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Abstract. Evolution equations of the joint response-excitation probability density function
(REPDF) generalize the existing PDF evolution equations and enable us to compute the PDF of
the solution of stochastic systems driven by colored random noise. This paper aims at developing an
efficient numerical method for this evolution equation of REPDF by considering the response and ex-
citation spaces separately. For the response space, a nonconforming adaptive discontinuous Galerkin
method is used to resolve both local and discontinuous dynamics while a probabilistic collocation
method is used for the excitation space. We propose two fundamentally different adaptive schemes
for the response space using either the local variance combined with the boundary flux difference
or using particle trajectories. The effectiveness of the proposed new algorithm is demonstrated in
two prototype applications dealing with randomly forced nonlinear oscillators. We first study the
stochastic pendulum problem and compare the resulting PDF against the one obtained from Monte
Carlo simulation. Subsequently, we study the Duffing oscillator for two different types of stochas-
tic forcing and random initial conditions. We observe both oscillatory and chaotic dynamics and
compare the results against the solution of the effective Fokker–Planck equation. The framework we
develop here is general and can be readily extended to stochastic PDEs subject to random boundary
conditions, random initial conditions, or random forcing terms.

Key words. colored random noise, high-dimensional stochastic dynamical systems, uncertainty
quantification
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1. Introduction. Investigations on probabilistic solutions to system of stochas-
tic differential equations have recently received a considerable amount of interest,
for many important problems in science and engineering are modeled as such sys-
tems [1, 29, 36, 40]. In addition, novel types of dynamics have been found in the
presence of this randomness, generally referred to as the noise-induced effects, such as
stochastic bifurcations [39, 67] and stochastic resonances [69]. Gaussian white noise
has long been employed in many theoretical studies because of its mathematical sim-
plicity. However, various theoretical and numerical attempts have been made to obtain
more realistic models for physical and biological systems by considering colored noise
[9,20,23,31,37,65]. Therefore, it has become clear that we need to obtain a generalized
approach that can model and analyze a broader type of noise in stochastic systems.

The statistics of stochastic dynamical systems can be fully analyzed by the use
of a probability density function (PDF) of the solution. Evolution equations for the
response PDF have been developed for various systems, such as the Liouville equa-
tion or the Fokker–Planck equation [47]. Solving the PDF evolution equation has
the advantage of capturing the entire stochastic structure, while many well-known
approaches for uncertainty quantification aim at computing the first few statistical
moments associated with the solution, e.g., the generalized polynomial chaos [21,66],
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Fig. 1.1. Comparison between the sample phase space (first row) and the joint PDF of the
position and the momentum of a randomly forced nonlinear pendulum (second row) (for a detailed
description of this problem see section 4.1). The PDF solution is obtained by using the proposed
adaptive discontinuous Galerkin method. It is seen that the position of the sample particles are in
very good agreement with the computed PDF at different times.

multielement generalized polynomial chaos [62,64], multielement and sparse grid adap-
tive probabilistic collocation [18,44], stochastic biorthogonal expansions [52,55,56,61],
and generalized spectral decompositions [35,42,43]. PDF based methods usually cost
more to compute than moment based methods, since they carry more information.
However, when the system is complex, as in Figure 1.1 where the PDF of the pendu-
lum splits into two different positions, the dynamics in the stochastic domain cannot
be captured only by the first few moments, but can only be understood by observing
the entire PDF; see also [37]. In the context of uncertainty quantification (UQ), PDF
methods allow us to accurately capture rare events by the tails of the probabilistic
distributions. Yet the application of existing PDF equations is limited to certain types
of systems. For example, the Liouville equation can be used when the randomness
lies only in the initial condition whereas the Fokker–Planck equation can be applied
to systems driven by white noise. In particular, the Fokker–Planck equation has been
extended to more general random forcing, e.g., with finite correlation time [53]. How-
ever, it always involves certain approximations to make it computable, such as the
limiting case of small correlation length [9, 31].

The evolution equation of the joint response-excitation probability density func-
tion (REPDF) has been proposed recently, generalizing the existing PDF evolution
equations [51, 60]. By considering the equation on the expanded joint space of the
solution and excitation, exact evolution equations can be obtained for any stochastic
dynamical system with random initial conditions, random coefficients, or random forc-
ing including colored noise. The evolution equation of REPDF for a dynamical system
has been derived long time ago by Dostupov and Pugachev [15], and more recently
by Li and Chen [36] by using conservation of probability arguments. However, the
REPDF equation can be obtained even for partial differential equations, such as scalar
PDEs of first order [59] or more general PDEs [38,58]. The advantage of the REPDF
equation is that it is linear, deterministic, and of first order. The main drawback is the
increased dimensionality, since the REPDF equation has to be solved on a domain in-
volving all the random excitation dimensions. In addition to the dimensionality issue,
the PDF of the system can be compactly supported and very steep (see Figure 1.1).
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The purpose of this paper is to develop an efficient numerical method to compute
the solution of the joint REPDF equation corresponding to an arbitrary nonlinear
stochastic dynamical system. This allows us to address the question of whether the
joint REPDF approach can provide an effective computational tool to simulate the
effects of colored random noise in physical systems. The numerical challenges asso-
ciated with this task are twofold. First the dimensionality, which may be eventually
handled by using closures or techniques for high-dimensional systems; and second, the
solution which may be discontinuous and compactly supported over disjoint domains
(see Figure 1.1). This obviously requires the development of appropriate numerical
techniques, such as the adaptive discontinuous Galerkin method [11] considered in
this paper. In order to improve the computational efficiency, we have also devel-
oped nonconforming adaptive strategies based on two different adaptive criteria: (1)
a combination of local variance and boundary flux difference, and (2) a concentration
of sample points in phase space.

