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Generalized polynomial chaos (gPC) has non-uniform convergence and tends to break
down for long-time integration. The reason is that the probability density distribution
(PDF) of the solution evolves as a function of time. The set of orthogonal polynomials asso-
ciated with the initial distribution will therefore not be optimal at later times, thus causing
the reduced efficiency of the method for long-time integration. Adaptation of the set of
orthogonal polynomials with respect to the changing PDF removes the error with respect
to long-time integration. In this method new stochastic variables and orthogonal polyno-
mials are constructed as time progresses. In the new stochastic variable the solution can
be represented exactly by linear functions. This allows the method to use only low order
polynomial approximations with high accuracy. The method is illustrated with a simple
decay model for which an analytic solution is available and subsequently applied to the
three mode Kraichnan–Orszag problem with favorable results.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

To describe physical problems we often make use of deterministic mathematical models. Typical constituents of such mod-
els – material properties, initial and boundary conditions, interaction and source terms, etc. – are assigned a definite value and
we seek a deterministic solution to the problem. In reality, however, a physical problem will almost always have uncertain com-
ponents. Material properties, for instance, might be based on imprecise experimental data. In other words, the input to a math-
ematical model of a real-life problem possesses some degree of randomness. We are interested in modelling this uncertainty. To
this end we look for methods to quantify the effects of stochastic inputs on the solutions of mathematical models.

The Monte-Carlo method is the most popular approach to model uncertainty. It is a ‘brute-force’ method of attack: using a
sample of the stochastic inputs we calculate the corresponding realizations of the solution. From the resulting sample of
solutions we then determine the desired statistical properties of the solution. In most cases we have to use a large sample
size to obtain accurate estimates of these statistical properties. This makes Monte-Carlo methods very expensive from a
computational point of view. Furthermore, the selection of proper (pseudo-)random number generators needed for a
Monte-Carlo simulation influences the results.

Besides the statistical Monte-Carlo methods a number of nonstatistical (i.e. deterministic) approaches to modelling uncer-
tainty have been proposed. Polynomial chaos is one such nonstatistical method that has been shown to be particularly effective
for a number of problems, especially in low dimensions. Polynomial chaos employs orthogonal polynomial functionals to ex-
pand the solution in random space. The method is based on Wiener’s [1] homogeneous chaos theory published in 1938. This
. All rights reserved.
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paper paved the path for the application of truncated expansions in terms of Hermite polynomials of Gaussianly distributed
random variables to model (near-)Gaussian stochastic processes. In the 1960s these Wiener–Hermite expansions were em-
ployed in the context of turbulence modelling [2,3]. However, some serious limitations were encountered – most notably
due to its non-uniform convergence – leading to a decrease of interest in the method in the years that followed.

In 1991 Ghanem and Spanos [4] pioneered the use of Wiener–Hermite expansions in combination with finite element
methods and effectively modelled uncertainty for various problems encountered in solid mechanics. At this point in time
the polynomial chaos method was capable of achieving an exponential convergence rate for Gaussian stochastic processes
only. In 2002 Xiu and Karniadakis [5] introduced generalized polynomial chaos (gPC). It was recognized that the PDF of a num-
ber of common random distributions plays the same role to the weighting function in the orthogonality relations of orthog-
onal polynomials from the so-called Askey scheme. Xiu and Karniadakis established that, in order to achieve optimal
convergence, the type of orthogonal polynomials in the chaos expansion should correspond to the properties of the stochas-
tic process at hand, based on the association between PDF and weighting function. This gPC approach has been applied to a
number of problems in fluid flow [6–11]. Although the polynomial chaos method was initially generalized to polynomials of
the Askey scheme only, the extension to arbitrary random distributions soon followed. By employing the correspondence
between PDF and weighting function in the orthogonality relation, we can generate optimal expansion polynomials for
an arbitrary random distribution. The resulting expansion polynomials need not necessarily come from the Askey scheme.
There exist various ways to calculate these optimal expansion polynomials, see for instance [12,13].

The gPC method has been shown to be effective for a number of problems resulting in exponential convergence of the
solution. However, there are also situations in which gPC is not effective. A discontinuity of the solution in the random space
may, for instance, lead to slow convergence or no convergence at all. In addition, problems may be encountered with long-
time integration, see [11,14,15]. The statistical properties of the solution will most likely change with time. This means that
the particular orthogonal polynomial basis that led to exponential convergence for earlier times may loose its effectiveness
for later times resulting in a deteriorating convergence behaviour with time. Hence, for larger times unacceptable error levels
may develop. These errors may become practically insensitive to an increase of the order of the polynomial expansion be-
yond a certain order. Part of this failure can be attributed to the global character of the approximation. Local methods seem
to be less sensitive to error growth in time. Wan and Karniadakis [16] have developed a multi-element polynomial chaos
method (ME-gPC). The main idea of ME-gPC is to adaptively decompose the space of random inputs into multiple elements
and subsequently employ polynomial chaos expansions at element level. Pettit and Beran [17] successfully applied a Wie-
ner–Haar approximation for single frequency oscillatory problems. This approach relies on the fact that one knows in ad-
vance that the time evolution will be oscillatory. Multi-element techniques for time-dependent stochastics for oscillatory
solutions have also been applied by Witteveen and Bijl [18–20].

Despite the success of gPC methods, unsteady dynamics still poses a significant challenge [11,15].
The approach presented in this paper to resolve the long-time integration problems with the global gPC method is based

on the fact that the PDF of the solution will not remain constant in time. Recognizing that the initial polynomial chaos expan-
sion loses its optimal convergence behaviour for later times, we develop a time-dependent polynomial chaos (TDgPC) meth-
od. The main idea of TDgPC is to determine new, optimal polynomials for the chaos expansion at a number of discrete
instants in time. These new polynomials are based on the stochastic properties of the solution at the particular time level.
In this way optimal convergence behaviour is regained over the complete time interval. In this first paper, the method will
be applied to an ordinary differential equation, namely the decay model, and a system of ordinary differential equations, the
so-called Kraichnan–Orszag three-mode problem.

The outline of this paper is as follows: In Section 2 the basic idea of generalized polynomial chaos is explained. In Section
3 the breakdown of gPC is demonstrated and an explanation is given why gPC looses its optimality. In this section also the
idea of time-dependent generalized polynomial chaos is introduced. In Section 4 TDgPC is applied to the Kraichnan–Orszag
three-mode problem. First, one of the initial conditions is randomly distributed and subsequently the method is applied to
the case in which all three initial conditions are randomly distributed. In Section 5 conclusions are drawn. Although this pa-
per focuses on the global polynomial chaos method, the failure for long-time integration is not restricted to these methods.
In the appendix some additional considerations for Probabilistic Collocation methods will be given. Although collocation
methods do not rely on polynomial expansions for the evolution equation, they implicitly use polynomial representations
for the calculation of the mean and variance.

2. Polynomial chaos

A second-order stochastic process can be expanded in terms of orthogonal polynomials of random variables, i.e. a polyno-
mial chaos expansion. These polynomial chaos expansions can be used to solve stochastic problems. In this section we intro-
duce the polynomial chaos expansion and we outline a solution method for stochastic problems based on these expansions.

2.1. The polynomial chaos expansion

Let ðX;F ;PÞ be a probability space. Here X is the sample space, F � 2X its r-algebra of events and P the associated prob-
ability measure. In addition, let S � Rd (d = 1,2,3) and T � R be certain spatial and temporal domains, respectively. In a phys-
ical context we frequently encounter stochastic processes in the form of a scalar- or vector-valued random function like
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uðx; t;xÞ : S� T �X! Rb; ð1Þ
where x denotes position, t for time, x represents an element of the sample space X and b = 1 for scalar-valued random vari-
ables and b > 1 for vector-valued random variables. The probability space can often be described by a finite number of ran-
dom variables
n1; n2; . . . ; nn : X! R; ð2Þ
in which case the stochastic variable of (1) can be written as
uðx; t; nÞ : S� T � Rn ! Rb; ð3Þ
where n = (n1, . . . ,nn) is an n-dimensional vector of random variables. In this work we will exclusively be dealing with sto-
chastic processes of the form (3), i.e. processes that can be characterized by a finite set of random variables.

The stochastic process (3) can be represented by the following polynomial chaos expansion
uðx; t; nðxÞÞ ¼
Xn

i¼0

uiðx; tÞUiðnðxÞÞ; ð4Þ
where the trial basis {Ui(n)} consists of orthogonal polynomials in terms of the random vector n.
Historically, Wiener [1] first formulated a polynomial chaos expansion in terms of Hermite polynomials of Gaussianly dis-

tributed random variables. It follows from a theorem by Cameron and Martin [21] that this Hermite-chaos expansion con-
verges to any stochastic process uðxÞ 2 L2ðX;F ;PÞ in the L2 sense. This means that a Hermite-chaos expansion can – in
principle – be used to represent any stochastic process with finite variance (a requirement that is met for most physical pro-
cesses). In practice, however, optimal convergence is limited to processes with Gaussian inputs. Gaussian random inputs
generally result in a stochastic process that has a large Gaussian part, at least for early times. This Gaussian part is repre-
sented by the first-order terms in the Hermite-chaos expansion. Higher order terms can be thought of as non-Gaussian cor-
rections. Hence, for Gaussian random inputs we can expect a Hermite-chaos expansion to converge rapidly.

For general, non-Gaussian random inputs, however, the rate of convergence of a Hermite-chaos expansion will most likely
be worse. Although convergence is ensured by the Cameron–Martin theorem, we will generally need a large number of high-
er-order terms in the expansion to account for the more dominant non-Gaussian part. To obtain an optimal rate of conver-
gence in case of general random inputs we need to tailor the expansion polynomials to the stochastic properties of the
process under consideration. Although Ogura [22] had already employed Charlier-chaos expansions to describe Poisson pro-
cesses, Xiu and Karniadakis [5] were the first to present a comprehensive framework to determine the optimal trial basis
{Ui}.

