b) shows the
particle recovery efficiency with respect to the feed hematocrit
level. In agreement with the Zweifach–Fung effect, the particle
recovery efficiency increases with a decrease in Hct at a fixed
wd . When blood becomes dilute, the flow velocity gradient
in the cross-flow direction is expected to increase, enhancing
the migration of RBCs toward the center of the microfluidic
channel and hence increasing the CFL thickness.

To quantify blood–plasma separation, we also compute
the CFL thickness of blood flow in bifurcating microfluidic
channels. CFL has been an attractive topic in the
study of RBCs, using straight microfluidic channels or
microfluidic tubes between 10.0 and 100.0 μm [47–52]. In
microcirculation, the CFL thickness is significant with respect
to microvessel diameter, resulting in a large relative apparent
viscosity. According to previous computational studies
[53, 54], the CFL thickness h is computed as the time-averaged
distance from the location of the outer edge of a RBC core
to the channel wall. The edge of RBC core is determined
by the position of outmost RBCs and is averaged over all
the snapshots taken after the flow has reached steady state.
Discrete samples of h from the obtained curves are taken
every 0.5 μm along the flow direction. Also, we calculate
the mean CFL thickness over 5.0 ×106 time steps after the
flow has reached steady state; the relative deviation of mean
CFL thickness for two different integration times is relatively
small. We find that the simulated CFLs are consistent with the
predictions of Fahraeus effect, that is the thickness of CFL
is wider for lower Hct, indicating migration of RBCs to the
channel center.

The CFL thickness on the parent channel wall, h, with
respect to the feed hematocrit level, Hct, is shown in table 2.
The thickness of CFL increases with a decrease in feed
hematocrit, which means that the migration of the RBCs
toward the midplane of the channel is enhanced; thus, more
RBCs travel into the high flow-rate daughter branch. From
table 2, we find that 78.7% particle recovery efficiency is
obtained for h = 2.14 μm for wd = 3, which increases to 84.6%
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Figure 8. Measured thickness of CFL around the branch point of the
bifurcation at two different feed hematocrit levels for wd = 3.0.

and 91.8% for h = 2.78 and 4.13 μm, and 100.0% particle
recovery efficiency is achieved for h = 5.47 μm. These results
demonstrate that a thicker CFL leads to enhanced plasma
skimming and the feed hematocrit level and its distribution
in bifurcating microfluidic channel play a significant role in
blood–plasma separation.

In order to provide a more quantitative account, we
measure the thickness of CFL around the bifurcation.
Figure 8 shows the CFL thickness on the inner and outer
walls of the wider daughter branch. We see that the CFL

thickness increases on the outer wall after the bifurcation,
while it decreases dramatically to a small value (close to
zero) on the inner wall. This result is consistent with previous
observation that the CFL disappeared on the inner wall of
the bifurcation for RBCs flow in microfluidic channel with
geometrically symmetric bifurcation and confluence [10].

In a recent experimental study, the effect of RBC
aggregation on CFL formation in arterioles was investigated by
Ong et al [55]; they showed that the CFL formation in arterioles
is enhanced by the RBC aggregation. The effect of RBC
aggregation on modeling of plasma skimming in bifurcations
was recently studied by Chesnutt and Marshall [20]; they
found that aggregation does not significantly affect plasma
skimming. An aggregation LD-RBC model has been recently
developed and employed to capture blood flow behavior by
Fedosov et al [32]. Here, explicit aggregation models of
RBCs are not included in our DPD simulations—this may
be investigated more systematically in future studies.

3.3.3. Trajectories of individual RBCs. A more direct means
of tracking the motion of individual RBCs is given by
observing the coordinate position of these RBCs with the time
development. We simulate the trajectories of individual RBCs
downward from the pure plasma flow separating streamline;
see figure 9. These trajectories of individual RBCs show that
they deviate from the streamline of the pure plasma flow
probably due to the chaotic motion of RBCs caused by cell–
cell interactions and flow perturbations near the branch point

(a)

(b)

Figure 9. (a) Illustration of the distance between the branch point of the bifurcation and the parent channel wall. (b) Paths displacement of
individual RBCs flowing in bifurcating microfluidic channels for wd = 3.0.
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of bifurcation. The RBC has a maximum diameter of 8.0 μm
for a microfluidic channel width of 40.0 μm; the ratio between
the diameter of RBC and the width of the parent channel
is not more than 0.2, and we apply the periodic boundary
condition in the third (z-axis) direction. Thus, for such a small
confinement system, there is no strong attraction effect, and
the blood–plasma separation efficiency is mainly influenced
by the initial distribution of RBCs in the parent channel and
the interactions between particles.

When a RBC approaches the branch point of the
bifurcation, it will travel into the wide daughter branch if its
centroid is beyond the pure plasma flow separating streamline;
however, it will travel into the narrow daughter branch if its
centroid is within the pure plasma flow separating streamline.
Thus, at a given width ratio between the two daughter branches,
if all the centroids of RBCs are beyond the pure plasma
flow separating streamline, then almost all RBCs travel into
the wide daughter branch, and none or only few RBCs
travel into the narrow daughter branch, i.e. the all-or-nothing
phenomenon occurs.

