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Fabrication of functionalized surfaces using polymer brushes is a relatively simple
process and parallels the presence of glycocalyx filaments coating the luminal surface
of our vasculature. In this paper, we perform atomistic-like simulations based on
dissipative particle dynamics (DPD) to study both polymer brushes and glycocalyx
filaments subject to shear flow, and we apply mean-field theory to extract useful
scaling arguments on their response. For polymer brushes, a weak shear flow has no
effect on the brush density profile or its height, while the slip length is independent
of the shear rate and is of the order of the brush mesh size as a result of screening
by hydrodynamic interactions. However, for strong shear flow, the polymer brush
is penetrated deeper and is deformed, with a corresponding decrease of the brush
height and an increase of the slip length. The transition from the weak to the strong
shear regime can be described by a simple ‘blob’ argument, leading to the scaling
γ̇0 ∝ σ 3/2, where γ̇0 is the critical transition shear rate and σ is the grafting density.
Furthermore, in the strong shear regime, we observe a cyclic dynamic motion of
individual polymers, causing a reversal in the direction of surface flow. To study the
glycocalyx layer, we first assume a homogeneous flow that ignores the discrete effects
of blood cells, and we simulate microchannel flows at different flow rates. Surprisingly,
we find that, at low Reynolds number, the slip length decreases with the mean flow
velocity, unlike the behaviour of polymer brushes, for which the slip length remains
constant under similar conditions. (The slip length and brush height are measured
with respect to polymer mesh size and polymer contour length, respectively.) We also
performed additional DPD simulations of blood flow in a tube with walls having a
glycocalyx layer and with the deformable red blood cells modelled accurately at the
spectrin level. In this case, a plasma cell-free layer is formed, with thickness more
than three times the glycocalyx layer. We then find our scaling arguments based on the
homogeneous flow assumption to be valid for this physiologically correct case as well.
Taken together, our findings point to the opposing roles of conformational entropy and
bending rigidity – dominant effects for the brush and glycocalyx, respectively – which,
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in turn, lead to different flow characteristics, despite the apparent similarity of the two
systems.

Key words: biological fluid dynamics, low-Reynolds-number flows, non-Newtonian flows

1. Introduction

An effective way to design functionalized surfaces is to graft polymers onto the
surface. Such tethered polymer chains or brushes have attracted a lot of attention
in recent years for both engineering as well as biomedical applications, such as in
stabilizing colloids (see Inn & Wang 1996), reducing friction between surfaces (see
Klein et al. 1994) and designing novel microfluidic devices (see Adiga & Brenner
2005). Of particular interest on the biological side is the function of the glycocalyx
layer coating the vessels in our vasculature (see Pries, Secomb & Gaehtgens 2000;
Weinbaum, Tarbell & Damiano 2007).

The functioning of polymer brushes can be understood with the principles of
excluded volume and conformational entropy. For dense polymer chains with one
end attached to an impenetrable substrate and the other end left free, the excluded
volume in the system will force the polymers to stretch away from the substrate (see
Milner 1991b; Netz & Schick 1998; Deng et al. 2010). A relatively large number of
experimental investigations (see Klein, Perahia & Warburg 1991; Klein et al. 1994;
Baker et al. 2000; Ivkov et al. 2001; Anastassopoulos et al. 2006), analytical studies
(see e.g. Rabin & Alexander 1990; Milner 1991a; Barrat 1992; Kumaran 1993; Sevick
& Williams 1994; Aubouy, Harden & Cates 1996; Harden & Cates 1996) as well as
computational simulations (see Lai & Binder 1993; Peters & Tildesley 1995; Miao,
Guo & Zuckermann 1996; Grest 1996, 1999; Doyle, Shaqfeh & Gast 1997; Irfachsyad,
Tildesley & Malfreyt 2002; Wijmans & Smit 2002; Kreer, Binder & Muser 2003;
Huang, Wang & Laradji 2006; Pastorino et al. 2006; Müller & Pastorino 2008) have
addressed the dynamics of polymer brushes exposed to fluid shear flow. However, it
is still not well understood whether the polymer brushes show conformational changes,
that is, swelling or collapse of the brush height at a certain value of shear rate. For
example, Klein et al. (1991) reported a swelling of brush height of ∼25 % under
strong shear flow in experiments, which has also been addressed by Barrat (1992)
and Harden & Cates (1996) in theoretical studies. However, Baker et al. (2000) and
Ivkov et al. (2001) observed in their experiments (using neutron and X-ray reflectivity
techniques) that the polymer brush density profile and brush height remain unchanged
when exposed to strong shear flow. In the computer simulations of Peters & Tildesley
(1995), Miao et al. (1996) and Grest (1999), it was revealed that polymer chains were
stretched and tilted towards the flow direction but the local density and the brush
height did not change. These simulation studies are extensions of the theory by Rabin
& Alexander (1990), who were the first to develop scaling approximations to quantify
the amount of stretching that polymer brushes can withstand. In most of the theoretical
and computer simulation studies published, tangential forces are employed to represent
the shear flow, hence ignoring the hydrodynamic interactions in the system. Similarly,
they may overestimate the penetration depth of shear flow inside the polymer brush
when it is modelled as a porous medium based on Brinkman’s equation (see Brinkman
1947). As shown by Milner (1991a), the relative penetration depth of a steady shear
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flow is very small for brushes composed of long chains, and as a result only part of
the polymer chain – instead of the entire chain – is directly affected by the shear flow.