The optimal set of expansion polynomials forms a complete orthogonal basis in L2ðX;F ;PÞ with orthogonality relation
hUi;Uji ¼ U2
i

D E
dij; ð5Þ
where dij is the Kronecker delta and h� � �i denotes the ensemble average. To be more specific, the optimal set {Ui(n)} is an
orthogonal basis in the Hilbert space with associated inner product
hGðnðxÞÞ;HðnðxÞÞi ¼
Z

X
GðnðxÞÞHðnðxÞÞdPðxÞ ¼

Z
suppðnÞ

GðnÞHðnÞfnðnÞdn; ð6Þ
where fn(n) is the probability density function (PDF) of the random variables that make up the vector n. Note that the PDF acts
as a weighting function in the orthogonality relation for {Ui(n)}. So, the type of orthogonal expansion polynomials (deter-
mined by the weighting function in the orthogonality relation) that can best be used in a polynomial chaos expansion de-
pends on the nature of the stochastic process at hand through the PDF of the random variables that describe the
probability space. The fact that the trial basis defined in (5) and (6) is optimal hinges on the presumption that the random
function u(x, t,n(x)) represented by the polynomial chaos expansion has roughly the same stochastic characteristics as the
random variables in n, at least for early times. Hence, the higher-order terms in the expansion are expected to be small,
reducing the dimensionality of the problem and resulting in rapid convergence. As a generalization of the Cameron–Martin
theorem, we also expect this generalized polynomial chaos expansion (with {Ui(n)} being a complete basis) to converge to
any stochastic process uðxÞ 2 L2ðX;F ;PÞ in the L2 sense.

In [5] it was recognized that the weighting functions associated with a number of orthogonal polynomials from the so-
called Askey scheme are identical to the PDFs of certain ‘standard’ random distributions. Table 1 gives some examples. The
authors of [5] studied a simple test problem subject to different random inputs with ‘standard’ distributions like the ones in
Table 1. Exponential error convergence was obtained for a polynomial chaos expansion with an optimal trial basis (i.e. in
accordance with Table 1). Furthermore, it was shown that exponential convergence is generally not retained when the opti-
mal trial basis is not used (for example, employing Hermite chaos instead of Jacobi chaos when the random input has a beta
distribution).

The focus in [5] was on orthogonal polynomials from the Askey scheme and corresponding ‘standard’ random distribu-
tions. However, there is no reason to limit the members of possible trial bases to polynomials from the Askey scheme. With
(5) and (6) we can determine an optimal trial basis for arbitrary, ‘nonstandard’ distributions of n as well. When the PDF of n is



Table 1
Orthogonal polynomials from the Askey scheme constitute an
optimal trial basis for a number of well-known random
distributions.

Distribution of n Expansion polynomials {Ui(n)}

Uniform Legendre
Gaussian Hermite
Beta Jacobi
Gamma Laguerre
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known we can use various orthogonalization techniques to calculate the corresponding optimal trial basis {Ui(n)}. In this
work we will use Gram–Schmidt orthogonalization, [23,24].

Sometimes the probability space can be characterized by a single random variable, i.e. n = 1 in (2) and the vector n is re-
duced to the scalar n. In this case the index i in {Ui(n)} directly corresponds with the degree of the particular expansion poly-
nomial. For example, U3(n) is a third degree polynomial in n.

In the more general situation of a multidimensional probability space, n > 1, the correspondence between i and polyno-
mial degree does not exist and i reduces merely to a counter. To construct the multidimensional expansion polynomials
{Ui(n)} we first calculate the one-dimensional polynomials /

ðnjÞ
p ðnjÞ for j = 1, . . . ,n and p = 0,1,2, . . . using a Gram–Schmidt

algorithm with orthogonality relation
1 For
Althoug
stochas
/
ðnjÞ
p ;/

ðnjÞ
q

D E
¼
Z

suppðnjÞ
/
ðnjÞ
p ðnjÞ/

ðnjÞ
q ðnjÞfnj

ðnjÞdnj ¼ /
ðnjÞ
p

2
� �

dpq: ð7Þ
For these one-dimensional polynomials p again corresponds to the polynomial degree and the superscript (nj) indicates that
the polynomial is orthogonal with respect to fnj

. The multidimensional expansion polynomials can now be constructed from
the simple tensor product
UiðnÞ ¼ /ðn1Þ
p1
ðn1Þ/ðn2Þ

p2
ðn2Þ � � �/ðnnÞ

pn
ðnnÞ ð8Þ
with some mapping (p1,p2, . . . ,pn) ? i.
The procedure above assumes that n1, . . . ,nn are stochastically independent1 which implies that
fnðnÞ ¼ fn1 ðn1Þfn2 ðn2Þ � � � fnnðnnÞ: ð9Þ
It can now easily be verified that the multidimensional expansion polynomials {Ui(n)} constructed according to (8) form an
optimal orthogonal trial basis in agreement with (5) and (6).

2.2. The gPC method

In this section we outline a solution procedure for stochastic problems based on the polynomial chaos expansion given in
(4). Consider the abstract problem
Lðx; t; nðxÞ; uÞ ¼ f ðx; t; nðxÞÞ; ð10Þ
where L is a (not necessarily linear) differential operator and f some source function. The randomness, represented by the
random vector n, can enter the problem either through L (e.g. random coefficients) or f, but also through the boundary or
initial conditions or some combination.

We approximate the stochastic solution function u(x, t,n(x)) by a truncated polynomial chaos expansion similar to (4).
The truncation of the infinite series is necessary to keep the problem computationally feasible. In this work we will truncate
the series in such a way that all expansion polynomials up to a certain maximum degree, denoted by P, are included. The
number of terms (N + 1) in the expansion now follows from this maximum degree P and the dimensionality n of the random
vector n according to
N þ 1 ¼
P þ n

P

� �
¼ ðP þ nÞ!

P!n!
: ð11Þ
We continue by substituting the polynomial chaos expansion for u into the problem equation and execute a Galerkin pro-
jection. This means that we multiply (10) by every polynomial of the expansion basis {Ui} and take the ensemble average to
obtain
the more general case, one has to employ conditional probability distributions. For the method presented in this paper this will not be necessary.
h stochastic independence will gradually be lost in the time evolution, we transform everything back to the initial distribution where all randomness is
tically independent.
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L x; t; n;
XN

i¼0

uiðx; tÞUiðnÞ
 !

;UjðnÞ
* +

¼ hf ðx; t; nÞ;UjðnÞi; j ¼ 0;1; . . . ;N: ð12Þ
The Galerkin projection above ensures that the error we make by representing u by a polynomial chaos expansion
is orthogonal to the function space spanned by the expansion basis {Ui} (Galerkin orthogonality). As a result of the
orthogonality of the expansion polynomials, (12) can be reduced to a set of N + 1 coupled, deterministic equations
for the N + 1 expansion coefficients ui(x, t). So, the remaining problem is stripped of all stochastic characteristics
by the Galerkin projection. The remaining equations can now be solved by any conventional discretization
techniques.

3. Long-time integration

In this section, we will discuss the issues of long-time integration related to polynomial chaos for a stochastic ordinary
differential equation (ODE). We will use a simple differential equation, the decay model, to illustrate the inability to use gPC
for long-time integration. We then explain why a standard gPC expansion is not able to describe the solution for growing
time.

3.1. Stochastic ordinary differential equation

Consider the following stochastic ordinary differential equation, which can be seen as a simple model,
duðtÞ
dt
þ kuðtÞ ¼ 0; uð0Þ ¼ 1: ð13Þ
The decay rate k is considered to be a random variable k = k(x). Therefore, the solution u(t) of the above equation will be a
stochastic process u(t,x). It is assumed that the stochastic processes and random variables appearing in this problem can be
parameterized by a single random variable n. This implies that the problem modeled by (13) can be formulated as, find u(t,n)
such that it satisfies
duðt; nÞ
dt

þ kðnÞuðt; nÞ ¼ 0 in C ¼ T � S; ð14Þ
and the initial condition u(t = 0) = 1. The domain C consists of the product of the temporal domain T = [0, tend] and the domain
S, being the support of the random variable n. In this work, we will choose k to be uniformly distributed in the interval [0,1],
characterized by the probability density function:
fkðkÞ ¼ 1; 0 6 k 6 1: ð15Þ
This particular distribution of the random input parameter causes the stochastic process u(t,x) to be second-order, even for
t ?1 and therefore allows a gPC expansion.

The exact solution of this equation is given by
uðt;xÞ ¼ e�kt; ð16Þ
such that both the statistical parameters of interest, the mean and the variance, can be calculated exactly. The expression for
the stochastic mean �uexactðtÞ is given by
�uexactðtÞ ¼ E½uðtÞ� ¼
Z 1

0
e�ktfkdk ¼ 1� e�t

t
; ð17Þ
and the variance rexact(t) is given by
rexactðtÞ ¼ E½ðuðtÞ � �uðtÞÞ2� ¼
Z 1

0
ðe�kt � �uÞ2fkdk ¼ 1� e�2t

2t
� 1� e�t

t

� �2

: ð18Þ
From the continuous expansion we can see that the variance is bounded for all values of t so we are dealing with a second-
order process.

3.2. gPC results

The first step in applying a gPC procedure to the stochastic ODE (14), is to select a proper gPC expansion. Because the
input parameter k is uniformly distributed, according to the rules of gPC, we opt for a spectral expansion in terms of a uni-
form random variable n with zero mean and unit variance. This means that n is uniformly distributed in the interval [�1,1],
yielding the following PDF:
fnðnÞ ¼
1
2
; �1 6 n 6 1; ð19Þ
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such that the decay rate k(n) is given by:
kðnÞ ¼ 1
2

nþ 1
2
: ð20Þ
Hence, according to Table 1, the Legendre polynomials fLigP
i¼0 should be selected as the trial basis for the spectral expansion.