3.3.4. Comparison with experimental results on blood–plasma
separation. How do RBCs decide which branch to take when
they go through a bifurcating region? It is known that the
RBC volume fractions in the two daughter branches are not
equal and the volume fraction of RBCs increases in the high
flow-rate branch; however, to the best of our knowledge, no
other models have been used to accurately predict the degree
of skimming that will occur by incorporating the cell–cell
interactions. The LD-RBC model, which models a RBC as
a closed torus-like ring of ten colloidal particles, allows to
consider a large number of RBCs. In order to provide a more
quantitative insight into the characteristics of the separation
behavior of RBCs and evaluate the minimum flow-rate ratio
required for complete RBC separation from the whole blood at
different hematocrit levels, we investigate the particle recovery
efficiency with respect to the flow-rate ratio between the two
daughter branches and employ existing experimental results
for comparison.

To measure the flow rate in each daughter branch, we first
count the number of RBCs and fluid particles passed through
two given stations perpendicular to the flow direction for a
period of time. Specifically, Q1 is determined at station c (see
figure 4) and its mirror station, whereas Q2 is determined at
station b (see figure 4) and its mirror station. The effective
flow rate is then obtained by the average of the volume of
the total number of counted RBCs and fluid particles divided
by the time. Figure 10(a) shows particle recovery efficiency
as a function of the effective flow-rate ratio φd,eff between
the two daughter branches. In all the curves, the value of
N1/N0 is larger than the one predicted by the pure plasma flow
distribution, which is precisely the bifurcation law. The results
also show that, for each hematocrit level, the particle recovery
efficiency steadily increases when φd,eff increases. Consider
blood flow at Hct = 20.0% for example: 67.1% particle
recovery efficiency is obtained for φd,eff � 1.4, which increases
to 85.6% and 95.7% for φd,eff � 2.2 and 3.1, respectively;
particle recovery efficiency further increases to approximately

(a)

(b)

Figure 10. Separation efficiency of healthy and malaria-infected
RBCs with respect to effective flow-rate ratio, φd,eff, between the
two daughter branches. (a) Separation efficiency of healthy RBCs at
different feed hematocrit level. (b) Percentage recovery efficiencies
of a mixture of healthy and malaria-infected RBCs at different
parasitemia level.

100.0% for φd,eff � 4.5. These results demonstrate that the
blood–plasma separation effect is determined by the effective
flow-rate ratio, that is the larger the effective flow-rate ratio, the
higher the particle recovery efficiency. The minimum effective
flow-rate ratio increases with the increase of the hematocrit
level: for Hct = 10.0%, 100% particle recovery efficiency is
achieved for φd,eff � 3.8, while 4.5 and 5.3 flow-rate ratios
are required to obtain 100% particle recovery efficiency for
Hct = 20.0% and 30.0%, respectively. By further increasing
the hematocrit level Hct = 40.0%, the minimum effective
flow-rate ratio is expected to be further increased, that is a
minimum effective flow-rate ratio of φd,eff � 7.1 is needed to
obtain complete RBC separation from whole blood.

Figure 10(b) shows particle recovery efficiency of healthy
RBCs and iRBCs with respect to the effective flow-rate ratio
between the two daughter branches. At a fixed value of
φd,eff, particle recovery efficiency of iRBCs is lower than
that of healthy RBCs. This is because the iRBCs lose their
deformability due to the increase in membrane stiffness. The
minimum effective flow-rate ratio for 100% particle recovery
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efficiency increases with the increase of the parasitemia level;
for Hct = 20.0%, 100% particle recovery efficiency is achieved
for φd,eff � 4.5, 5.1 and 5.9 at parasitemia level equal to
0.0%, 50.0% and 100.0%, respectively. These results would be
helpful to develop proper guidelines in designing microfluidic
devices for the separation of RBCs from the whole blood.

4. Conclusions

We have studied the motion of red blood cell (RBC) flow
in bifurcating microfluidic channels via a low-dimensional
RBC (LD-RBC) model based on dissipative particle dynamics
(DPD). No-slip wall boundary and adaptive boundary
conditions were included in the modified DPD approach
to model hydrodynamic flow for a specific wall structure
of a bifurcating microfluidic channel controlling particle
density fluctuations. The DPD simulation results are used
to predict the RBC flux in bifurcating microfluidic channels
and their dependence on the deformability of RBCs and the
feed hematocrit level of blood. Our results show that the
deformability of RBCs has a considerable influence on blood–
plasma separation in that separation efficiencies of stiff iRBCs
are lower than those of healthy RBCs. The blood–plasma
separation effect is also demonstrated to strongly depend on the
feed hematocrit level of blood; the particle recovery efficiency
increases with a decrease in feed hematocrit level. The plasma
skimming effect of RBC flow in bifurcating microfluidic
channels has been demonstrated in DPD simulations, and
the all-or-nothing phenomenon has been observed in a higher
width ratio between the two daughter branches. These findings
demonstrate that the LD-RBC model is an effective (relatively
simple) model for understanding and quantifying the in vitro
behavior of RBC flow in bifurcating microfluidic channels.
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