On the biological side, the analogue of the polymer brush is the endothelial
glycocalyx layer (EGL), which in reality is a macromolecular carbohydrate
extracellular matrix, consisting of proteoglycans and glycoproteins that coat the
luminal surface of the endothelial cells that line our vasculature. It is now well
recognized that the EGL is critically important in many biological functions, and it
can be viewed as a modulator for permeability in the trans-capillary exchange of
water, as a mechanotransducer of fluid shear stress to the endothelial cytoskeleton, and
as a regulator of blood-cell interactions (see Weinbaum et al. 2007). The EGL has
also been considered as a potential diagnostic and therapeutic target in cardiovascular
diseases, (see e.g. Broekhuizen 2009). Recently, several experimental studies have been
reported on the EGL (see Squire et al. 2001; Gao & Lipowsky 2009); however, owing
to its complexity, little has been done on its mathematical modelling. Damiano et al.
(1996) and Damiano (1998) proposed a mixture theory model treating the EGL as
a linearly elastic solid phase. Also, Secomb and coworkers used a Brinkman-type
equation to represent the flow of the plasma within the EGL as a porous medium (see
Secomb, Hsu & Pries 1998, 2001).

From the atomistic point of view, the glycocalyx layer should be modelled as a
branched comb-like polymer brush, with fairly rigid core proteins (i.e. proteoglycans)
bonded to the endothelial membrane, while the rest of the layer, consisting of much
more flexible polymers, is directly connected to the core proteins. However, such
atomistic level of detail is computationally prohibitive in the exploration of the
mesoscale properties of the EGL. From the coarse-graining point of view, a branched
comb-like polymer brush can be envisioned as a single semi-flexible chain consisting
of impermeable blobs with size D0; here, D0 is the average size of side chains (see
Birshtein et al. 1987; Zhulina & Vilgis 1995). Squire et al. (2001) proposed a model
for the structural organization of the EGL, whereby the glycocalyx layer consists of
uniform bonded elastic cylindrical beams with diameter D0 = 12 nm, and with 20 nm
taken as the distance between these beams. Based on this model, Weinbaum and
coworkers developed a theoretical model to explore the deformability of the matrix
due to interactions with the blood cells and in response to fluid shearing forces
(see Guo, Weinstein & Weinbaum 2000; Weinbaum et al. 2003; Han et al. 2006).
This work was the first to consider the flexural rigidity EI of the core proteins that
represents resistance to the randomizing forces of Brownian motion and deformation
by the fluid shear stress. The assumption behind these simplifications is that the
biophysical and mechanical properties yielded by the models do not depend on the
layer’s detailed molecular topology. Thus, the model captures the average behaviour
with assigned viscoelastic and transport properties. In our particle-based simulation, we
coarse-grained the glycocalyx layer as a uniform semi-flexible brush, and then related
our model to the beam model by its flexural rigidity and bending energy EI = kEb0.
The tethered beads of glycocalyx filaments are fixed, which constraints them to bend
instead of tilt when subject to a shear stress.

Both experimental and theoretical results have revealed that the EGL significantly
influences the flow properties in small blood capillaries. However, up to now, the
physical insight gained from this important but relatively unexplored bio-flow is still
far from complete, and many open questions remain. The objective of the current
work is to address fundamental questions on the behaviour of polymer brushes and
glycocalyx fibres by performing direct numerical simulations of shear-driven and
pressure-driven flows, and using mean-field theory (see Kim et al. 2009) to interpret
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the simulation results. From the predictive modelling perspective, an accurate boundary
condition for a polymer brush or glycocalyx attached to the surface is a crucial
ingredient for efficient large-scale continuum fluid mechanical modelling of systems
with such functionalized surfaces. We employ the dissipative particle dynamics (DPD)
method, which can seamlessly model soft matter and fluid flow and explicitly includes
hydrodynamic interactions. In addition, we use mean-field theory, which allows us to
identify the most important parameters describing the models of the complex flows
that we consider and to deduce appropriate scaling laws.

The paper is organized as follows. In § 2 we present the two different bead-and-
spring models that we use to represent the brush and glycocalyx, and include some
important simulation details along with a brief overview of DPD. In § 3 we present the
simulation results and scaling arguments, first for polymer brushes and subsequently
for the glycocalyx layer; in the latter case we also include high-resolution simulations
of blood flow in a tube. We summarize our findings in § 4, and present the differences
and similarities between the two flow systems.

2. Models and simulation details
We study the properties of polymer brushes and glycocalyx fibres subject to shear

flow by employing DPD simulations. DPD is a mesoscale method for studying coarse-
grained models of soft matter and complex fluid systems over relatively long length
and time scales (see Hoogerbrugge & Koelman 1992; Groot & Warren 1997). In DPD,
the particles interact via pairwise additive forces, consisting (in the basic form) of
three components: (i) a conservative force FC; (ii) a dissipative force, FD; and (iii) a
random force, FR. Hence, the total force on particle i is given by

Fi =
∑
i6=j

FC
ij + FD

ij + FR
ij, (2.1)

where the sum acts over all particles within a cutoff radius rc. Specifically, in our
simulations we have

Fi =
∑
i6=j

aijω(rij)r̂ij − γ∗ω2(rij)(r̂ij · v̂ij)r̂ij + σ∗ω(rij)ζij1t−1/2r̂ij, (2.2)

where aij is a maximum repulsion between particles i and j. In the polymer brush
simulations, we set app = ass = 25.0; here, p and s denote polymer and solvent
particles, respectively. We also choose aps = 27.2 to represent a theta solvent condition
and aps = 20.0 to represent a good solvent condition (see Nardai & Zifferer 2009).
Also, rij is the distance with the corresponding unit vector r̂ij, v̂ij is the difference
between the two velocities, ζij is a random number with zero mean and unit variance,
and γ∗ and σ∗ are parameters coupled by σ 2