Using the Legendre polynomials in (12) we obtain the following system of differential equations
dujðtÞ
dt

¼ � 1
hL2

j i

XP

i¼0

hkLiLjiuiðtÞ; j ¼ 0;1; . . . ; P: ð21Þ
Employing a gPC expansion, the approximated stochastic mean is simply equal to the first mode of the solution:
�uðtÞ ¼ u0ðtÞ: ð22Þ
The approximated variance is then given by
rðtÞ ¼
XP

i¼0

ðuiðtÞÞ2 L2
i

D E
� ðu0ðtÞÞ2: ð23Þ
Fig. 1 shows the solution of the mean and variance using third-order Legendre-chaos. It can clearly be observed that the gPC
solution is capable of following the solution only for early times. Especially for the variance, the gPC solution diverges after a
while. The same behavior can be observed in the plot showing the evolution of the error, displayed in Fig. 2. Here, it can be
seen that the error � for the mean and variance, respectively defined as
Fig. 1. Evolution of the mean and variance for third-order Legendre-chaos.

Fig. 2. Evolution of the error for third-order Legendre-chaos.



Fig. 3. Behavior of the variance for increasing order Legendre-chaos.

Fig. 4. Error convergence of the mean and variance.
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�meanðtÞ ¼
�uðtÞ � �uexactðtÞ

�uexactðtÞ

����
����; �varðtÞ ¼

rðtÞ � rexactðtÞ
rexactðtÞ

����
���� ð24Þ
is only acceptable for early times. After this, the error quickly grows to the undesired order of O(1), which is unacceptable.
This rather poor behavior can be somewhat alleviated by increasing the expansion order. This is shown in Fig. 3, where it

can be seen that for increasing order, the gPC solution follows the exact solution for a longer period. In Fig. 4 the convergence
with polynomial enrichment is shown at t = 1 and t = 30. From this figure it is clear that p-refinement leads to exponential
convergence for t = 1, but hardly converges for t = 30.

Increasing the expansion order, however, is not an effective approach. First of all, in the general case, the gPC procedure
becomes quite time-consuming for high values of P. More importantly, increasing the maximal polynomial degree in fact
only postpones the troubles that gPC possesses. For a fixed polynomial degree P, the error levels will become definitely unac-
ceptable after some time. Hence, continuing to increase the end-time will require an ever-increasing polynomial degree,
which is not feasible in practice.

3.3. Why gPC fails

Let us consider again the gPC expansion of the approximated solution u(t,n):
uðt; nÞ ¼
XP

i¼0

uiðtÞLiðnÞ: ð25Þ
The best approximation to the exact solution can be achieved by minimizing the error, defined as juexact �
P

uiLij, in a certain
norm. Doing this for the L2(X) norm, we end up with the Fourier–Legendre series
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uðt; nÞ ¼
XP

i¼0

aiðtÞLiðnÞ; ð26Þ
in which the Legendre coefficients ai(t) are given by:
aiðtÞ ¼
huexactLii

L2
i

D E ð27Þ
with the ensemble average h�,�i defined as in (6). More explicitly, it can be calculated that the Legendre coefficients for the
stochastic ODE problem in question, are given by:
aiðtÞ ¼
Xi

j¼0

1
tjþ1

ðiþ jÞ!
ði� jÞ!j! ðð�1Þiþj � e�tÞ: ð28Þ
The only error occurring in the finite Fourier–Legendre series approximation is due to truncation. In fact, it is the optimal Pth
order approximation, being the interpolant of the exact solution.

Using (28) for the coefficients, both the mean and variance of the truncated Fourier–Legendre expansion can be calculated
using the (22) and (23). Because the expression to calculate the mean exactly, (17), corresponds to the first Legendre coef-
ficient a0, the mean obtained by the Fourier–Legendre expansion gives the exact solution. In order to calculate the variance
however, the truncation of the Fourier–Legendre series after P + 1 terms will cause the calculated variance to be different
from the exact variance, as can be seen from (23), where it can be observed that only increasing the polynomial degree will
cause the variance to converge to its exact value. Plotting the evolution of the variance for different values of P, one can
clearly see in Fig. 5 that even the optimal gPC expansion (optimal in the sense of minimal error) is not capable of approx-
imating the second-order statistics accurately. Although the approximation is better than in case of the gPC procedure using
a Galerkin projection, which also contains a discretization error, the error levels are still quite poor for the highest time level,
and the occurrence of unacceptable error levels is just a matter of selecting a later end-time.

Because of this observation, it can be concluded that the gPC expansion itself is not suitable for the approximation of all
statistics in this time-dependent stochastic ODE. As even the Fourier–Legendre polynomial chaos expansion (26) does fail for
long-time integration, it does not matter what kind of gPC procedure one chooses, e.g. a collocation or a least-squares pro-
jection. The problem will not be overcome by different discretizations or time-integration methods.

The failure of gPC for long-time integration can be explained by closer examining the governing equation:
duðt; nÞ
dt

þ kðnÞuðt; nÞ ¼ 0: ð29Þ
At first sight, this seems a linear ODE. But due to the fact that both the input parameter k and the solution u depend on the
random variable n, a quadratic non-linearity appears in the second term. This non-linearity in random space is responsible
for the behavior of the solution. For example, it causes the deterministic solution
udetðtÞ ¼ e�
�kt ¼ e�0:5t; ð30Þ
to deviate from the mean of the stochastic solution �uðtÞ,
�uðtÞ ¼ 1� e�t

t
; ð31Þ
Fig. 5. Behavior of the variance using the Fourier–Legendre chaos expansion.
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i.e. the deterministic solution employing the most probable value �k of the input parameter k
�k ¼ E½k� ¼
Z 1

0
kfk dk ¼ 1

2
; ð32Þ
does not correspond to the mean of the stochastic solution, incorporating the range and distribution of the random param-
eter k. In Fig. 6, it can be clearly seen that only for early times, those values do correspond, while for increasing time, the
difference grows. This behavior is known as stochastic drift. This implies that only for early times, the solution can be approx-
imated as a linear continuation of the random input. For increasing time, the non-linear development becomes more and
more dominant, requiring an increasing amount of terms in the polynomial chaos expansion in terms of the input expansion.
A way to see this, is to consider that the solution remembers and resembles the stochastic input only for early times, while
for later times, the solution starts to deviate from the distribution of the input due to the occurring quadratic non-linearity
and starts to develop its own stochastic characteristics. As a result, for longer time integration, expressing the solution in
terms of the input parameter requires more and more expansion terms. As for the Gaussian inputs discussed in Section 2,
the appearance of the higher-order modes in the expansion indicates that the solution is drifting away from a uniformly dis-
tributed stochastic process and therefore the concept of optimal polynomial chaos as explained in [5] will no longer be appli-
cable. The failure observed for gPC is not limited to gPC. Probabilistic Collocation methods show a similar behaviour. The
behaviour of PCM and additional considerations for long-time integration are given in Appendix A.

3.4. Time-dependent Wiener–Hermite expansion

An alternative approach of expanding random variables is in terms of so-called ideal random functions [25]. Ideal random
functions are improper functions which can be interpreted as the derivative of the Wiener random function.

The expansion in terms of ideal random functions also breaks down for time-dependent problems. In [26–28] it was pro-
posed to make the random functions time-dependent and to set up a separate differential equation for the determination of
the optimal time-dependent ideal random functions. In [27] it is stated that: ‘‘The principle idea of the method is to choose
different ideal random functions at different times in such a way that the unknown random function is expressed with good approx-
imation by the first few terms of the Wiener–Hermite expansion for long-time duration. As an example it will be shown in I that the
exactly Gaussian solutions of turbulence in an incompressible inviscid fluid and the three-mode problem are expressed by the first
term alone of the Wiener–Hermite expansion if we take a suitable time-dependent ideal random function as the variable.”

The assumption is that for different times t, different random functions A(x, t) = H(1)(x, t) should be chosen (see [25, Eq.
(3.2)] for the definition of the functions HðnÞi1 ;...;in

ðxÞ). Assuming that the ‘‘new” random functions are not too different from
the ‘‘old” random functions, they can be approximated by a rapidly converging Wiener–Hermite expansion in time, which
gives the differential equation from which the new random functions can be obtained. The coefficients in the evolution equa-
tion are constrained by the fact that the new random functions should satisfy the properties of ideal random functions [25,
Eqs. (2.1) and (2.2)].

In the current paper the same basic idea is employed, namely that the basis functions in which the random variable is
expanded should change as a function of time, but no separate evolution equation is set up for the new basis functions. In-
stead, the solution at a given time t is chosen as the new random variable and the ‘‘old” basis functions are now expressed in
terms of this ‘‘new” random variable.

3.5. Time-dependent polynomial chaos

In this section the basic idea, as developed by Vos [29], of time-dependent generalized polynomial chaos will be ex-
plained. This idea is easy to understand and fully reflects the notion that the PDF changes as function of time and therefore
Fig. 6. Evolution of deterministic solution and the mean of the stochastic solution.
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requires a different set of orthogonal polynomials. In the next section the same approach will be applied to the Kraichnan–
Orszag three-mode problem and there several improvements on this basic idea will be presented.