This paper is organized as follows. In section 2 we present the joint REPDF
equations that will be discretized numerically by using the techniques discussed in sec-
tion 3. The effectiveness of the proposed algorithms is demonstrated in the numerical
applications presented in section 4. Finally, the main findings and their implications
are summarized in section 5.

2. Kinetic equation for the joint REPDF. Let us consider the following
nonlinear stochastic dynamical system

(2.1)
dx(t;ω)

dt
= G(x(t;ω), ξ(ω), t), x(t0;ω) = x0(ω),

where x(t;ω) ∈ R
n is a multidimensional stochastic process, while ξ(ω) ∈ R

m and
x0(ω) ∈ R

n are random variables with known joint probability function. The stochas-
tic system (2.1) can be high dimensional as it can arise, for instance, from a dis-
cretization of a stochastic PDE (SPDE) subject to random boundary conditions,
random initial conditions, or random forcing terms.1 The existence and the unique-
ness of the solution to (2.1) for each realization of ξ(ω) and x0(ω) allows us to con-
sider the stochastic flow x(t;ω) as a deterministic function of ξ(ω) and x0(ω), i.e.,
x(t;ω) = x(t; ξ(ω), x0(ω)).

Under this hypothesis, by using the response-excitation theory [15, 36, 60] it is
straightforward to obtain an exact closed equation for the joint REPDF of the random
vectors x(t;ω) and ξ(ω), namely,

(2.2) p
(a,b)
x(t)ξ

def
= 〈δ(a− x(t;ω)) δ(b − ξ(ω))〉 , t ≥ t0 , a ∈ R

n , b ∈ R
m ,

where the average operator 〈·〉 is with respect to the joint PDF of the random input
variables ξ(ω) and x0(ω), while δ denotes a multidimensional Dirac delta function,
i.e.,

δ(a− x(t;ω))
def
=

n∏
k=1

δ(ak − xk(t;ω)) , δ(b− ξ(ω))
def
=

m∏
k=1

δ(bk − ξk(ω)) .

The evolution equation for the joint REPDF (2.2) can be derived by differentiating

1In this case, the phase space variables xj(t;ω) could be the Galerkin or the collocation coefficients
of an expansion of the solution relatively to suitable spatial basis function φj(x), i.e., u(x, t;ω) =∑n

j=1 xj(t;ω)φj (x).
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the functional integral representation (2.2) with respect to t. By using well-known
identities involving the Dirac delta function [32, 33, 60], we obtain

(2.3)
∂p

(a,b)
x(t)ξ

∂t
= L(t)p(a,b)x(t)ξ ,

where

L(t) def
= −

n∑
i=1

∂Gi(a, b, t)

∂ai
−

n∑
i=1

Gi(a, b, t)
∂

∂ai

is a first-order (time-dependent) linear partial differential operator in n variables
(a1, . . . , an) and m parameters (b1, . . . , bm). Time dependence can arise, e.g., due to
time-dependent random boundary conditions in SPDEs or time-dependent random
forcing terms in SODEs.

The REPDF equation (2.3) is supplemented with appropriate boundary condi-

tions and with the initial condition p
(a,b)
x(t0)ξ

, expressing the joint PDF of x0(t0;ω) and

ξ(ω). Kinetic equations of type (2.3) were determined long ago by Dostupov and
Pugachev in [15]. More recently, Li and Chen [36] introduced a similar theory in the
context of stochastic dynamics of structures (see [36, Chaps. 7–8] and [7]) by using
conservation of probability arguments.

We notice that the REPDF equation (2.3) is analogous to the Liouville equation
of classical statistical mechanics, as it governs the evolution of the joint PDF of the
phase space. This analogy can be exploited even further by noting that the ODE
system (2.1) can be rewritten as a larger system subject only to a random initial
condition. To this end, it is sufficient to define a new set of phase variables y(t;ω)
evolving according to

(2.4)
dy(t;ω)

dt
= 0 , y(t0;ω) = ξ(ω) , y(t;ω) ∈ R

m ,

and replace the vector ξ(ω) in (2.1) with y(t;ω). This yields

dx(t;ω)

dt
= G(x(t;ω), y(t;ω), t) , x(t0;ω) = x0(ω) .(2.5)

The system (2.4)–(2.5) is equivalent to (2.1), but now the random variables ξ(ω)
appear as an initial condition for y(t;ω). In this form the Liouville theory applies,
leading us to the joint REPDF equation (2.3).

Time integration schemes for (2.3) relying directly on formal representations, such
as Magnus expansions [4], usually require the computation of exponential operators
involving L(t). As a result of discretization of the phase space, L(t) typically becomes
a very large matrix and, as a consequence, the exponentiation operation is exceedingly
costly [49, 54].

3. Numerical method. It is convenient to group the independent variables
appearing in the solution to the joint REPDF equation (2.3) into two main classes, i.e.,
those belonging to the response space and those belonging to the excitation space. The
response space is a subset of Rn that includes the phase variables a. These variables
are differentiated in the PDF equation (2.3). On the other hand, the excitation space
is a subset of Rm that includes the variables b, which appear simply as parameters in
(2.3). Different numerical techniques are described hereafter for the discretization of
the response and the excitation spaces.
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3.1. Response space. The response space can be discretized by using an adap-
tive discontinuous Galerkin (DG) method [11,12], possibly combined with functional
ANOVA techniques [6]. As is well known, the DG method has many good features of
both finite volume and finite element methods, such as flexibility and hp-adaptivity.