∗ = 2γ∗kBT (see Espanol & Warren 1995;
Lei, Caswell & Karniadakis 2010). Typically, the weighting functions ω(rij) are given
by

ω
(
rij

)=
1− rij

rc
, rij < rc,

0, rij > rc.
(2.3)

The above system of equations models the solvent but using the DPD approach
we can also model the polymer brush or the glycocalyx as a bead–spring chain with
N = 36 segments for the polymer brush and N = 21 segments for the glycocalyx
filament. This choice is based on the physics of the corresponding chains, and in
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particular the fact that the dynamics of polymer brushes is entropy-dominated and
hence its corresponding radius of gyration is greater than its segment length. The
neighbouring particles are joined by harmonic springs with constant kb = 100.0 and
equilibrium bond length b0 = 0.86, selected so that the thermal fluctuations do not
affect the bond length, i.e.

FS
ij = kb(1− rij/b0)r̂ij. (2.4)

We note that the tethered bead of the brush polymer is free to rotate, whereas that of
the glycocalyx is fixed. Grafting in both cases is uniform, with chains perpendicular
to the wall. All simulations are three-dimensional and hence the chains are allowed to
move in all three directions. In the following we provide simulation details separately
for the polymer brush and the glycocalyx.

2.1. Polymer brushes
We consider shear flow over a surface grafted with polymer brushes in a three-
dimensional channel (of width D), where one of the channel walls is moving in the
flow direction (x) with constant velocity to impose an apparent shear rate. An adaptive
no-slip boundary condition is employed at z = 0 and z = D to eliminate any spurious
density and thermal fluctuations near the wall (see Fedosov & Karniadakis 2009). The
polymer brush is constructed by tethering one end of the chains at the surface at z= 0.
Periodic boundary conditions are applied along the y (spanwise) and x (streamwise)
directions. The average particle number density of the DPD solvent is ρ = 3.0r−3

c
and the temperature is set with kBT = 1.0. The simulations are performed using a
modified version of the DPD code based on the open-source code LAMMPS (see
Plimpton 2011). Time intergation of the equation of motion is obtained by a modified
velocity–Verlert algorithm, first proposed by Groot & Warren (1997), with time step
1t = 0.005 (in DPD time units).

2.2. Glycocalyx
Here we study the response of the glycocalyx to a pressure-driven microchannel flow.
We choose a slightly different weighting function in order to increase the value of the
solvent viscosity, i.e. ω(rij) = (1− rij/rc)

1/4 when rij < rc, and ω(rij) = 0 when rij > rc.
To the DPD model of the glycocalyx filaments, described above, as bead–spring
chains, we add bending energy to give a semi-flexible chain. For each segment the
bending energy is

Ebend = 1
2 kE (θ − θ0)

2, (2.5)

where θ0 = π is the equilibrium angle between three neighbouring particles, and the
harmonic bending constant kE is related to the flexural rigidity of the glycocalyx
filament according to the Euler–Bernoulli beam theory, i.e. EI = kEb0. In the current
work, we study pressure-driven flow over the glycocalyx layer in a slit channel with
length Lc and width D. We will present results first for a channel with width D= 3 µm
and D = 5 µm as well as for a tube with diameter D = 10 µm. An adaptive no-slip
boundary condition is also employed for this case at z=−D/2 and z= D/2, similarly
to the polymer brush simulations. The glycocalyx layer is constructed by tethering
one end of the glycocalyx chains at the wall surface. The flow of the solvent in the
slit is sustained by applying a constant body force along the flow (x) direction on
each flow particle, while periodic boundary conditions are applied in the cross-flow (y)
direction. The average particle number density of the DPD solvent is ρ = 3.0r−3

c and
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the temperature is set with kBT = 0.1, while time integration of the motion equation
is obtained again by employing the modified velocity–Verlet algorithm with time step
1t = 0.001 (in DPD time units).

3. Simulation results
In this section we present simulation results and scaling laws for the polymer

brush and glycocalyx fibres in shear-driven and pressure-driven flows, respectively. In
addition, we present simulation results for a model blood suspension flowing in a tube
coated with a glycocalyx layer, hence resembling a small arteriole. In both shear flow
and pressure-driven flow cases, the flow particles (represented by DPD) are assumed
to be at rest initially. For shear flow we suddenly move the upper wall constructed by
frozen DPD particles with a constant velocity. For the pressure-driven case, the flow is
sustained by a constant body force applied to every flow particle. Steady states were
achieved relatively quickly, but we ran for one million time steps to ensure that the
velocity field remains stationary in time. All physical quantities of the system were
measured after reaching stationarity by a binning procedure in space and applying time
averaging.

3.1. Polymer brushes
We first present validation results in equilibrium followed by simulations under shear
flow and the development of scaling laws. We also include a brief section on how to
map the DPD simulation units into physical units.