Time-dependent polynomial chaos works as follows. Consider the same ODE problem as in Section 3.1
duðt; nÞ
dt

þ kðnÞuðt; nÞ ¼ 0: ð33Þ
We start with the gPC procedure using a Legendre-chaos expansion as explained in Section 3.2
uðt; nÞ ¼
XP

i¼0

uiðtÞLiðnÞ: ð34Þ
As this gPC approach works fine for early times, this is a suitable approach to start with. However, when progressing in time
using an RK4 numerical integration, the results start to become worse due to the quadratic non-linearity in random space.
That is why at a certain time level, the gPC procedure should be stopped, preferably before the non-linear development be-
comes too significant. This can be monitored by inspecting the non-linear terms in the gPC expansion of the solution. Con-
sequently, stopping the numerical integration in time when the non-linear coefficients become too big with respect to the
linear coefficient, given by the condition
maxðju2ðtÞj; . . . ; juPðtÞjÞP
ju1ðtÞj

h
; ð35Þ
can be used as a suitable stopping criterion.
Suppose we halt the gPC procedure at t = t1. We now change the expansion by introducing a new random variable equal to

the solution u at t = t1, given by
w ¼ uðt1; nÞ ¼
XP

i¼0

uiðt1ÞLiðnÞ ¼ TðnÞ; ð36Þ
where T maps n onto w. This mapping is not necessarily bijective. If the PDF of n is given by fn(n), then the PDF of w can in
principle be obtained from, [30,31]
fwðwÞ ¼
X

n

fnðnnÞ
dTðnÞ

dn

���
n¼nn

����
����
; ð37Þ
where the sum is taken so as to include all the roots nn, n = 1,2, . . . which are the real solutions of the equation

w ¼ TðnÞ ¼ 0: ð38Þ
The new gPC expansion should be a polynomial expansion in terms of this random variable w. According to the gPC rules, the
polynomial basis {Ui} should be chosen such that the polynomials are orthogonal with respect to a weighting function equal
to the PDF of w. Because the random variable w depends on the solution, the new polynomial basis should be created on-the-
fly. Having obtained the new PDF in terms of w we can set up a system of monic orthogonal polynomials with respect to the
weight function fw(w). This orthogonal system is defined by
/0ðwÞ ¼ 1;Z
/iðwÞ/jðwÞfwðwÞdw ¼ cidij; i; j ¼ 1; . . . ; P:

ð39Þ
As mentioned before, various alternatives are feasible to create this set of polynomials numerically. In this work, we choose
to create the orthogonal polynomial basis using a Gram–Schmidt orthogonalization. In this way, a new proper gPC expansion
of the solution will be created. With respect to this new orthogonal system the solution u can be represented as
uðt;wÞ ¼
XP

i¼0

uiðtÞ/iðwÞ: ð40Þ
Moreover, because it is based on the statistics of the solution, it is the optimal gPC expansion which will yield optimal con-
vergence for early times, starting from t = t1.

However, before the gPC procedure can be continued, some extra information should be updated. First of all, the solution
at time level t1, uðt1; nÞ ¼

P
uiðt1ÞLiðnÞ, should be translated to new (stochastic) initial conditions for u in terms of the new

random variable w. Due to the use of monic orthogonal polynomials in the Gram–Schmidt orthogonalization, this yields the
following exact expansion
uðt1;wÞ ¼ /1ðwÞ � u0ðt1Þ/0ðwÞ; ð41Þ

in which u0(t1) is equal to the value of u0(t1) from the old expansion. Note that this is a linear expansion in w.

In practice, the new PDF (37), is not explicitly constructed, but we make use of the mapping (36)
Z
gðwÞfwdw ¼

Z
gðTðnÞÞfndn ð42Þ
to convert all integrals to the original stochastic variable n.
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This new expansion should then be employed until a next time level t2, at which criterion (35) is fulfilled again. Then, the
algorithm should be repeated. In this way, one can march through the time domain, reinitializing the gPC expansion at cer-
tain discrete time levels. The whole idea of transforming the problem to a different random variable at those time levels is to
capture the non-linearity of the problem under consideration in the PDF. The time-dependent generalized polynomial chaos
can be summarized as:

Algorithm

– construct an ODE system employing gPC based on the random input
– integrate in time
– time step i: if maxðju2ðtiÞj; . . . ; juPðtiÞjÞP ju1ðtiÞj

h

– calculate the PDF of wnew

– Gram–Schmidt orthogonalization: create a random trial basis {Ui(wnew)}
– generate new initial conditions: u(ti,wprev) ? u(ti,wnew)
– construct a new ODE system using (42)
– calculate mean and variance
– postprocessing
The rationale behind TDgPC is the idea that the coefficient k and the solution u need not have the same probability dis-
tribution. We assume that the solution of the decay model can be decomposed as
uðt; fÞ ¼
XN

i¼0

uiðtÞ/iðfÞ; ð43Þ
where the basis functions /i(f) are orthogonal with respect to the probability density function fu(t,f) of u and not the probability
density function fk(n) of the stochastically distributed decay coefficient k(n). Then the expansion coefficients are given by
ujðtÞ ¼
1

/2
j

D E Z 1

�1
uðt; fÞ/jðfÞfuðt; fÞdf; ð44Þ
and hence,
duj

dt
¼ 1

/2
j

D E Z 1

�1

@uðt; fÞ
@t

/jðfÞfuðt; fÞdfþ 1

/2
j

D E Z 1

�1
uðt; fÞ/jðfÞ

@fuðt; fÞ
@t

df

¼ �1

/2
j

D E Z 1

�1
kðnÞuðt; fÞ/jðfÞfuðt; fÞdfþ 1

/2
j

D E Z 1

�1
uðt; fÞ/jðfÞ

@fuðt; fÞ
@t

df

¼ �1

/2
j

D E XN

i¼0

uiðtÞ
Z 1

�1
kðnÞ/iðfÞ/jðfÞfuðt; fÞdfþ 1

/2
j

D E XN

i¼0

uiðtÞ
Z 1

�1
/iðfÞ/jðfÞ

@fuðt; fÞ
@t

df:
The problem with this approach is twofold

1. How is f related to n?
2. How can we determine the time derivative @fu/ot in the second term on the right hand side?

We know that the distribution of u is related to the distribution of k. Once we fix k, we have a deterministic solution, so let us
make f a function of n, i.e. f = f(n), then we have for the coefficientsZ
ujðtÞ ¼
1

/2
j

D E 1

�1
uðt; fÞ/jðfÞfuðt; fÞdf

¼ 1

/2
j

D E Z 1

�1
uðt; fðnÞÞ/jðfðnÞÞfuðt; fðnÞÞ

df
dn

dn

¼ 1

/2
j

D E Z 1

�1
uðt; fðnÞÞ/jðfðnÞÞfkðnÞdn:
If we now take the time derivative of uj(t) we obtain
duj

dt
¼ 1

/2
j

D E Z 1

�1

@uðt; fðnÞÞ
@t

/jðfðnÞÞfkðnÞdn ¼ �1

/2
j

D E Z 1

�1
kðnÞuðt; fðnÞÞ/jðfðnÞÞfkðnÞdn

¼ �1

/2
j

D E XN

i¼0

uiðtÞ
Z 1

�1
kðnÞ/iðfðnÞÞ/jðfðnÞÞfkðnÞdn:
This we recognize as TDgPC, when we set f = u(t,n).



8344 M. Gerritsma et al. / Journal of Computational Physics 229 (2010) 8333–8363
The probability density distribution for the decay problem, fu, is given by
fuðt; fÞ ¼
1
ft
; e�t

6 f 6 1: ð45Þ
The first two monic orthogonal polynomials for this distribution are given by
/0ðfÞ ¼ 1; /1ðfÞ ¼ fþ 1
t
ðe�t � 1Þ: ð46Þ
In terms of n the PDF and the orthogonal ‘polynomials’ are given by
fuðt; fðnÞÞ
df
dn
¼ 1

2
; /0ðfðnÞÞ ¼ 1; /1ðfðnÞÞ ¼ u0e�ð1þnÞt=2 þ 1

t
ðe�t � 1Þ ð47Þ
for �1 6 n 6 1. In Fig. 7 the probability density distribution of the solution u(t,f) is displayed for various values of t. For small
t, for instance t = 0.02 in the figure, the probability of finding u near 1 is high. Initially the probability density function
changes rapidly as a function of time. For higher values of t, for instance t = 6.42, the probability of finding u near 0 is highest.
For t = 0 the solution is deterministic and the associated PDF is given by the Dirac distribution d(f � 1). For t ?1 the solution
tends to the deterministic solution given by the PDF d(f). In Fig. 8 the ‘polynomial’ /1(f(n)) is plotted for various values of t
and the polynomial /1(n) = n associated with the distribution of the decay coefficient k. Note that the exact solution can be
represented by the two polynomials /0(f(n)) and /1(f(n)) for all t
uexactðt; nÞ ¼ u0e�ð1þnÞt=2 ¼ /1ðfðnÞÞ �
1
t
ðe�t � 1Þ/0ðfðnÞÞ: ð48Þ
3.6. Error analysis

Assuming that the time integration and the evaluation of the integrals involved are exact, we have the following error
estimate:

Theorem 1. Let �M denote the error of the second-order moment of PMu. At time t and polynomial order M, �M,gPC and �M,TDgPC are
given by
�M;gPC ¼
X1

i¼Mþ1

a2
i ðtÞ

2iþ 1
; ð49Þ
where the ai(t) are the Fourier–Legendre coefficients given by (28) and
�M;TDgPC ¼ 0 for M P 1: ð50Þ
Fig. 7. The probability density distribution fu(t,f) for various time levels.



Fig. 8. The polynomials /1(f(n)) associated with the PDF of the solution for t = 0.02,1,2, . . . ,10 (solid lines) and the /1(n) associated with the PDF of the
decay coefficient k (dashed line).
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Proof. The gPC expansion is represented in terms of Legendre polynomials given by
uexactðt; nÞ ¼
X1
i¼0

aiðtÞLiðnÞ; ð51Þ
where the ai(t) are the Fourier–Legendre coefficients given by (28)
hu2ðt; nÞi ¼
X1
i¼0

a2
i ðtÞ

2iþ 1
: ð52Þ
For the projection PMuðt; nÞ we have
PMuðt; nÞ ¼
XM

i¼0

aiðtÞLiðnÞ ) hðPMuÞ2i ¼
XM

i¼0

a2
i ðtÞ

2iþ 1
; ð53Þ
and therefore
�M;gPC ¼
X1

i¼Mþ1

a2
i ðtÞ

2iþ 1
: ð54Þ
Since in TDgPC, the new stochastic variable f = u, we have that u can be uniquely represented in terms of linear polynomials
of f, i.e.
uexactðt; fÞ ¼
X1
i¼0

biðtÞ/ðfÞ; biðtÞ ¼ 0 for i P 2) uexact ¼ PMu for M P 1: � ð55Þ
Wan and Karniadakis [14] have established for the multi-element version of gPC (ME-gPC), that the error for the second-
order moment is given by
�M;ME-gPC ¼ ð2NÞ�2ðMþ1Þ�M;gPC ; ð56Þ
where N denotes the number of elements in random space and M denotes the polynomial degree, which is clearly much
smaller than the error of gPC but not zero as in TDgPC.