3.1.1. Discontinuous Galerkin formulation. In order to illustrate the appli-
cation of the DG method to the joint REPDF equation (2.3), let us rewrite it in the
form of the hyperbolic conservation law, i.e.,

(3.1)
∂p

(a,b)
x(t)ξ

∂t
= −∇a ·

(
G(a, b, t)p

(a,b)
x(t)ξ

)
,

where∇a denotes the multidimensional gradient operator with respect to the variables
a ∈ R

n. It is convenient at this point to define the multidimensional flux

(3.2) F [p]
def
= G(a, b, t)p

(a,b)
x(t)ξ ,

where we have emphasized the functional dependence on p
(a,b)
x(t)ξ by using the notation

F [p]. Next, we consider a finite element discretization of the response space, i.e., the
phase space described by the variables a ∈ R

n. Specifically, we select a bounded
computational domain Ω ⊆ R

n, which is large enough to include the support of the

joint REPDF p
(a,b)
x(t)ξ. This allows us to set a zero homogeneous boundary condition

at the boundary of Ω. Let Ωh be a triangulation of Ω, consisting of elements Ki

(i = 1, . . . , Nel), i.e.,

(3.3) Ω =

Nel⋃
i=1

Ki , Ki ∈ Ωh .

We look for a solution to (3.1) in the finite element space

(3.4) Vh
def
= {v ∈ L2(Ω) : v|Ki ∈ Hp(Ki), ∀Ki ∈ Ωh} .

Here Hp(Ki) denotes the space of polynomials of degree at most p in n variables
within the element Ki. Note that we are not imposing any continuity requirement for
the solution between adjacent elements. The finite element solution to (3.1) can be
written as

(3.5) p̂
(a,b)
x(t)ξ =

Nel∑
i=1

p̂i(a, b, t) , p̂i(a, b, t)
def
=

d∑
j=0

αj
Ki

(t, b)ψj
Ki

(a) ,

where d denotes the number of degrees of freedom within each element Ki, and
ψj
Ki

(a) ∈ Hp(Ki) (j = 1, . . . , d) is the set of basis functions in the element Ki.
We substitute (3.5) into (3.1) and impose that the residual is orthogonal to the finite

element space Vh. By using the simplified notation p̂ = p̂
(a,b)
x(t)ξ, this yields the following

elementwise Galerkin formulation

(3.6)

∫
Ki

q
∂p̂

∂t
da =

∫
Ki

∇aq · F [p̂]da−
∫
∂Ki

qF [p̂] · nidS , ∀q ∈ Hp(Ki) ,

where ni denotes the outward normal unit vector on the boundary ∂Ki. An important
part of the solution process is the evaluation of the multidimensional flux F [p̂] through
the element boundary ∂Ki, i.e., the computation of the last integral in (3.6). Since
we allowed discontinuous solutions across adjacent elements, the value of F [p̂] is not
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unique on ∂Ki. Therefore, we replace F [p̂] with the numerical flux F̃ [p̂−, p̂+], repre-
senting the information transferred through the boundary of adjacent elements. The
quantities p̂− and p̂+ here represent, respectively, the finite element solution within
the element Ki and the solution within the adjacent ones. Among various schemes to
compute the numerical flux F̃ [p̂−, p̂+], we consider here the Roe scheme [48] (upwind
flux), which is simple and is known to work well for advection dominated equations.
Such a scheme can be explicitly written as

F̃j [p̂−, p̂+] =

{
Fj [p̂−] , ā ≥ 0 ,

Fj [p̂+] , ā < 0 ,
ā =

Fj [p̂+]− Fj [p̂−]
p̂+ − p̂−

,

where F̃j (j = 1, . . . , n) denotes the component of the numerical flux along the direc-
tion aj .

3.1.2. Adaptivity. The solution to the joint REPDF equation (3.1) can be
supported over a very small region of the response phase space (see, e.g., Figure 1.1).
In order to save computational resources and resolve accurately such local dynamics,
we propose an adaptive algorithm that refines the computational grid where it is
needed. Such h-type refinement can be based both on error estimates involving local
variances or on particle methods. Hereafter, we discuss these two different approaches.

Adaptivity based on local variance and boundary flux difference. The error esti-
mate presented in [34] for the DG discretization of the advection equation suggests
that the error depends on the derivative of the solution as well on the amplitude of its
jump at the element boundaries. This observation led us to develop a new adaptive
criterion based on the boundary flux difference and the elementwise variance of the
PDF. The basic idea of the variance criterion [63] is to split the finite element Ki

whenever the following inequality is satisfied:

(3.7) σKiJKi ≥ θ1 .

Here σKi denotes the local standard deviation of the PDF in the element Ki while
JKi is the relative element size. The threshold θ1 can be selected appropriately, for
example, with reference to the standard deviation of the PDF at the initial time. The
procedure is illustrated in Figure 3.1 for finite elements in one and two dimensions,
and it usually yields nonconforming grids such as those in Figure 4.6. In addition
to the variance criterion, which is known to be insufficient for advection dominated
equations [45], we have implemented another constraint, namely, a boundary flux
difference controller

(3.8)

∫
∂Ki

|F [p̂−]− F [p̂+]| dS ≥ θ2,

where we recall p̂− is the finite element solution in the element Ki while p̂+ is the
solution in the adjacent elements. If condition (3.8) is satisfied, then the element is
split as in Figure 3.1.

The inverse operation, i.e., the merging of neighborhood elements, is based on
the local variance criterion (3.7). In particular, we merge a group of elements with
common boundaries if the summation of the local variances is small enough, i.e., less
or equal than a threshold θ3.

Adaptivity based on sample paths. An alternative criterion to refine the com-
putational mesh in the phase space may be based on the analysis of a few sample
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Fig. 3.1. Mesh refinement in one- and two-dimensional phase spaces.

trajectories of the stochastic dynamical system (2.1). The key idea is the following.
We first sample a small ensemble of possible states of the system at time t according
to the marginalized PDF

(3.9) p
(a)
x(t) =

∫
Rm

p
(a,b)
x(t)ξdb .

Then we evolve these states in time by integrating the system (2.1). Based on the
analysis of the trajectories and on the concentration of samples in the phase space,
we refine the computational mesh. The adaptive criterion is based on the relative
number of samples within each finite element. If such number exceeds a prescribed
threshold value θ4 then the element is split as in Figure 3.1. A similar criterion is
used to merge neighborhood elements. Once the adapted mesh has been identified,
we interpolate the finite element solution (3.5) on the new mesh and solve the PDF
equation (3.1) within the considered period of time. This procedure is illustrated in
Figure 4.2, with reference to the dynamics of a stochastic nonlinear pendulum.