3.1.1. Validation
We first verify the accuracy of the DPD fluid–brush model by performing

simulations in the absence of flow in both good and theta solvents. According to
accepted published results, polymer brush density profiles change from parabolic
functions (of distance to the wall) to step-like functions with increasing grafting
density from moderate to very large values. The equilibrium properties of polymer
brushes are determined by the excluded-volume interaction and the conformational
entropy of the polymer chains, which yield a scaling law for the brush height (see
Alexander 1977; de Gennes 1980; Milner, Witten & Cates 1988; Zhulina, Borisov &
Pryamitsyn 1990; Kent et al. 1995), as follows:

h∼ L (σb2)
(1/ν−1)/2

(3.1)

where σ is the grafting density, ν is the Flory exponent, and L = Nb is the contour
length of polymer, with N the number of beads. The average brush height h is
calculated from the first moment of the density profiles of polymer monomers, i.e.

h= 2

∫
zρ(z) dz∫
ρ(z) dz

. (3.2)

The factor 2 is included in the equation for normalization, i.e. to recover the correct
value in the case of uniform monomer density profile inside the brush. In figures 1 and
2 we show our simulation results for theta and good solvents, which are in agreement
with the theoretical scaling results denoted by the dotted lines, corresponding to slopes
of 1/2 and 1/3, respectively.
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FIGURE 1. (Colour online) Normalized monomer density profile of a polymer brush in
(a) theta solvent and (b) good solvent for different grafting densities σ . (The wiggles around
z= 0 are due to the binning procedure.)
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FIGURE 2. (Colour online) Polymer brush height as a function of grafting density for a theta
solvent (inverted triangles (blue online)) and for a good solvent (triangles (red online)). The
dotted lines represent the known scaling relations.
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FIGURE 3. (Colour online) (a) Monomer density profiles and flow velocity profiles normal
to the flow direction for grafting density σ = 1.44 under different shear rates. (The wiggles
are due to the binning procedure.) (b) Relative brush height as a function of shear rate for
different grafting densities. The denominator h0 represents the original brush height without
shear flow.



Slip flow over surfaces grafted with brushes and fibres 199

lslip

(a)

4

3

2

1

Density profile
Velocity profile

22.5
z

20.0 25.0

4

3

2

1

l s
li

p

(b)

10010–1

5

0

5

0

2.0

1.8

1.6

1.4

1.2

1.0

FIGURE 4. (Colour online) (a) Density and velocity profiles magnified around the zero
values and sketch of the definition of slip length. (b) Slip length as a function of shear
rate for different grafting densities; γ̇0 is the critical shear rate when flow starts to penetrate
deeper into the brush.

3.1.2. Scaling laws
The influence of the shear flow on the polymer brush density profiles in the

direction perpendicular to the grafting plane is shown in figure 3(a). We see that,
as expected, for low shear rates the density profiles do not differ from the equilibrium
profile, whereas for larger shear rates the brush physically thins in the free-end region.
Overall, the density profiles do not change substantially; however, the flow is affected
greatly inside the brush, as is evident from the profiles shown in the same figure.
In order to quantify more precisely the compression of the brush, we calculated
the relative average brush height under shear flow for different grafting densities in
figure 3(b). We see that, for shear rates lower than a critical value (γ̇0 ≈ 0.5 in
DPD units), there is no compression at all, while only a 5 % decrease is obtained
by increasing the shear rate by 300 % beyond the critical value γ̇0. These simulation
results are consistent with the simulations of Lai & Binder (1993) and Doyle et al.
(1997) obtained using different methods. However, our results invalidate the theory by
Barrat (1992), who argued that increasing the shear rate will lead to increases of the
average brush height h.

An intriguing physical property of a polymer brush under shear flow is the
hydrodynamic penetration depth lslip, also called slip length, which is defined from
extrapolation of the far-field linear region of the velocity profile to the z axis as
shown in figure 4(a). The velocity penetrates only a small portion of the brush and
decreases rapidly inside it. The same far-field velocity profile in figure 4(a) can be
obtained by replacing the brush with a solid surface of thickness (h − lslip). The slip
length is of the order of the brush mesh size (average distance between two beads),
ξ0, i.e. lslip ∼ ξ0 ∼ b/σ 1/2 according to the ‘blob theory’ of Rabin & Alexander (1990).
This value is smaller than the one suggested by Milner (1991b) for a ‘parabolic’
polymer brush (lslip/ξ0 ∼ (Nσb2)

1/2
) due to the screening of hydrodynamic interactions.

In figure 4(b) we plot the slip length versus the shear rate (in DPD units) for different
values of the grafting density. We see that lslip is independent of the shear rate below
the critical value γ̇0 that we identified in figure 3(b) but grows linearly beyond that
value.

Based on the above results, it is clear that there are two different regimes
characterizing the polymer brush dynamics, namely the weak shear flow regime and



200 M. Deng, X. Li, H. Liang, B. Caswell and G. E. Karniadakis

100

10–1

0.5 1.0 2.0

Slope

FIGURE 5. (Colour online) Critical shear rate γ̇0 as a function of grafting density. The
dashed-dotted line represents the scaling law based on the ‘blob argument’.

the strong shear flow regime. In the former, the conformation of the polymer brush is
not disturbed (up to the critical shear rate value) while the slip length remains equal
to the mesh size of the polymer brush. In the latter, the polymer brush is penetrated
deeper by the solvent, its free end is slightly compressed, and the slip length increases
with shear rate.