3.7. Numerical results

If we analyze the results of this discrete time-dependent approach applied to the ODE in question, it can be observed in
Fig. 9, that for a polynomial order of P = 3, the results indeed outperform the standard gPC approach. In order to generate the



Fig. 9. Evolution of the mean and variance for third-order time-dependent gPC (P = 3).
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results, the threshold parameter was set equal to h = 6. Especially for the second-order statistics, which were a bottleneck for
the standard gPC, the improvement is significant. The same behavior can be seen from Fig. 10, displaying the evolution of the
error of both the mean and variance. Although the initial error level cannot be maintained, at the end-time, we see that both
the error-levels have dropped from an unacceptable order O(1) to the acceptable level O(10�2). The accuracy can be im-
proved by increasing the polynomial degree P. As from a polynomial degree of P = 4, in a plot depicting the evolution the
mean and variance analogous to Fig. 9, the time-dependent gPC approximation would be indistinguishable from the exact
solution. In Fig. 11, the error evolution of mean and variance are depicted for different expansion orders.

Fig. 12 shows that the time-dependent TDgPC approach is more accurate than conventional gPC, but it also shows that
convergence with polynomial enrichment is much slower than gPC. In fact, gPC is more accurate with respect to the mean
than TDgPC for higher polynomial orders. The lack of convergence is explained by the distribution of the decay coefficient
k(n) = (1 + n)/2 for �1 6 n 6 1, which in terms of f is given by (�1/t) � lnf for exp(�t) 6 f 6 1. For large t this implies that
we need to find a polynomial approximation in f to lnf for f 2 (0,1],
ln f ¼
X1
i¼0

aif
i; e�t

6 f 6 1: ð57Þ
Since lnf R L2(0,1) we know that this expansion does not converge in the L2-norm for higher values of t, see Fig. 13.
Or put differently, the transformation to the f-variables allows one to represent the solution at each time level exactly

with linear functions in f, as stated by Theorem 1, but is not adequate to describe the time rate of change of the solution.
We therefore expand the solution in terms of f and n as
uðt; nÞ ¼
XP

i¼0

XQ

j¼0

aijðtÞ/iðfÞLjðnÞ; ð58Þ
Fig. 10. Evolution of the error for third-order time-dependent gPC (P = 3).



Fig. 11. Evolution of the error for polynomial order P = 3, . . . ,6 for time-dependent gPC.

Fig. 12. Error convergence of the mean and variance at t = 30.

M. Gerritsma et al. / Journal of Computational Physics 229 (2010) 8333–8363 8347
where the /i(f) constitute a set of orthogonal polynomials with respect to PDF of the solution, as discussed in this section and
the Lj(n) constitute an orthogonal set of polynomials with respect to the PDF of the decay coefficient k(n), i.e. the Legendre
polynomials. So for P = Q = 1, the expanion is given by
uðt; nÞ ¼ a00ðtÞ þ a01ðtÞnþ a1;0ðtÞ/1ðfðnÞÞ þ a11ðtÞn/1ðfðnÞÞ: ð59Þ
At time t = tn the solution is given by
aijðtnÞ ¼
1 if i ¼ 1 and j ¼ 0
0 elsewhere

�
ð60Þ
The time rate of change of the solution is given by
du
dt
¼ �1

2
ð1þ nÞu ¼

XP

i;j

bijðtÞ/iðfÞLjðnÞ ) bijðtnÞ ¼
�1=2 if i ¼ 1 and j ¼ 0;1
0 elsewhere

�
ð61Þ
So with this expansion, both the solution and the time derivative can be fully represented. The number of terms required in
the expansion depends on the time-integration method employed. For Euler integration P = 1 and Q = 1 suffices and the error
in the approximation is dominated by time integration, since for the Euler scheme we have:
uðt þ Dt; nÞ ¼ uðt; nÞ � Dt
2
ð1þ nÞfðnÞ ð62Þ
For a fourth-order Runge–Kutta scheme a polynomial degree P = 4 and Q = 1 suffices, because for the Runge–Kutta scheme
we have



Fig. 13. Natural logarithm and its sixth order approximation for t = 1, t = 10, t = 100 (left to right).
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Fig. 14. Evolution of the error for fifth-order time-dependent gPC for 0 6 t 6 100 integrated with a fourth order Runge–Kutta scheme in time, Dt = 0.001.
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Fig. 15. Evolution of the error for P = 2 in the revised time-dependent gPC for 0 6 t 6 100.
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Fig. 16. Evolution of the error for P = 3 in the revised time-dependent gPC for 0 6 t 6 100.
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uðt þ Dt; nÞ ¼ uðt; nÞ � Dt
2
ð1þ nÞfðnÞ þ Dt2

8
ð1þ nÞ2fðnÞ � Dt3

48
ð1þ nÞ3fðnÞ þ Dt4

384
ð1þ nÞ4fðnÞ: ð63Þ
Fig. 14 shows the error as a function of time for this approach.

Corollary 2. The expansion of the random variable in orthogonal polynomials should be capable of representing the statistics at
each time level (Theorem 1) and should be capable of representing the time derivative. For the decay problem we have that if P is
greater or equal than the order of the time-integration scheme, the accuracy is determined by the accuracy of the time-integration
scheme. If P is less than the order of the time-integration scheme the accuracy is determined by DtP, because in that case the higher-
order terms cannot be represented by polynomials in n. This is illustrated numerically for the fourth-order Runge–Kutta scheme
with Dt = 0.001 for P = 2 and P = 3, in Figs. 15 and 16, respectively. For P = 2 this yields an error in the mean and the variance of
O(10�6) and for P = 3 an error in the mean and the variance of O(10�9) over the entire time interval.
Based on these observation, we now consider the more challenging case consisting of a system of ordinary non-linear dif-
ferential equations.

4. The Kraichnan–Orszag three-mode problem

The so-called Kraichnan–Orszag three-mode problem was introduced by Kraichnan [2] and studied by Orszag [3] for
Guassian distributed initial conditions.

4.1. Problem definition

The Kraichnan–Orszag problem is defined by the following system of non-linear ordinary differential equations
dx1

dt
¼ x2x3; ð64aÞ

dx2

dt
¼ x3x1; ð64bÞ

dx3

dt
¼ �2x1x2: ð64cÞ
In this work we will consider this problem subject to stochastic initial conditions. First, we will study the 1D problem cor-
responding to initial conditions of the form
x1ð0Þ ¼ aþ 0:01n; x2ð0Þ ¼ 1:0; x3ð0Þ ¼ 1:0; ð65Þ
where a is a constant and n a uniformly distributed random variable with unit variance (i.e. n is uniformly distributed on the
interval [�1,1]). Analysis by [16,32,33] shows that when a is in the range (0,0.9) the solution is rather insensitive to the ini-
tial conditions. However for a 2 (0.9,1) there is a strong dependence on the initial conditions.

In Section 4.4 we will consider the 3D case
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x1ð0Þ ¼ aþ 0:01n1; x2ð0Þ ¼ bþ 0:01n2; x3ð0Þ ¼ cþ 0:01n3; ð66Þ
where a, b and c are constants and n1, n2 and n3 are uniformly distributed random variables on the interval [�1,1], where n1,
n2 and n3 are statistically independent.

4.2. TDgPC solution

Consider the Kraichnan–Orszag problem (64) with the initial conditions (65). We follow the procedure described in Sec-
tion 3.5
xiðt; nÞ ¼
XP

p¼0

xðiÞp ðtÞLpðnÞ; i ¼ 1;2;3; ð67Þ
where Lp is the Legendre polynomial of degree p. Since n has a uniform distribution, the Legendre polynomials constitute an
optimal trial basis for early times (see Table 1). Employing this polynomial chaos expansion of the solution and following the
method outlined in Section 2.2 we arrive at a system of deterministic ordinary differential equations in time for the coeffi-
cients xðiÞp ðtÞ. We solve this system by standard fourth-order Runge–Kutta time integration.

From (67) we see that the approximate solutions xi are polynomials in the random variable n. With time the coefficients of
the solution polynomials increase in magnitude. This is an indication that the stochastic characteristics of the solution are
changing. As a consequence the basis {Lp} looses its effectiveness. When the non-linear part of the solution reaches a certain
threshold level (say at t = t1), we perform the transformation of the random variable from n to fi given by
fi ¼ xiðt1; nÞ ¼
XP

p¼0

xðiÞp ðt1ÞLpðnÞ; i ¼ 1;2;3: ð68Þ
The three new random variables fi have associated PDFs ffi
ðfiÞ.

For each ffi
we employ Gram–Schmidt orthogonalization to calculate a set of orthogonal polynomials /ðfiÞ

p ðfiÞ with
p = 0, . . . ,P. By /ðfiÞ

p we denote the polynomial of degree p associated with ffi
, i.e. ffi

acts as the weighting function in the
orthogonality relation. At time level t = t1 these polynomials constitute an optimal trial basis again. We therefore use these
newly calculated polynomials /ðfiÞ

p and continue to obtain a numerical solution to the Kraichnan–Orszag problem in a new
form given by
xiðt; f1; f2; f3Þ ¼
X

06lþmþn6P

xðiÞlmnðtÞ/
ðf1Þ
l ðf1Þ/ðf2Þ

m ðf2Þ/ðf3Þ
n ðf3Þ; t P t1: ð69Þ
The summation in Eq. (69) is over all combinations of the integers l, m and n for which 0 6 l + m + n 6 P. The total number of
expansion terms (N + 1) follows from Eq. (11) with n = 3 and is given by
N þ 1 ¼
P þ 3

P

� �
¼ ðP þ 3Þ!

P!3!
¼ 1

6
ðP þ 3ÞðP þ 2ÞðP þ 1Þ � P3

6
: ð70Þ
Substituting (69) in (64) we once again follow the standard gPC procedure of Section 2.2. Hence, we perform a Galerkin
projection to end up with a new system of ordinary differential equations for the new expansion coefficients xðiÞlmnðtÞ.