Validation of the variance/flux difference adaptive criterion. Let us consider the
one-dimensional stochastic “decay” problem

(3.10)
∂x (t;ω)

∂t
= −x (t;ω) + sin(t) + ξ(ω) , x (0;ω) = x0(ω),

where ξ(ω) and η(ω) are zero-mean independent Gaussian random variables, both
with variance 1/10. The evolution equation for the joint REPDF (3.1) in this case
reduces to

(3.11)
∂p

(a,b)
x(t)ξ

∂t
= − ∂

∂a

[
(−a+ sin(t) + b) p

(a,b)
x(t)ξ

]
, t ≥ 0, a, b ∈ R,

with initial condition

(3.12) p
(a,b)
x(0)ξ = p(a)x0

p
(b)
ξ =

5

π
e−5(a2+b2) .

The analytical solution to (3.11)–(3.12) can be obtained by using the method of
characteristics [46], as

p
(a,b)
x(t)ξ =

5et

π
e−5[α̂(a,b,t)2+b2] ,

where

(3.13) α̂(a, b, t)
def
= et(a− b) + b− 1

2

[
1 + et(sin(t)− cos(t))

]
.

Next, we consider the numerical simulation of (3.11) by using the proposed adap-
tive DG numerical scheme. The computational domain for the response variable a is
chosen as Ω = [−1, 1] while the excitation variable b is assumed to be in R. Also, the
finite element space (3.4) is defined in terms of Legendre polynomials while a Gauss–
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Fig. 3.2. Time snapshots of the response probability of the decay problem as computed by
the proposed adaptive DG method (first row). In the second row we plot the errors (3.14) and
(3.15) between the DG solution and the analytical solution at the final time t = 1. Shown are the
results of different adaptive strategies: DG-V (variance criterion), DG-VF (variance/flux difference
criterion). We also show p-type convergence of e2.

Hermite collocation method with q points is considered for the variable b.2 The time
integration follows a fourth-order Runge–Kutta scheme with time step Δt = 10−3. In
Figure 3.2 we show the the numerically computed response probability of the system
at different times together with the corresponding adapted mesh. In order to examine
the accuracy of the DG solution relative to the analytical solution (3.1.2), we consider
two different types of errors, namely, the absolute error

(3.14) e1(a, t)
def
=
∣∣∣p(a)x(t) − p̂

(a)
x(t)

∣∣∣
and the mean-squared error

(3.15) e2(t)
def
=

[∫ 1

−1

(
p
(a)
x(t) − p̂

(a)
x(t)

)2
da

]1/2
.

These errors are exhibited in Figure 3.2 at t = 1, for the adaptive strategies based
on the local variance criterion (3.7) and the local variance/boundary flux difference

2Thus, the total number degrees of freedom of the system is Nel(p + 1)q, where Nel denotes the
number of finite elements in Ω.
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Table 3.1

Number of elements at t = 1 by using the variance (DG-V) and the variance/flux difference
(DG-VF) adaptivity criteria. Shown are results for different polynomial orders p.

p 3 4 5 6
DG-V 37 37 37 37
DG-VF 62 49 41 41

criterion (3.8). The threshold parameters are set as θ1 = 0.02, θ2 = 0.005/5max{p−3,0},
and θ3 = 0.001 in this specific example. As can be seen in Figure 3.2 and Table 3.1 the
local variance/boundary flux difference criterion performs substantially better than
the local variance criterion, without increasing significantly the number of elements.

3.2. Excitation space. In most applications, we are interested in the response
PDF of the system, i.e., in the multidimensional integral

(3.16) p
(a)
x(t) =

∫
Rm

p
(a,b)
x(t)ξdb ,

with respect to the parameters (b1, . . . , bm). In order to compute such an integral,
we use efficient cubature formulas with high polynomial exactness [17, 24, 41, 44]. In
practice, we sample (3.1) with respect to the parameters b at appropriate quadrature
or sparse grid points and then compute an approximation to the integral (3.16) in the
form

(3.17)

∫
Rm

p
(a,b)
x(t)ξdb 	

q∑
k=1

wkp
(a,bk)
x(t)ξ , bk = (bk1 , . . . , b

k
m) ,

where wk are quadrature weights.

4. Numerical results. In this section we present numerical applications of the
proposed adaptive DG method to different prototype stochastic problems involving
randomly forced nonlinear oscillators.

4.1. Nonlinear pendulum. We study the stochastic dynamics of a nonlinear
pendulum subject to an external random driving torque. A deterministic version of
this problem has been studied in the past as a prototype problem to understand routes
to chaos (see, e.g., [3,14,22]). In particular, we consider the following model equation

(4.1)
d2θ(t;ω)

dt2
+
dθ(t;ω)

dt
+ κ sin (θ(t;ω)) = h(t;ω) ,

where θ denotes the position of the pendulum, κ sin (θ) is the restoring torque, and
h(t;ω) is an external random driving torque with prescribed statistical properties.
Equation (4.1) can be written as a first-order system as

(4.2)

⎧⎪⎨⎪⎩
dx1(t;ω)

dt
= x2(t;ω) ,

dx2(t;ω)

dt
= −x2(t;ω)− κ sin (x1(t;ω)) + h(t;ω) ,

where x1(t;ω) = θ(t;ω) and x2(t;ω) = dθ(t;ω)/dt. We assume that we have available
a Karhunen–Loève representation external random torque in the form