Next, we use a simple ‘blob scaling’ argument to gain some insight into the
characteristics of the weak and strong shear flow regimes. Based on the studies of
Alexander (1977) and of de Gennes (1980), a grafted polymer can be modelled
as a string of blobs, but only a small part of the blobs – rather than the entire
polymer chains – are directly affected by the shear due to the hydrodynamic screening.
Hence, brush compression is expected when the flow is able to stretch chains inside
the outer blob of brush beyond the Gaussian regime of elasticity. The Weissenberg
number inside the outer blob is Wi = γ̇ τ , where γ̇ is the unscreening shear rate
and τ is the characteristic relaxation time for the polymer chain affected by the
shear flow with length lslip. Using the Rouse model we have that τ ∼ ηsl3

slip/kBT ,
where ηs is the viscosity of the solvent. Under small shear rates, as mentioned above,
lslip ∼ ξ0 ∼ b/σ 1/2, thus,

Wi ∼ γ̇ τ ∼ ηsγ̇ σ
−3/2/kBT ∼ 1. (3.3)

This leads to the following relation between the critical shear rate and the grafting
density:

γ̇0 ∼ σ 3/2. (3.4)

Figure 5 shows the relationship between these two parameters. The critical shear rate
data are directly determined through figure 4(b); our simulation results are consistent
with the scaling argument. The small discrepancy at the smallest grafting density value
is apparently due to the density profile departure from the parabolic shape assumed in
the blob model analysis. The slip length is a function of shear rate γ̇ , of the grafting
density σ and also of the solvent condition (Flory exponent ν), which can be written
as

lslip
σ−1/2

∼ 1+ f (γ̇ − γ̇0, ν), (3.5)
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FIGURE 6. (Colour online) Velocity distributions near the solvent and polymer brush
interface: (a) under weak shear flow; and (b) under strong shear flow.

where f is a step-like function of the form

f (γ̇ − γ̇0, ν)=
{

0, for γ̇ < γ̇0,

(γ̇ − γ̇0)
α(ν), for γ̇ > γ̇0.

(3.6)

3.1.3. Flow structure
Next we investigate the flow structure inside the polymer brushes. It was found

recently by Müller & Pastorino (2008) using molecular dynamics that untangled
polymer chains in a dense brush exhibit cyclic and tumbling motion, which is similar
to the behaviour of isolated tethered chains in shear flow. Their results show that the
collective molecular motion leads to a reversal of the flow direction in the vicinity of
the brush-grafted surface. This was also observed in our DPD simulations, as shown
in figure 6. In the weak shear rate regime, there is no cyclic or tumbling motion of
individual polymers near the surface and the velocity is positive there. However, in the
strong shear rate regime, there is a considerable effect on the polymer brush with the
cyclic and tumbling motion leading to a negative velocity near the surface and hence
flow reversal.

3.1.4. Physical units
Next we map the DPD units to the physical units in order to be able to compare

the magnitude of slip length and critical shear to experimental values. To this end, we
need to consider as reference a specific experimental system, e.g. polystyrene brushes
in good solvent (toluene) under conditions of strong shear flow (see Anastassopoulos
et al. 2006). The superscript P denotes ‘physical’ while the superscript S denotes
‘simulation’ in the following scaling formulas. First, we define the length scale

rc = (σ
P)
−1/2

(σ S)
−1/2 m, (3.7)

where ‘m’ stands for ‘metre’. Then, the time units are scaled with the critical shear
rate as (with ‘s’ indicating ‘second’)

τ = (γ̇
P
0 )
−1

(γ̇ S
0 )
−1 s, (3.8)
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FIGURE 7. (Colour online) Large glycocalyx deformation. (a) Time-dependent change in the
shape of a glycocalyx fibre with EI = 490 pN nm2, mimicking the passing of a white blood
cell. (b) Comparison of our simulation results with theoretical predictions in Han et al. (2006)
(solid line) and in Damiano & Stace (2002) (open triangles), as well as with experimental
results in Han et al. (2006) (solid squares). Here τ0 = 14 s is a dimensional scaling factor
related to the flexural rigidity EI = 490 pN nm2.

and the force units (where ‘N’ denotes ‘newton’) are scaled with the viscosity of
toluene as

NS = η
Pγ̇ P

0 σ
S

ηSγ̇ S
0 σ

P
NP. (3.9)

To give specific physical values, we will refer to the experimental set-up of
Anastassopoulos et al. (2006) of a polymer brush with relatively high grafting density.
We use σ S = 1.00 for the grafting density in DPD units in our simulation, which
corresponds to the physical value σ P = 0.1276 nm−2 in the experimental system of
Anastassopoulos et al. (2006). Then, the unit length scale is rc = 2.8 nm according
to (3.7), and the corresponding slip length is of the order of several nanometres.
By matching the critical shear rate for the same grafting density, γ̇ P

0 = 106 s−1 and
γ̇ S

0 = 0.345 τ−1, we obtain the time scale τ = 3.45 × 10−6 s according to (3.8). The
force units are scaled with the viscosity of toluene (ηP = 6.0 × 10−4 Pa s) using (3.9),
which is ∼1.31× 10−2 pN in our simulation.

3.2. Glycocalyx
The main difference between the polymer brushes that we have modelled above and
the glycocalyx fibres we consider next is that the dynamics of the brush is dominated
by its conformational entropy whereas the dynamics of the glycocalyx is dominated by
its bending energy. Hence, we model the glycocalyx as a semi-flexible polymer as we
discussed above in § 2.2.

3.2.1. Validation
First, we validate the DPD fluid–glycocalyx model under time-dependent conditions.

An interesting feature of the glycocalyx layer is the elastic recoiling after large
deformation, which, for example, may take place after the passage of a white blood
cell through a small capillary. The time-dependent restoration of the glycocalyx layer
has been studied both experimentally as well as theoretically using large-deformation
analysis (see Han et al. 2006). There are two distinct phases of filament recoil as
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shown in figure 7(a): an initial phase (phase I, lowermost three lines (blue online))
for large compressions, where the ends of the fibre overlap and are parallel to the
capillary wall; and a second phase (phase II, uppermost four lines (red online)), where
the slope at the fibre tip continues to increase as the fibre recoils back to its original
shape. The second phase is a much slower recoiling process compared to the initial
phase. We computed the glycocalyx layer height as a function of time and compared
it with both theoretical and experimental results for the case with EI = 490 pN nm2.
Our simulation results are in good agreement with previous studies, as shown in
figure 7(b), which provides a further validation of our coarse-grained glycocalyx fibre
model.