We proceed by marching this new system forward in time again from t = t1 onwards using our standard fourth-order Run-
ge–Kutta solver. Note, however, that we need to provide ‘initial’ conditions (i.e. conditions at t = t1) for all new coefficients
xðiÞlmn. These initial conditions follow from the requirement
xiðt1; f1; f2; f3Þ ¼ fi; i ¼ 1;2;3: ð71Þ
We can arrange for the orthogonal expansion polynomials /ðfiÞ
p to all have unity leading coefficients. Therefore, at t = t1 the

coefficients xðiÞlmn are given by
xð1Þlmnðt1Þ ¼
�/ðf1Þ

0 if l ¼ m ¼ n ¼ 0;
1 if l ¼ 1 ^m ¼ n ¼ 0;
0 otherwise;

8><
>:

xð2Þlmnðt1Þ ¼
�/ðf2Þ

0 if l ¼ m ¼ n ¼ 0;
1 if m ¼ 1 ^ l ¼ n ¼ 0;
0 otherwise;

8><
>:

xð3Þlmnðt1Þ ¼
�/ðf3Þ

0 if l ¼ m ¼ n ¼ 0;
1 if n ¼ 1 ^ l ¼ m ¼ 0;
0 otherwise;

8><
>:

ð72Þ
where /ðfiÞ
0 denotes the zeroth-order term of the expansion polynomial of degree one associated with ffi

.
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Marching the new system of differential equations forward in time, we again monitor the non-linear part of the resulting
solution. When, by some criterion, this non-linear part has become too large (say at t = t2), we repeat the above procedure in
order to re-establish an optimal trial basis. Hence, we start by introducing the new random variables
fð2Þi ¼ xi t2; f
ð1Þ
1 ; fð1Þ2 ; fð1Þ3

� 	
; i ¼ 1;2;3; ð73Þ
and continue to calculate their PDFs from which the new optimal trial basis is calculated by Gram–Schmidt orthogonaliza-
tion. Note that we have added a superscript to the random variables in (73) corresponding to the time instant at which they
were introduced. Hence, we have rewritten the original variables fi as fð1Þi . The process of updating the polynomial trial basis
can be performed as many times as is required for the particular problem at hand. So, in general we have
fðkþ1Þ
i ¼ xi tkþ1; f

ðkÞ
1 ; fðkÞ2 ; fðkÞ3

� 	
; i ¼ 1;2;3; k ¼ 1;2; . . . ;K � 1 ð74Þ
 �
with associated PDF f
fðkþ1Þ

i
and orthogonal polynomials /

fðkþ1Þ
i

p leading to a polynomial chaos expansion, similar to (69), to be
used for tk+1 6 t 6 tk+2.

4.2.1. System of differential equations after a random variable transformation
Having made the transformation (68) from the single initial random variable n to the three new random variables fi – note

that we have dropped the superscript (1) again for clarity – we approximate the solution to the 1D Kraichnan–Orszag prob-
lem by (69). When we substitute this expression into (64a) we obtain
X
06iþjþk6P

dxð1Þijk

dt
/ðf1Þ

i /ðf2Þ
j /ðf3Þ

k ¼
X

06pþqþr6P

X
06uþvþw6P

xð2Þpqrx
ð3Þ
uvw/ðf1Þ

p /ðf2Þ
q /ðf3Þ

r /ðf1Þ
u /ðf2Þ

v /ðf3Þ
w : ð75Þ
We multiply this equation by /ðf1Þ
l ff1 /

ðf2Þ
m ff2 /

ðf3Þ
n ff3 and perform a triple integration w.r.t. f1, f2 and f3. Taking into account the

orthogonality of the basis functions, we arrive at
dxð1Þlmn

dt
¼ 1

/ðf1Þ
l

2D E
/ðf2Þ

m
2

D E
/ðf3Þ

n
2

D E X
06pþqþr6P

X
06uþvþw6P

xð2Þpqrx
ð3Þ
uvw /ðf1Þ

p /ðf1Þ
u /ðf1Þ

l

D E
/ðf2Þ

q /ðf2Þ
v /ðf2Þ

m

D E
/ðf3Þ

r /ðf3Þ
w /ðf3Þ

n

D E
ð76Þ
for l, m, n = 0, . . . ,P with
hIðfiÞi ¼
Z 1

�1
IðfiÞffi

ðfiÞdfi ð77Þ
for some function I(fi). Substituting (69) into (64b) and (64c) gives similar relations as (76) for the evolution of xð2Þlmn and xð3Þlmn.
Together these three equations constitute the governing deterministic system of differential equations in time for the expan-
sion coefficients xðiÞlmnðtÞ, i = 1,2,3 with 0 6 l + m + n 6 P.

4.2.2. Calculation of mean and variance
We are interested in the mean and variance of x1 (t,f1,f2,f3), x2(t,f1,f2,f3) and x3(t,f1,f2,f3). Once we have solved for the

time histories of the solution coefficients xðiÞlmnðtÞ (see (69)) the mean and variance of xi (t,f1,f2,f3) can be calculated as follows.
Mean The mean of xi is defined as
�xiðtÞ ¼ E½xiðt; f1; f2; f3Þ�: ð78Þ
Substituting Eq. (69) into Eq. (78) we get
�xiðtÞ ¼ E
X

06lþmþn6P

xðiÞlmnðtÞ/
ðf1Þ
l ðf1Þ/ðf2Þ

m ðf2Þ/ðf3Þ
n ðf3Þ

" #

¼
Z 1

�1

Z 1

�1

Z 1

�1

X
06lþmþn6P

xðiÞlmnðtÞ/
ðf1Þ
l / f2ð Þ

m /ðf3Þ
n ff1 ;f2 ;f3 df1 df2 df3: ð79Þ
If f1, f2 and f3 were statistically independent, this could be reduced to three one-dimensional integrals, using
ff1 ;f2 ;f3 ðf1; f2; f3Þ ¼ ff1 ðf1Þff2 ðf2Þff3 ðf3Þ: ð80Þ
However, this will not be the case, since the stochastic variables fi are all related by various mappings to the common sto-
chastic variables n.

Variance. The variance of xi is defined as
VarðxiðtÞÞ ¼ E½ðxiðt; f1; f2; f3Þ � �xiðtÞÞ2� ¼ E x2
i ðt; f1; f2; f3Þ � 2xiðt; f1; f2; f3Þ�xiðtÞ þ �x2

i ðtÞ
� 

¼ E x2
i ðt; f1; f2; f3Þ

� 
� 2E xiðt; f1; f2; f3Þ½ ��xiðtÞ þ �x2

i ðtÞ ¼ E x2
i ðt; f1; f2; f3Þ

� 
� �x2

i ðtÞ: ð81Þ
Substituting the numerical approximation ((69) and (79) into (81) we obtain



8352 M. Gerritsma et al. / Journal of Computational Physics 229 (2010) 8333–8363
VarðxiðtÞÞ ¼ E
X

06lþmþn6P

xðiÞlmnðtÞ/
ðf1Þ
l /ðf2Þ

m /ðf3Þ
n

 !2
2
4

3
5� xðiÞ000

2
ðtÞ

¼
Z 1

�1

Z 1

�1

Z 1

�1

X
06lþmþn6P

xðiÞlmnðtÞ/
ðf1Þ
l /ðf2Þ

m /ðf3Þ
n

 !2

ff1 ;f2 ;f3 df1 df2 df3: ð82Þ
4.2.3. Integration over the original random variable
The integrand in (82) for the variance, for instance, of xi is a function of the transformed random variables f1, f2 and f3.

These transformed random variables, in turn, are all functions of the original random variable n: f1 = Z1(n), f2 = Z2(n) and
f3 = Z3(n). Hence, the integrand in (82) can also be seen as a function solely dependent on n. To avoid the calculation of
ff1 ;f2 ;f3 we can transform the triple integral over f1, f2 and f3 in (82) to a single integral over n, based on the ideas from
Van der Steen [32].

We do this by recognizing that the following relation should be valid for every realisable point f�1; f
�
2; f

�
3


 �

ff1 ;f2 ;f3 f�1; f

�
2; f

�
3


 �
df1 df2 df3 ¼

X
n�

fnðn�Þdn; ð83Þ
where the summation is over all points n* for which Z1ðn�Þ ¼ f�1; Z2ðn�Þ ¼ f�2 and Z3ðn�Þ ¼ f�3. Eq. (83) merely states that, given
the transformation n ? (f1,f2,f3), the probability that (f1,f2,f3) lies within an infinitesimal volume around f�1; f

�
2; f

�
3


 �
should

be equal to the probability that n lies within the (possibly multiple) corresponding infinitesimal interval(s) around n*. It fol-
lows that the following relation should then also be valid
Z 1

�1

Z 1

�1

Z 1

�1
� � � ff1 ;f2 ;f3 df1 df2 df3 ¼

Z 1

�1
� � � fn dn: ð84Þ
Hence, with the help of (84) we can calculate the variance of xi according to
VarðxiðtÞÞ ¼ E
X

06lþmþn6P

xðiÞlmnðtÞ/
ðf1Þ
l /ðf2Þ

m /ðf3Þ
n

 !2
2
4

3
5� �x2

i ðtÞ

¼
Z 1

�1

Z 1

�1

Z 1

�1

X
06lþmþn6P

xðiÞlmnðtÞ/
ðf1Þ
l /ðf2Þ

m /ðf3Þ
n

 !2

ff1 ;f2 ;f3 df1 df2 df3 � �x2
i ðtÞ

¼
Z 1

�1

X
06lþmþn6P

xðiÞlmnðtÞ/
ðf1Þ
l ðZ1ðnÞÞ/ðf2Þ

m ðZ2ðnÞÞ/ðf3Þ
n ðZ3ðnÞÞ

 !2

fnðnÞdn� �x2
i ðtÞ: ð85Þ
Transforming an integral over the transformed random variables to an integral over the original random variable is a
technique that can be used to evaluate the mean, i.e.
�xiðtÞ ¼
Z 1

�1

Z 1

�1

Z 1

�1

X
06lþmþn6P

xðiÞlmnðtÞ/
ðf1Þ
l /ðf2Þ

m /ðf3Þ
n ff1 ;f2 ;f3 df1 df2 df3

¼
X

06lþmþn6P

xðiÞlmnðtÞ
Z 1

�1
/ðf1Þ

l ðZ1ðnÞÞ/ðf2Þ
m ðZ2ðnÞÞ/ðf3Þ

n ðZ3ðnÞÞfnðnÞdn: ð86Þ
Furthermore, we can just as well transform a single integral over a transformed random variable to a single integral over
the original random variable. So, similarly to (83), we also have that
ffi
f�i

 �

dfi ¼
X
n�

fnðn�Þdn; ð87Þ
so
 Z 1

�1
� � � ffi

dfi ¼
Z 1

�1
� � � fn dn: ð88Þ
With the help of (88) we can transform all integrals needed for the determination of the governing system of differential
equations ((76) and (77)) to integrals over the original random variable n. The integrals in the Gram–Schmidt orthogonali-
zation algorithm (to calculate the orthogonal polynomials /ðfiÞ

p ðfiÞ) can similarly be transformed to integrals over n.
To conclude, we make the following important point. Performing all integrations in n-space has a major advantage: there

is no need to explicitly calculate the probability density functions of the transformed random variables as was done in (37).