(4.3) h(t;ω) =
m∑

k=1

ξk(ω)hk(t),
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where {ξk(ω)} is a set of uncorrelated random variables with known joint PDF, and
hk(t) are unnormalized eigenfunctions of the autocorrelation of h(t;ω). By using the
method discussed in section 2, it is straightforward to obtain the evolution equation
for the joint PDF of the vector {x1(t;ω), x2(t;ω)), ξ1(ω), . . . , ξm(ω)},

(4.4) p
(a,b)
x(t)ξ

def
= p

(a1,a2,b1,··· ,bm)
x1(t)x2(t)ξ1···ξm =

〈
δ(a1 − x1)δ(a2 − x2)

m∏
k=1

δ(bk − ξk)

〉
,

where the average is with respect to the joint PDF of {ξk(ω)} and the initial state
{x1(t0;ω), x2(t0;ω)}. The kinetic equation has the form (2.3) with

(4.5) L(t) = −a2 ∂

∂a1
+ I +

(
a2 + κ sin(a1)−

m∑
k=1

bkhk(t)

)
∂

∂a2
.

In particular, let us consider here the simple case where the random torque h(t;ω)
depends only on one Gaussian random variable ξ1, i.e.,

(4.6) h(t;ω) = ξ1(ω) sin(10t) .

We set the parameter κ in (4.1) as κ = 40. This leads us to the PDF equation

(4.7)
∂p

(a,b)
x(t)ξ

∂t
= − ∂

∂a1

(
a2p

(a,b)
x(t)ξ

)
+

∂

∂a2

(
[a2 + 40 sin(a1)− b1 sin(10t)] p

(a,b)
x(t)ξ

)
.

The initial condition (x1(0;ω), x2(0;ω)) is assumed to be jointly Gaussian and inde-
pendent from the variable ξ1 in (4.6). Specifically, the joint PDF of x1 (position), x2
(momentum), and ξ1 at the initial time t0 = 0 is set as

(4.8) p
(a,b)
x(0)ξ =

4

3(2π)3/2
exp

[
−8

9

(
a1 − 4

5
π

)2

− 2a22 −
b21
2

]
.

This system physically corresponds to a dissipative nonlinear pendulum dropped
from a random initial position near the unstable vertical one, with a random velocity.
Note that the mean initial position is not exactly vertical, but it is set at 〈x1〉 = 4π/5,
i.e., on the right semi-half of the circle (see the sketch in Figure 4.1(a)). Several re-
alizations of the time evolution of this system are shown in Figure 4.1(b)–(c). It is
seen that the pendulum never makes a complete rotation, but it simply falls to the
lower vertical position through half rotations and then it keeps oscillating around it
due to the sinusoidal driving torque. Specifically, the clockwise half rotation leads to
oscillations near x1 = 0, while the counterclockwise half rotation leads to oscillations
near x1 = 2π. Although these two quasi-equilibrium configurations represent the
same physical state, they are reached through different paths, i.e., clockwise or coun-
terclockwise rotations. Thus, the continuous ensemble of initial conditions is split into
two disjoint ensembles in a finite time. This leads to a particular type of discontinuity
in the probability space that cannot be resolved by using standard polynomial chaos
(see, e.g., [62]), or global probabilistic collocation. Extensions such as ME-gPC [64]
or ME-PCM [17] can resolve this discontinuity.

In Figure 1.1 we compare the DG results of the PDF equation (4.7) with several
time snapshots of the sample phase space. We have chosen polynomial order p = 5
for the response space elements, q = 9 collocation points for the excitation space,
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(a () b () c)
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−3.14

0

3.14

6.28

9.42

t

x
1
(t

;ω
)

0 0.4 0.8 1.2 1.6 2
−20

−10

0

10

20

t

x
2
(t
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Fig. 4.1. (a) Sketch of pendulum, illustrating the mean initial position. In (b) and (c) we show
the temporal dynamics of several sample paths of the position and the velocity, respectively.

θ4 = 0.005 θ4 = 0.012

−3.14 0 3.14 6.28 9.42
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x1

x
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6.28
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x
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t = 0.1
t = 0.2
t = 0.3
t = 0.4
t = 0.5
t = 0.7
t = 1.0
t = 1.5
t = 2.0

Fig. 4.2. Sample phase plane of the pendulum at several time steps t and nonconforming
grid based on the entire sample path t ∈ [0, 2]. Shown are results for different values of adaptive
parameter θ4.

and fourth-order Runge–Kutta scheme for the time integration, with time step Δt =
5 · 10−4. The adapted nonconforming mesh shown in Figure 4.2 is generated by
using the adaptivity criterion based on sample paths discussed in section 3.1.2. The
threshold for the relative number of particles in each element is set to θ4 = 0.005 (see
Figure 4.2(a)). An analysis of Figure 1.1 shows that the symmetry of the system is
broken by setting the mean initial position of the pendulum to 〈x1(0, ω)〉 = 4π/5. In
fact, a larger portion of the phase space evolves towards the quasi-equilibrium state
through a clockwise rotation. In turn, this leads to a bimodal PDF, with accumulation
near x1 = 0, as demonstrated in Figure 4.3. The effects of the adaptive threshold θ4
on the response PDF of the system are shown in Figure 4.4. It is seen that despite
the robustness of the adaptive grid generation criterion, a proper selection of the
threshold parameter is necessary for accurate results.

We emphasize that the numerical simulation of the REPDF equation (4.7) based
on global expansion bases, such as Fourier spectral methods, would require a very
high resolution to represent accurately the REPDF within the response domain Ω =
[−4/3π, 3π]× [−15, 17].