3.2.2. Mean-field theory
The mean-field theory model of Kim et al. (2009) treats a single glycocalyx

fibre in its most likely configuration, namely, the ground state, and subject to the
hydrodynamic drag force of the solvent flow. The configuration of the glycocalyx fibre
is described by a continuous space curve along the fibre using the arc variable s,
defined as: s= 0 at the grafted end, and s= l at the free end. We assume that the fibre
lies in the x–z plane and we describe its shape by the angle θ(s). The potential of the
mean force functional of the semi-flexible chain consists of the bending energy and the
work done by the drag force (i.e. the term γ u(z) in the equation below):

E[θ, u] =
∫ l

0

[
1
2

kbθ̇ (s)
2 − [γ u(z(s))− b2

0q]x(s)
]

ds, (3.10)

where x(s) = ∫ s
0 ds′ sin θ(s′) and z(s) = ∫ s

0 ds′ cos θ(s′) determine the chain shape,
q = dp/dx = (Pout − Pin)/L describes the pressure drop along the flow direction,
γ = 3πη is the friction coefficient per unit length, and η is the dynamic viscosity
of the fluid. Unlike the polymer brush modelling, here we have neglected the excluded-
volume interactions between glycocalyx fibres. This is justified since the glycocalyx
fibres are immersed in blood plasma, which contains the same main components
as the glycocalyx layer, i.e. glycoproteins and other soluble proteins. Therefore, the
interactions between the glycocalyx fibres are screened by blood plasma, similar to the
case of a polymer having the same behaviour in a melt and a theta solvent.

Using the mean velocity field approximation and neglecting the fluctuations of
the glycocalyx fibres, the most likely configuration is achieved by minimizing the
functional E[θ, u]. To this end, we differentiate with respect to θ(s), leading to

kbθ̈ (s)=− cos θ(s)
∫ l

s
ds′ [γ u(s′)− b2

0q]. (3.11)

The solvent flow can be described by a two-layer model, with the equation governing
the velocity of the fluid above the glycocalyx layer given by η(d2u1(z)/dz2) = q with
du1(z)/dz|z=D/2 = 0; the latter reflects the symmetry condition of the geometry in this
problem. However, within the EGL, we use a modified Brinkman equation in which
the deformation of the glycocalyx fibre is included, i.e.

η
d2u2(z)

dz2
= γ σ u2(z)

cos θ(z)
+ q, (3.12)

where σ is the EGL grafting density. We note that for θ = π/2 the glycocalyx fibres
are parallel to the wall, making them a part of the solid wall, and hence the singular
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limit in the above equation. Equation (3.12) can be reparametrized as

cos θ(s)
d2u2(s)

ds2
+ sin θ(s)

dθ
ds
= γ σ

η
cos2θ(s)u2(s)+ q

η
cos3θ(s), (3.13)

with boundary condition u2(s)|s=0 = 0. Both velocity and shear stress should be
continuous at the glycocalyx–free solvent interface, and hence

u1(z)|z=h = u2(z)|z=h,

η
du1(z)

dz

∣∣∣∣
z=h

= η du2(z)

dz

∣∣∣∣
z=h

+ γ u2(z),
(3.14)

where h = ∫ l
0 ds′ cos θ(s′) describes the height of glycocalyx fibres. We solved the

system of equations (3.11), (3.13) and (3.14) using a second-order finite difference
method to obtain the most likely conformation of the glycocalyx fibre and the
corresponding velocity field.

3.2.3. DPD simulations
Next, we proceed with the DPD simulations, but we first need to scale the DPD

units to physical units as follows: lengths are normalized with the glycocalyx layer
height hP, i.e. rc = (hP/hS) m, where (as before) the superscript P denotes ‘physical’,
superscript S denotes ‘simulation’ and ‘m’ denotes ‘metre’. It is natural to involve the
flexural rigidity EI into the scaling as the key parameter. Matching the physical and
simulation flexural rigidity EIS NS r2

c = EIP NP m2 provides the force scaling

NS = EIP

EIS

m2

r2
c

NP = EIP

EIS

(
hS

hP

)2

NP. (3.15)

Also, by matching the dynamic viscosities of the blood plasma and the simulation
fluid, ηS (NS/r2

c) τ = ηP (NP/m2) s, we obtain the time scaling

τ = η
P

ηS

NP

NS

r2
c

m2
s= η

P

ηS

EIS

EIP

(
hP

hS

)4

s. (3.16)

Based on the aforementioned observations, we introduce a dimensionless parameter

A= (h0
2/EI)(h0 − D/2)q/σ (3.17)

that characterizes the relative deformation properties of the glycocalyx fibre subjected
to a pressure-driven flow in a small channel. (Here h0 is the length of the undisturbed
EGL fibres.) This parameter also represents the relative drag force on the tip of the
glycocalyx fibre compared to the recoiling force of the glycocalyx due to its original
flexural rigidity EI when the deformation of the glycocalyx fibre is relatively small and
D� h0. Although this may look like an ad hoc choice, it is justified by our simulation
results, as we found that all of the physical properties in the problem we consider can
be represented as simple functions of A, as will be shown below.