4.3. Numerical results

Figs. 17 and 18 show results for the mean and variance for x1, calculated using the TDgPC solution approach where a
transformation to new stochastic variables is performed every time step. Similar results are obtained for x2 and x3. At approx-
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Fig. 17. Mean of x1 vs. time for a = 0.99: TDgPC solutions with P = 2 and P = 3 compared to Monte-Carlo analysis (N = 200,000).
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Fig. 18. The variance of x1 vs. time for a = 0.99: TDgPC solutions with P = 2 and P = 3 compared to Monte-Carlo analysis (N = 200,000).
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imately t = 13, the results generated with the gPC solution stop to bear any resemblance to the Monte-Carlo solution. How-
ever, using a TDgPC strategy with expansion polynomials having a maximum degree of only two (P = 2) shows a significant
improvement. The calculated solution can be seen to have the same characteristics as the results from the Monte-Carlo anal-
ysis for the entire range of t displayed. Increasing the maximum degree of the expansion polynomials to P = 3 leads to results
with even higher accuracy. In fact, the TDgPC results with P = 3 are graphically indistinguishable from the Monte-Carlo re-
sults on the scale of these plots.
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Fig. 19. Error in the mean and variance of x1 vs. time for a = 0.99: TDgPC solutions with P = 2, P = 3 and P = 4.
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In Fig. 19 the time evolution of the ‘error’ in the mean and variance, respectively, of x1 is shown for various values of P.
Here ‘error’ means the difference between the TDgPC results and a Monte Carlo analysis with 200,000 samples
M
ea
n(
x
)

Fig. 20
analysi
��xi
ðtÞ ¼ �xTDgPC

i ðtÞ � �xMC
i ðtÞ: ð89Þ
The error in the variance is calculated similarly. The error plots more clearly show the accuracy we gain by going from P = 2
to P = 3. The accuracy of a TDgPC solution with P = 4 can be seen to be almost identical to a solution with P = 3. Using Cor-
ollary 2 we can show that for P = 2, the method is O(Dt), which for Dt = 0.001 is O(10�3), for P = 3, the method is
O(Dt2) = O(10�6) and for P = 4 O(Dt3) = O(10�9). If we use the expansion given by (75) we can represent the solution at each
time step. For P = 2, we can also represent quadratic terms and therefore we can represent
x1ðt þ D; nÞ ¼ x1ðt; nÞ þ Dtf2f3; ð90Þ
x2ðt þ D; nÞ ¼ x2ðt; nÞ þ Dtf3f1; ð91Þ
and
x3ðt þ D; nÞ ¼ x3ðt; nÞ � 2Dtf1f2: ð92Þ
So for P = 2, we have a method that is first order in time. For P = 3, we can also represent all the cubic terms in f1, f2 and f3

multiplied by Dt2 in the Runge–Kutta integration. So for P = 3 we have a second-order method in time. Analogously, we can
show that for P = 4, we can represent all terms up to the power of 4 in fi with coefficient D t3. Now the difference between an
error of 10�6 and 10�9 are visually undistinguishable in Fig. 19. It has been confirmed that this error cannot be attributed to
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the integration method and therefore the difference observed between the TdgPC results and the Monte-Carlo result must be
attributed to number of samples in the Monte-Carlo simulation.

4.3.1. Results for a = 0.995
Here we investigate the performance of TDgPC results for a = 0.995 in (65). This is an interesting case, because for

x1(0) < 1 we have periodic solutions. The period becomes strongly dependent on x1(0) > 0.9. When x1(0) > 1 the solution
curves belong to a different branch of solution trajectories than for x1(0) < 1. The chance of finding an initial condition such
that x1(0) > 1, is P(x1(0) > 1) = 0.25, so this choice of a contains two significantly different types of solutions. Furthermore, the
periods T of the periodic solution near x1(0) = 1 are very sensitive to the initial conditions. See, for instance [16,32], for more
details on the dynamics of the Kraichnan–Orszag problem.

In Fig. 20 TDgPC results are presented for the mean (a) and variance (b) of x1. We again compare the TDgPC solutions with
results from a Monte-Carlo simulation. Also for a = 0.995 TDgPC remains close to the Monte-Carlo results. The accuracy of
the solution with P = 2 is comparable to the case a = 0.99. Again there is a significant improvement going from P = 2 to
P = 3. However, the solution for P = 3 is not quite as accurate as in the case a = 0.99. This is presumably due to the higher
complexity of the problem with a = 0.995. In Fig. 21 the ‘error’ in the mean and variance are plotted for x1, respectively, tak-
ing the Monte-Carlo simulation with N = 100,000 as a reference.

4.4. A three-dimensional random space

In this case we show a result where all three initial conditions are known with a given probability. These initial conditions
are given by (also considered in [16])
M
ea
n(
x
)

Fig. 22.
analysi
x1ð0Þ ¼ aþ 0:01n1; x2ð0Þ ¼ bþ 0:01n2; x3ð0Þ ¼ cþ 0:01n3; ð93Þ
where a, b and c are constants and n1, n2 and n3 are uniformly distributed random variables on the interval [�1,1] where n1,
n2 and n3 are statistically independent. Here we set a = 0.99, b = 1 and c = 1.

We now start with a three-dimensional expansion in terms of n1, n2 and n3 analogous to (69). We introduce transformed
random variables according to (74) and calculate new expansion polynomials similarly to the single random variable case.
We also transform all integrals occurring in the solution algorithm to integrals over the original independent random vari-
ables n1, n2 and n3. Since we now have three original random variables instead of one (83) is rewritten as
ff1 ;f2 ;f3 f�1; f
�
2; f

�
3


 �
df1 df2 df3 ¼

X
n�1 ;n

�
2 ;n
�
3ð Þ

fn1 ;n2 ;n3 n�1; n
�
2; n

�
3


 �
dn1 dn2 dn3 ¼

X
n�1 ;n

�
2 ;n
�
3ð Þ

fn1 n�1

 �

fn2 n�2

 �

fn3 n�3

 �

dn1 dn2 dn3 ð94Þ
for every realisable point f�1; f
�
2; f

�
3


 �
. The summation in (94) is over all points n�1; n

�
2; n

�
3


 �
for which Z1 n�1; n

�
2; n

�
3


 �
¼

f�1; Z2 n�1; n
�
2; n

�
3


 �
¼ f�2 and Z3 n�1; n

�
2; n

�
3


 �
¼ f�3. Note that in (94) we have made use of the statistical independence of n1, n2

and n3 in the initial conditions. It follows from (94) that integrals over the new random variables can be transformed accord-
ing to
 Z 1

�1

Z 1

�1

Z 1

�1
� � � ff1 ;f2 ;f3 df1 df2 df3 ¼

Z 1

�1

Z 1

�1

Z 1

�1
� � � fn1 fn2 fn3 dn1 dn2 dn3: ð95Þ
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Unlike the single random variable case we still have to deal with a three-dimensional integral after transformation. We can
treat this integral as a repeated one-dimensional integral, since n1, n2 and n3 are statistically independent.

4.4.1. Results
In Fig. 22 we compare the results from a TDgPC solution approach to gPC results and a Monte-Carlo analysis. We choose

values of P = 2 and P = 3 for the two TDgPC solutions in this comparison. From approximately t = 12 onwards the gPC results
for the mean of x1 lose any resemblance to the correct solution. When looking at the variance of x1 this point is already
reached at t = 4.

The TDgPC results with P = 2 remain reasonably close to the Monte Carlo analysis results for the entire time interval con-
sidered, although the curves can be seen to lose some of their accuracy as time progresses. Increasing P from P = 2 to P = 3
results in an increase in accuracy: TDgPC results for the mean of x1 are now visually indistinguishable from the Monte-Carlo
results for the entire time interval displayed. The accuracy of the variance of x1 goes up as well, but the TDgPC curve is not
precisely on top of the Monte-Carlo curve as was the case for a one-dimensional random input. A comparison of TDgPC, gPC
and Monte-Carlo results for x2 and x3 shows similar characteristics as the results for x1.

5. Conclusions

In this paper an adaptive gPC method in time is proposed, the time-dependent generalized polynomial chaos (TDgPC).
TDgPC takes into account that the probability density function (PDF) of the solution changes as a function of time. Due to
this change in PDF, orthogonal polynomials that were optimal initially, loose their optimality for increasing time and a
new set of orthogonal polynomials needs to be created. The method has been applied to a simple decay model and the
Kraichnan–Orszag three-mode problem. In the latter case both the situation with one random initial condition and three
random initial conditions were considered. Based on computational results TDgPC ameliorates the accuracy when using
long-time integration. The advantage of this approach is that the polynomial degree can be kept low (P = 2, 3 or 4) without
introducing multiple elements (ME-gPC, [16]) in random space. This leads in the cases considered to a reduction of the num-
ber of degrees of freedom and consequently to a reduction in the number of deterministic problems that need to be solved.
The additional cost is the construction of new sets of orthogonal polynomials (which for P 	 3 is quite cheap) and the integral
transformations in setting up the deterministic equations and the calculation of the statistical moments.