Non-Gaussian random coefficient and random forcing. Non-Gaussian random
fields can be easily adopted in the REPDF approach. We consider two different exam-
ples, using a non-Gaussian random coefficient and a non-Gaussian random field as the
forcing term. We first take κ(ω) as a uniform random variable on the interval [20, 30].
In addition, we choose h(t;ω) to be an exponentially correlated random field expanded
by using the Karhunen–Loève series in terms of uniform random variables. We note
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Fig. 4.3. Comparison between the PDF of position of the pendulum x1(t;ω) as computed by
the proposed adaptive DG method (continuous line: REPDF) and an accurate nonparametric kernel
estimation method based on 50000 samples (dashed line: KDE). Shown are results at different times.
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θ4 = 0.008
θ4 = 0.010
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Fig. 4.4. Effects of the adaptive threshold θ4 on the response PDF of the system at time t = 1.
The nonconforming grids corresponding to θ4 = 0.005 and θ4 = 0.012 are shown in Figure 4.2.
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t = 0.1 t = 0.3 t = 0.5 t = 1.0

Fig. 4.5. Evolution of the joint PDF of the position and the momentum of the pendulum
with uniform random coefficient (top) and exponentially correlated non-Gaussian random forcing
(bottom) at different times.

that the PDF of the superimposition of a finite number of independent uniform ran-
dom variables is quite complicated and the references can be found in [50]. Particu-
larly, we take 〈h(t;ω)〉 = 5.0 and the covariance function as e−|t−s| (see [30] for ana-
lytical expressions). In both cases, the uniform random variables are simulated with 9
Legendre collocation points in each dimension and the computed solutions are plotted
in Figure 4.5 up to t = 1.0. Compared to the Gaussian example in Figure 1.1, the
PDFs are less concentrated due to the larger variance of the uniform random variables.

4.2. Duffing oscillator. Many physically interesting phenomena involving non-
linear oscillations can be modeled in terms of the stochastic Duffing equation

(4.9)

⎧⎪⎪⎨⎪⎪⎩
dx1(t;ω)

dt
= x2(t;ω) ,

dx2(t;ω)

dt
= −γx2(t;ω)− κx1(t;ω)− βx1(t;ω)

3 + f(t;ω) ,

where f(t;ω) is a random forcing term. We assume that the initial condition of
the system (4.9) is jointly Gaussian with mean (μ1, μ2), variance (σ1, σ2), and cross
correlation σ12. From the point of view of modern dynamical systems theory [25],
the ensemble of solutions to (4.9) is very rich, and it has been subjected to exten-
sive analytical and numerical investigation [5, 16, 37, 67]. The statistical properties
of the random forcing term f(t;ω) also play a fundamental role in the development
of the stochastic dynamics. Hereafter we consider different examples involving low-
dimensional as well as high-dimensional random forcing terms. In all cases, the PDF
equation is solved numerically by using the proposed spectral DG method with ele-
mentwise polynomial order p = 4 in the response space, q = 15 collocation points in
the excitation space, and a fourth-order Runge–Kutta scheme for the time integra-
tion. The initial time step is set to Δt = 10−3 and it is adaptively adjusted whenever
it violates the CFL condition [12],

(4.10)
Δt

Δa1

dF1

dp
+

Δt

Δa2

dF2

dp
<

1

2p+ 1
.
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Uncorrelated jointly Gaussian initial state
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Fig. 4.6. Time snapshots of the response PDF of the Duffing system and corresponding adapted
grids obtained by using the local variance/flux difference criterion. Shown are also the effects of the
correlation σ12 between the initial position x1 and the momentum x2 of the oscillator: First row:
σ12 = 0.0 (uncorrelated); Second row: σ12 = 0.09 (correlated).

The grid adaptivity is based on the local variance/boundary flux difference criterion
(see section 3.1.2) with parameters θ1 = 0.2min(σ1, σ2), θ2 = 0.04, and θ3 = 0.001.

Stable oscillations and chaotic motion. The ensemble of solutions to the Duffing
equation (4.9) includes stable oscillations and chaotic motion, depending on the sys-
tem parameters [5]. We first test our adaptive DG method on a stable manifold of
periodic states. To this end, we set the damping and the stiffness coefficients in (4.9)
and (4.15) to γ = 0.1, κ = 1.0, and β = 1.0 and consider a deterministic-type forcing
f(t) = D cos(t). This yields the following kinetic equation governing the response
PDF,

∂p
(a)
x(t)

∂t
= − ∂

∂a1

(
a2 p

(a)
x(t)

)
− ∂

∂a2

([−γa2 − κ a1 − βa31 +D cos(t)
]
p
(a)
x(t)

)
.(4.11)

The initial condition is jointly Gaussian with parameters μ1,2 = 0.0, σ1,2 = 0.1, and
variable correlation σ12.

The time dynamics of the response PDF of the Duffing system is shown in Fig-
ure 4.6 for initial conditions with different correlation coefficients and D = 0.2. We
notice that the dynamics corresponding to uncorrelated initial state remains smooth
and it follows a stable oscillating motion. On the contrary, the dynamics correspond-
ing to a correlated initial state becomes steeper and more skewed as time goes on.
The adapted grids generated by the variance/flux difference criterion correctly fol-
low the peak locations of the PDF, allowing us to resolve the dynamics accurately
at a reasonable computational cost. The number of nonconforming finite elements
produced by the variance/flux difference adaptive procedure is shown in Figure 4.7
versus time for different choices of θ1 and θ2. In the same figure we also exhibit
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(a () b)
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Fig. 4.7. (a) Number of elements Nel generated by the variance/flux difference adaptive crite-
rion versus time. Shown are results obtained by using different thresholds θ1 and θ2 and a jointly
Gaussian initial PDF with correlation σ12 = 0.09 (see Figure 4.6). (b) Effects of the thresholds on
the PDF of x1(t;ω) at time t = 5.

D = 1 D = 2 D = 6

Fig. 4.8. Route to chaos in the response PDF of the Duffing oscillator when the amplitude
of D, the forcing, is increased in (4.15) from D = 1 (system with negative Lyapunov exponent) to
D = 6 (system with positive Lyapunov exponent). Shown are time snapshots of the response PDF
evolving from a jointly Gaussian and uncorrelated initial state.

the effects of such thresholds on the PDF of x1(t;ω) at time t = 5. It is seen that,
differently from the sample-path based adaptive technique previously discussed, the
variance/flux difference procedure is not very sensitive to the selection of the threshold
parameters.