First, we present velocity profiles of the pressure-driven flows over the EGL for
different EI in figure 8(a); the effective width of the channel decreases as EI increases,
and there is an exponential rather than linear velocity distribution near the glycocalyx
and free flow interface, as shown in the inset of figure 8(a). These results show
a significant effect of the glycocalyx layer on the flow inside the channel. From
experimental observations we know that the resistance in microvessels is higher
than expected based on the rheological behaviour of blood in glass tubes, and this
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FIGURE 8. (Colour online) Flow in a microchannel endowed with a glycocalyx on both walls.
(a) Normalized velocity profiles with different flexural rigidity EI; from the top downwards,
the black line represents results without glycocalyx, while the red, green and blue lines
represent results in the presence of glycocalyx for EI = 100, 200, + ∞ pN nm2. The
inset is a zoomed velocity profile near the glycocalyx–fluid boundary. (b) Relative apparent
viscosity as a function of the dimensionless characteristic parameter A; the circles and
inverted triangles represent the results of the 3 and 5 µm channels, respectively, while the
open and solid symbols represent the results from DPD simulation and mean-field theory,
respectively.

difference is attributed to the presence of the glycocalyx layer and the effects of
irregular vessel shape (see Pries et al. 1994; Pries & Secomb 2005). Specifically,
direct measurements of the resistance to blood flow through microvascular networks
showed that the resistance was more than twice that of flow in glass tubes (see Pries
et al. 1994). As shown in figure 8(b), the relative apparent viscosity, which is defined
as µrel = ηapp/η (with ηapp = qD2/(12ū), ū is the mean velocity across the channel),
agrees with experimental results and moreover it seems to be a unique function of the
dimensionless parameter A, since all the data for different values of the parameters,
such as EI, σ , q, etc., collapse onto a single curve.

It is also important to quantify the exact deformation of the glycocalyx in order to
determine the surface boundary conditions. Hence, we investigated the dependence of
the small deformation on the flexural rigidity as well as the shear stress in our DPD
simulations. In particular, h∼ h0〈cos θ〉, and thus 1h∼ h0〈1−cos θ〉 ∼ h0〈θ 2〉/2. Based
on this small-deformation approximation, the relative decrease of the glycocalyx height
can be described by a simple scaling argument as follows:

1h

h0
∼
(

f h0
2

EI

)2

∼
(

h0
2

EI

(h0 − D/2)q
σ

)2

. (3.18)

Here 1h = h0 − h describes the decrease in the height of the EGL fibres, and 〈θ〉 is
the average angle between the glycocalyx fibre and the main flow direction induced
by the drag force f . As shown in figure 9(b), both our mean-field calculation and
DPD simulation results are consistent with this simple scaling argument when the
deformation is small. We also note that the case EI = 0 (corresponding to a model for
a polymer brush) scales differently, i.e. the height is constant irrespective of the mean
flow velocity for such low Reynolds numbers (less than 0.001). This result was also
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FIGURE 9. (Colour online) Flow over the glycocalyx. (a) EGL height as a function of the
mean velocity across the channel. (b) Relative decrease of EGL height as a function of A. The
solid line and black solid squares represent the scaling law and mean-field calculation results,
respectively. The open symbols and half-open symbols represent DPD simulation results
of 5 and 3 µm channels, respectively; the square, circle, upper-triangle, lower-triangle and
diamond symbols represent EGL fibre with EI = 1000, 490, 250, 100, 0 pN nm2, respectively.

obtained in the previous section for polymer brushes in the weak shear rate regime for
a Couette-like flow system.

Next, we study the partial slip properties by computing the slip length at the
glycocalyx layer surface, which is defined by the extrapolation of the far-field linear
region of the velocity profile to the z axis. The velocity profile penetrates only a small
portion (∼5–10 % of the glycocalyx layer height in our simulation) of the glycocalyx
layer and decreases rapidly inside this layer. The same far-field velocity profile can be
obtained by replacing the EGL with a surface of thickness (h − lslip) and prescribing
the slip boundary condition; hence it is important to know the exact slip boundary
condition for continuum fluid calculations. Surprisingly, despite the complexity of the
system, the dimensionless slip length (normalized by the average distance between
glycocalyx fibres) is a simple linear function of the relative decrease of the glycocalyx
height by the flow, when the deformation of the glycocalyx is small, which is related
to the parameter A defined earlier, i.e.

lslip
σ−1/2

∼−1h

h0
∼−

(
h0

2

EI

(h0 − D/2)q
σ

)2

∼−A2. (3.19)

This scaling is also verified by our mean-field theory calculation, as shown in
figure 10.

Using linear analysis, Kim et al. (2009) have shown that the semi-flexible polymer
brush height follows a quadratic dependence on the ratio of shear rate and persistence
length (see equation (14) of Kim et al. (2009)), which agrees with our simulation
results. However, the slip length does not depend on shear rate or persistence length
but does depend on the grafting density according to the analysis of Kim et al. (2009).
Our simulation results suggest that the slip length is a function of both shear rate and
persistence length, which is consistent with the experimental data and the Brownian
dynamics simulation results of Kim et al. (2009) (see their figure 4). In particular, the
slip length decreases with increasing shear rate.
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FIGURE 10. (Colour online) Glycocalyx–fluid interface. (a) Slip length as a function of the
mean velocity across the channel. (b) Normalized slip length as a function of the relative
decrease of glycocalyx layer height. The solid line represents mean-field calculation results
while the open and half-open symbols represent DPD simulation results of 5 and 3 µm
channels. The square, circle, upper-triangle, lower-triangle and diamond symbols represent
EGL fibre with EI = 1000, 490, 250, 100, 0 pN nm2, respectively.