Whether gPC type methods are the preferred way of solving stochastic differential equations is beyond the scope of this
paper. This generally depends on practical issues like the size of the problem, the availability of deterministic solvers, the
number of stochastic variables in the problem and the required accuracy.

Current research focuses on the application of TDgPC to partial differential equations. Future directions for research in-
clude the combination of TDgPC with ME-gPC, where in each element new stochastic variables are introduced. This will lead
to a very effective and efficient algorithm, especially for solutions with low regularity such as the Kraichnan–Orszag problem
corresponding to a = 0.995. Furthermore, the new polynomials associated with the PDF of the solution, introduced in this
paper, may lead to improved collocation points for the multi-element probabilistic collocation method ME-PCM, [34].
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Appendix A. On the error development in long-time integration

In this separate part of this paper we wish to make some additional remarks on long-time integration. It is our believe
that any sampling method will eventually break down for a general time-dependent random proces and a given amount
of samples. This statement cannot be corroborated since it would mean that we have to test all existing methods and all
the methods that have yet to be developed. However, this bold statement also depends on what we mean by ‘‘long-time inte-
gration”. In order to highlight several of the pittfalls when talking about long-time integration, we will consider here a com-
parison between the Probabilistic Collocation method [35] and a Monte-Carlo simulation with the same amount of samples,
applied to the decay problem discussed in Section 3.1.

Consider the PCM in the Gauss–Lobatto points for P = 127 and the Monte Carlo Method for 128 samples. The solution is
advanced in time by an explicit Euler method with Dt = 0.01. The mean is calculated as
lPCMðtÞ ¼
X127

p¼0

1
2

unðnpÞ �wp; ð96Þ
where np is the pth Gauss–Lobatto point and wp is the associated Gauss–Lobatto weight
lMCðtÞ ¼ 1
128

X128

p¼1

uðvpÞ; ð97Þ
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where vp is random number from the uniform distribution I[0,1]. And the variance is given by
Fig. 23.
integra

Fig. 24.
integra
VarPCMðtÞ ¼
X127

p¼0

1
2
ðunðnpÞ � lPCMðtÞÞ2wp; ð98Þ
and
VarMCðtÞ ¼ 1
128

X128

p¼1

ðunðvpÞ � lMCðtÞÞ2: ð99Þ
The relative error in the PCM and MC solution are shown in Fig. 23. If we increase the number of degrees of freedom from 128
to 256 we obtain the results given in Fig. 24. When we compare the results in the Figs. 23 and 24, we see that there is no
change in the PCM results and some change in the MC results. The change in the latter can attributed to the very small sam-
ple size, so each run will give a different result.
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Evolution of the relative error in the mean (left) and variance (right) for PCM and Monte-Carlo with 128 degrees of freedom. Explicit Euler time
tion, Dt = 0.01 for t 2 [0,100].
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For a proper assessment of the error in time-dependent calculations we need to be able to decompose the error due to the
time integration and the error due to sampling in random space. Since there is hardly any change when the sample size is
doubled, it is tempting to attribute the error to the time integration. In order to investigate this, we run these two test cases
again, but this time we use exact integration instead of the explicit Euler method. The results of this exercise can be found in
Figs. 25 and 26.

From these figures we see that the relative error in the collocation method can be attributed to the time integration; the
error drops to machine accuracy when exact integration is used instead of numerical integration. The relative error in the MC
method is dominated by the error in random space; the two solutions with numerical integration and exact time integration
are almost indistinguishable.

From these observations one may conclude that the collocation method provides a more accurate description in random
space compared to the MC method. This conclusion is justified for this particular problem and this particular time interval.

If we run the same test case for a longer period, i.e. until t = 5000 instead of t = 100 we see that the error in random space
grows and starts to dominate the relative errors in the mean and variance at t 	 1200 and t 	 500, respectively, as shown in
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Fig. 25. Evolution of the relative error in the mean (left) and variance (right) for PCM and Monte-Carlo with 128 degrees of freedom. Explicit Euler time
integration, Dt = 0.01 and exact integration in time for t 2 [0, 100].
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(b) Variance

Fig. 26. Evolution of the relative error in the mean (left) and variance (right) for PCM and Monte-Carlo with 256 degrees of freedom. Explicit Euler time
integration, Dt = 0.01 and exact integration in time for t 2 [0, 100].
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Fig. 27. If we continue the simulation even longer, until t = 105, we see that the relative error in the collocation method will
be larger than the relative error in the MC method as can be seen in Fig. 28. The reason that the collocation methods even-
tually diverges can be attributed to the location of the Gauss–Lobatto points. For the exact solution we have that l(t) ? 1/t
and Var(t) ? 1/2t for t ?1. The exact solution in all Gauss–Lobatto points decays exponentially fast to zero at a rate
exp(�0.5 � (1 + np) � t), except for the first Gauss–Lobatto point n0 = �1, for which the solution remains 1. This means that
for determination of the mean we have
Fig. 27.
integra

Fig. 28.
integra
lPCMðtÞ ¼
XP

p¼0

1
2

unðnpÞ �wp !
w0

2
; ð100Þ
and for the variance
VarPCMðtÞ ¼
XP

p¼0

1
2
ðunðnpÞ � lPCMðtÞÞ2wp !

w0

2
�w2

0

4
; ð101Þ
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Evolution of the relative error in the mean (left) and variance (right) for PCM and Monte-Carlo with 64 degrees of freedom. Explicit Euler time
tion, Dt = 0.01 and exact integration in time for t 2 [0,5000]. Both Monte-Carlo solutions almost coincide.
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For the relative error in mean and variance this means that
Fig. 29.
Dt = 0.0

Fig. 30
integra
rel: mean error ¼ w0

2
t þ const and rel: variance error ¼ w0 �

w2
0

2

� �
t þ const: ð102Þ
This linear growth is shown in Fig. 29. In Table 2 the growth rates based on (102) are compared with the values obtained
from the calculation for P = 63 for which w0 = 4.9603 � 10�4 For the MC method a sample taken at the point n = �1 has prob-
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Table 2
Theoretical and experimental growth.

Theoretical slope Numerical slope

Mean 2.4802 � 10�4 2.4801 � 10�4

Variance 4.9591 � 10�4 4.9591 � 10�4
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ability zero, so we will not see linear growth in the relative error of the mean for the Monte-Carlo simulation. Since all solu-
tion of the samples will decay to zero exponentially fast, the relative error in the mean and the Variance of the MC method,
will converge to 1, which is confirmed by the simulation. In Fig. 30 the solution of the mean and variance are plotted on a
logarithmic scale. We see that the absense of the point vp = �1 leads to solution which tend to zero too fast.

The growth is not associated with the fact that the mean and variance of the exact solution go to zero. If we solve the
problem
Fig. 31.
Euler ti

Fig. 32.
degrees
du
dt
þ kðnÞu ¼ 1

2
; ð103Þ
the mean decays to a half and we see exactly the same long-time behaviour, see Fig. 31. The level of the relative mean error is
lower in this figure, due to the fact for large t we divide by 1/2 + C/t, instead of C/t, but we still observe linear growth for PCM.

If, instead of the Gauss–Lobatto nodes for the PCM method, we use the internal Gauss points and thereby exclude the
detrimental node n0 = �1, we observe that PCM and the MC method display a similar error evolution for t ?1, as can be
seen in Fig. 32. So a judicious choice of integration points in the PCM method significantly affects the long-time behaviour
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Evolution of the solution of the solution of (103), mean (left) and variance (right), for PCM and Monte-Carlo with 64 degrees of freedom. Explicit
me integration, Dt = 0.01 and exact integration in time for t 2 [0, 104].
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Fig. 33. Evolution of the solution of decay problem, mean (left) and variance (right), for PCM in the Gauss points for various polynomial degrees and Monte-
Carlo with 64 degrees of freedom. Exact integration in time for t 2 [0,104].

−1 −0.9995 −0.999 −0.9985 −0.998 −0.9975

−0.2

0

0.2

0.4

0.6

0.8

Exact solution
PCM with p=16
PCM with p=32
PCM with p=64
PCM with p=128

−1 −0.9995 −0.999 −0.9985 −0.998 −0.9975
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Exact solution
PCM with p=16
PCM with p=32
PCM with p=64
PCM with p=128

Fig. 34. PCM approximation in random space near n = �1 at t = 5000 (left) and t = 10000 (right) for various values of p.

8362 M. Gerritsma et al. / Journal of Computational Physics 229 (2010) 8333–8363
of PCM. Although one should bear in mind that in all cases the solution is very bad and one may question the fact whether it
is useful to talk about ‘‘less bad” or ‘‘worse”.

If we vary the polynomial degree in PCM (exact integration and Gauss points) all methods converge to a relative error of 1
when t tends to infinity. For higher-order approximations it takes longer for the error growth to set in. This is depicted in
Fig. 33

The main reason all sampling methods eventually depart from the exact solution for the mean and the variance even
though the solution is nodally exact (in the case of exact time integration) stems from the numerical integration to evaluate
the mean and the variance. Gauss or Gauss–Lobatto integration methods assume that the solution between the nodes is rep-
resented by a nodal interpolation. As long as this nodal interpolation is close to the exact solution, the corresponding inte-
grals for the mean and the variance are close to the exact mean and variance. The exact solution for the decay problem,
exp(�0.5 � (1 + n)t), develops a boundary near n = �1 for increasing t. As long as the interpolation is able to capture this
boundary layer, the relative error in the mean and the variance will be small, but as soon as the boundary layer becomes
too thin to be represented by the global polynomial approximation the error starts to grow. Polynomial approximations
for various p at t = 5000 and t = 10,000 are shown in Fig. 34. For all polynomial degrees, the polynomial approximation will
eventually miss the boundary layer for sufficiently large t in which case the relative error in the solution tends to one. The
solutions in random space shown in Fig. 34 correspond to the errors shown in Fig. 33.
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