We remark that if we would have used uniform grids, the number of elements
would be from four to twenty times higher than ours, at a comparable level of accuracy.
Next, we consider more complicated stochastic dynamics, such as chaotic motions. To
this end, we set κ = 0.0, γ = 0.1, β = 0.1 in (4.9) and (4.11). It is known that this
system undergoes several transitions as a function of the parameter D (amplitude
of the forcing). In particular, the phase diagrams obtained by Bonatto, Gallas, and
Ueda in [5] clearly show that within the range D ∈ [0, 6] we have solutions with
negative Lyapunov exponents (regular) as well as solutions with positive Lyapunov
exponents (chaotic). This is demonstrated in Figure 4.8, where we show the time
snapshots of the response PDF of the system for different values of D. It is seen that
the dynamics of the PDF, which is accurately captured by the proposed adaptive DG
method, gradually loses its regularity when D is increased from 1 to 6.

This onset of chaos at D 	 5 can be also appreciated in Figure 4.9 where we
plot the evolution of the joint REPDF obtained by marginalizing the solution to the
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Fig. 4.9. Joint REPDF of x(t;ω) and ξ(ω) (random amplitude of the forcing) at different
times. The onset of chaos ξ(ω) � 5 and the chaotic region ξ(ω) ∈ [5, 6] can be appreciated at time
t = 7, where the PDF is scattered within the region b1 ∈ [5, 6].

kinetic equation

∂p
(a,b)
x(t)ξ

∂t
= − ∂

∂a1

(
a2 p

(a,b)
x(t)ξ

)
− ∂

∂a2

([−γa2 − κ a1 − βa31 + b1 cos(t)
]
p
(a,b)
x(t)ξ

)
,(4.12)

with respect to a2. This equation corresponds to a random forcing in the form
f(t;ω) = ξ(ω) cos(t), where ξ(ω) is a uniform random variable in [0, 6]. The re-
sults of Figure 4.9 show that at t = 7 the joint REPDF is scattered within the region
b1 ∈ [5, 6]. This indicates a possible chaotic scenario which is consistent with the
phase diagrams obtained in [5].

Colored random noise. We address here the question of whether the joint response-
excitation approach can provide an effective computational tool to simulate the effects
of colored random noise in physical systems. To this end, we model the forcing term
in (4.9) as an exponentially correlated Gaussian random process satisfying

(4.13) 〈f(t;ω)〉 = 0, 〈f(t;ω)f(s;ω)〉 = D

τ
e−

|t−s|
τ ,

where D > 0 denotes the amplitude of the noise. The autocorrelation of f can be
made arbitrarily close to a Dirac delta function by sending the correlation time τ to
zero.3 We expand the process f(t;ω) in a finite-dimensional Karhunen–Loève series
as

f(t;ω) =

(
D

τ

)1/2 m∑
k=1

√
λkek(t)ξk(ω), t ∈ [0, T ],(4.14)

where ξk(ω) are uncorrelated normal random variables, while λk and ek(t) are, respec-
tively, the eigenvalues and the eigenfunctions of the exponential correlation function
exp(−|t− t′|/τ) (see [30] for analytical expressions).

The effects of the correlation time τ on the dimensionality m of the Karhunen–
Loève series (4.14) are reported in Table 4.1. It is seen that processes with a small
correlation time are high dimensional, i.e., they depend on many random variables.
As a consequence, the kinetic equation for the joint REPDF of the system can be
high dimensional as well. In fact, we obtain

∂p
(a,b)
x(t)ξ

∂t
= − ∂

∂a1

(
a2 p

(a,b)
x(t)ξ

)
− ∂

∂a2

([
−γa2 − κ a1 − βa31 +

m∑
k=1

fk(t)bk

]
p
(a,b)
x(t)ξ

)
,

(4.15)

3In fact, exp(−|t−t′|τ)/τ is an element of a delta sequence [32], converging to 2δ(t−t′) as τ → 0.
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Table 4.1

Effects of the correlation time τ on the dimensionality of the Karhunen–Loève series (4.14).
The energy cutoff is set at 95% of the total energy of the process.

τ 50.0 5.0 2.0 1.0 0.5 0.1 0.01
m 1 5 9 13 25 48 57

where we have defined

(4.16) fk(t)
def
=

(
Dλk
τ

)1/2

ek(t) .

Equation (4.15) is a linear transport PDE in two phase variables (a1, a2) and m
parameters (b1, . . . , bm), i.e., its solution at time t lies in an (m + 2)-dimensional
manifold.

White and weakly colored Gaussian random noise. In the limit of zero correlation
time τ , the exponentially correlated Gaussian random process (4.14) becomes Gaus-
sian white noise of magnitude

√
2D. In this case the dynamics of the response PDF

of the system is governed by the Fokker–Planck equation [47]:

(4.17)
∂p

(a)
x(t)

∂t
= − ∂

∂a1

(
a2p

(a)
x(t)

)
− ∂

∂a2

(
g(a1, a2)p

(a)
x(t)

)
+D

∂2p
(a)
x(t)

∂a22
,

where g(a1, a2)
def
= −γa2 − κa1 − βa31. The second-order diffusion term is induced by

the white noise forcing. A similar theory holds for weakly colored Gaussian random
noise, In fact, by using the small correlation time approximation of the Furutsu–
Novikov relation [19, 26, 27, 60], it is possible to obtain

∂p
(a)
x(t)

∂t
=− ∂

∂a1

[
a2 p

(a)
x(t)

]
− ∂

∂a2

[
g(a1, a2)p

(a)
x(t)

]
(4.18)

+
∂2

∂a2∂a1

[
D√
ρ

(
1− e(Λ1−1/τ)t

1− Λ1τ
− 1− e(Λ2−1/τ)t

1− Λ2τ

)
p
(a)
x(t)

]
+

∂2

∂a22

[
D√
ρ

(
Λ1(1− e(Λ1−1/τ)t)

1− Λ1τ
− Λ2(1 − e(Λ2−1/τ)t)

1− Λ2τ

)
p
(a)
x(t)

]
,

where

(4.19) ρ
def
= γ2 + 4(κ+ 3βa21) , Λ1

def
=

−γ +√
ρ

2
, Λ2

def
=

−γ −√
ρ

2
.