3.2.4. DPD simulations of red blood cell suspensions
Next, we perform simulations of blood flow in a tube of diameter D = 10 µm.

Blood is modelled as monodisperse, neutrally buoyant, red blood cells (RBCs) in
a Newtonian fluid (plasma); white cells and platelets are omitted since they do not
change the blood’s viscosity in homogeneous shear flow (see Fedosov et al. 2011b).
In particular, we consider blood with 30 % haematocrit, and we model RBCs using
a multiscale model, which is also based on the DPD approach (see Fedosov, Caswell
& Karniadakis 2010). For a molecular description (spectrin-level) of an RBC model
we typically require ∼30000 tight junctions to cover the RBC membrane. However,
accurate results have been obtained using even 500 DPD particles to represent the tight
junctions (see Fedosov et al. 2011a). Here we employ very high-resolution models in
order to capture the subtle interaction of RBCs with the glycocalyx filaments but also
for computational efficiency we used a slightly coarse-grained model with 9128 tight
junctions. We consider two blood flow simulations, one without glycocalyx, and one
with glycocalyx with height h0 = 0.5 µm and grafting density σ = 108.5 µm−2. We
maintain the same pressure drop for both simulations.

In steady blood flow in a tube, the cross-stream migration of RBCs leads to a
central core consisting mainly of RBCs separated from the wall by a cell-free layer
(CFL), as shown in figure 11. In this case, RBCs do not interact with the glycocalyx
directly. The velocity profiles in the tube blood flow, both with and without glycocalyx,
are shown in figure 12(a,b), with the latter showing details around the CFL and
EGL. The presence of the CFL, which is greater than the EGL, implies that our
scaling laws inferred from homogeneous flow without RBCs are also applicable to the
RBC suspensions. Since the local velocity is smaller than ∼50 µm s−1, and given our
findings in figure 10(a), the slip length is almost constant and of the order of 1/σ−1/2.
This has, in fact, been observed in our simulations with RBCs present.

4. Summary
We employed dissipative particle dynamics (DPD) to model two apparently similar

systems, namely flow over surfaces coated with polymer brushes and glycocalyx
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FIGURE 11. (Colour online) DPD simulation of blood flow in a tube (D = 10 µm) with
deformable red blood cells, shown in grey (red), modelled explicitly. Shown in black (dark
blue) are the glycocalyx fibres; while the dashed lines represent the edge of the cell-free layer.
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FIGURE 12. (Colour online) (a) Velocity profiles in blood flow in a tube with glycocalyx (red
circles) and without glycocalyx (blue squares). (b) Zoomed view around the cell-free layer.

filaments. We considered both shear-driven and pressure-driven flows, and here, for
the first time, we have presented mesoscopic simulations of blood flow bounded
by glycocalyx-coated walls interacting with deformable red cells having nearly
molecular-scale accuracy. Three-dimensional DPD simulations, although more efficient
than molecular dynamics simulations, are time-consuming and hence an exhaustive
sensitivity analysis is computationally prohibitive. To this end, we used existing
experimental data for validation and mean-field theory for guidance in extracting
new scaling laws for the two systems. In particular, we investigated the additional
resistance to the flow due to the presence of the flexible or semi-flexible polymer
chains, the compression of the height of the polymer brush and glycocalyx fibres, and
the slip properties at the free ends of these layers.

There are some common features of the two flow systems but also some surprising
differences. Both the polymer brush and glycocalyx layer decrease the effective
width of the channel, hence leading to increased pressure drop for given flow rate.
However, our simulation results show that the glycocalyx fibres, modelled as semi-
flexible polymers with finite flexural rigidity, present higher resistance to the flow
than polymer brushes, modelled as flexible polymers with zero flexural rigidity – see
figure 8(a). The conformational entropy dominates the dynamic properties of polymer
brushes, causing a cyclic and tumbling motion of single polymer chains in densely
grafted polymer brushes under strong shear flow, with corresponding reversal of the
near-surface flow – see figure 6(b). On the other hand, the glycocalyx dynamics
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is determined primarily by its bending energy, with the glycocalyx fibres vibrating
around their equilibrium positions with small amplitude. The height of polymer
brushes decreases only slightly (∼5 %) even at relatively large shear rates, whereas
the height of glycocalyx decreases substantially (∼50 %) and can be described by a
simple scaling law at small Reynolds numbers – see (3.18). The slip length of both
polymer brushes and glycocalyx fibres at small shear rate is constant and of the order
of O(σ−1/2) (with σ the grafting density) due to the screening effect of hydrodynamic
interactions. However, above a critical shear rate identified in our simulations, the slip
length of polymer brushes increases whereas that of the glycocalyx decreases. In both
cases we have developed simple scaling laws to represent this dependence – see (3.5)
and (3.19).

Finally, we presented here simulations of blood flow in a small tube coated with a
glycocalyx layer and interacting with red blood cells (RBCs), which we also model
via DPD. We found that, owing to the presence of a cell-free layer (CFL), created
by the migration of RBCs towards the tube centre, there is no direct RBC–glycocalyx
interaction. Instead, the glycocalyx layer is fully immersed in the CFL, which consists
of plasma only, and hence the scaling laws that we derived for homogeneous flow
can be used to characterize this case as well. We note, however, that for many
haematological disorders the glycocalyx layer may be partially damaged, and hence
contact of RBCs with the glycocalyx layer is to be expected in those cases.
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