The kinetic equation (4.18) holds for exponentially correlated Gaussian random forc-
ing terms with very small correlation time τ , and it can be considered as a first-order
correction to the Fokker–Planck equation (4.17), namely, the effective Fokker–Planck
(EFKP) equation.

The intermediate range of correlation times is unfortunately not easily accessible
by using correlation time expansions. In fact, the numerical solution to the classical
EFKP equation (4.18) for the case τ = 1 becomes unstable after t ≥ 3, indicating that
τ = 1 is beyond the convergence radius of the small correlation time approximation.
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Fig. 4.10. Mean (a) and standard deviation (b) of the solution to Duffing system for ex-
ponentially correlated Gaussian random forcing with different correlation times τ . The statistical
properties plotted in (a) and (b) are obtained by computing moments of the PDF solving the joint
REPDF equation (4.15) and the EFPK equation (4.18); the moments for τ = 0.1 agree with each
other.

0

0.1

1

10

100

τ

Fokker-Planck (FPK)

Effective Fokker-Planck (EFPK)

Joint REPDF

Fig. 4.11. The appropriate approach for different values of τ , where we emphasize that the
REPDF equation extends the classical PDF approaches and enables us to simulate the whole range
of correlation time.

This leads us to investigate the consistency of the response-excitation approach with
the classical EFPK theory for weakly correlated random forcing. This is done in Figure
4.10 where we compare the mean and the standard deviation of the solution to the
Duffing equation driven by random noise with different correlation times τ . These
statistical moments are obtained by integrating the solution to the PDF equations
(4.18) and (4.15). It is seen that for τ = 0.1 the response-excitation approach4 is
consistent with the classical EFKP approach. Moreover, we propose an appropriate
approach to simulate the stochastic system excited by different values of correlation
time τ in Figure 4.11 and emphasize that the REPDF approach enables us to simulate
the whole range of correlation times. The effects of τ on the temporal dynamics of
response PDF are exhibited in Figure 4.12. It is seen that random noise with a small
correlation time (cases τ = 0.1 and τ = 1.0) induces a diffusion phenomenon in the
PDF. On the other hand, for larger correlation times (case τ = 2), the diffusion seems
to be absent, and the maximum value of the response PDF increases with time.

4The dimensionality of the random forcing (4.14) is m = 13 for τ = 1.0 and m = 48 for τ = 0.1
(see Table 4.1). This means that the excitation space is 13 or 48 dimensional.
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τ = 2.0 τ = 1.0 τ = 0.1

Fig. 4.12. Time snapshots of the response PDF of the Duffing system for random noise with
different correlation times τ . The initial condition in all cases is jointly Gaussian with mean μ1,2 =
0.5.

5. Summary. In this paper we have addressed the question of whether the joint
REPDF approach can provide an effective computational tool to simulate the effects
of colored random noise in dynamical systems. To this end, we have developed a
nonconforming adaptive DG method for the joint REPDF equation governing the
dynamics of an arbitrary nonlinear system with parametric-type uncertainty. Such a
generalized PDF equation can be high dimensional as it can arise, for example, from
a discretization of an SPDE subject to random boundary conditions, random initial
conditions or random forcing. We have proposed different techniques to deal with
high-dimensionality and possible discontinuities of the PDF solution in the response-
excitation space. In particular, we have combined sparse grid and multi-element
collocation approaches (excitation space) with a novel adaptive discontinuous Galerkin
method (response space). The effectiveness of the proposed new algorithm has been
demonstrated in two prototype applications dealing with the statistical properties of
the randomly forced nonlinear pendulum and the stochastic Duffing oscillator. The
same procedure can be readily extended to the joint REPDF equations corresponding
to first-order SPDEs [59].

Further developments of the proposed methodology can be addressed along differ-
ent directions. With reference to DG methods for PDF equations, more sophisticated
numerical fluxes and limiters can be considered to obtain stronger conservative prop-
erties and preserve the positivity of the solution [28, 70]. The dimensionality of the
response-excitation space is still the major issue underlying the joint REPDF equa-
tion, despite recent advances in numerical methods for high-dimensional systems such
as PGD [8, 35, 42], ME-PCM [18], or ANOVA [6, 57, 68]. Nonetheless, some closure
approximations to obtain the response PDF equation exist. As shown in section 4.2,
the EFKP approximation can be applied for systems excited by a weakly correlated
Gaussian random process. However, the range of applicability of the EFKP approach,
that is, the transition value of τ between the REPDF and the EFKP in Figure 4.11
needs to be further investigated in different examples. Alternatively, some prelimi-
nary results using a moving kernel approach for the transient state and the Gaussian
kernel approximation for long-time, steady-state closure can be found in [2, 51]. For
high dimensionality in the response space, the second-order ANOVA expansion of the
joint REPDF could lead to a reduction of the REPDF equation (2.3) into a coupled
system of two-dimensional equations, which can be solved by using the adaptive DG
method presented in this paper. Another approach to overcome the dimensionality
problem in probability space can be based on a goal-oriented projection operator
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framework of Zwanzig-type [10, 13]. This latter approach may allow us to deter-
mine exact PDF equations for low-dimensional nonlinear functionals of the solution
to high-dimensional stochastic problems. Based on this formulation, one can avoid
the integration of the full stochastic system and solve directly for the PDF of the
low-dimensional functional of interest.
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