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We present a methodology to concurrently couple particle-based methods via a domain 
decomposition (DD) technique for simulating viscous flows. In particular, we select two 
resolutions of the smoothed particle hydrodynamics (SPH) method as demonstration. 
Within the DD framework, a simulation domain is decomposed into two (or more) 
overlapping sub-domains, each of which has an individual particle scale determined by 
the local flow physics. Consistency of the two sub-domains is achieved in the overlap 
region by matching the two independent simulations based on Lagrangian interpolation 
of state variables and fluxes. The domain decomposition based SPH method (DD-SPH) 
employs different spatial and temporal resolutions, and hence, each sub-domain has its 
own smoothing length and time step. As a consequence, particle refinement and de-
refinement are performed asynchronously according to individual time advancement of 
each sub-domain. The proposed strategy avoids SPH force interactions between different 
resolutions on purpose, so that coupling, in principle, can go beyond SPH–SPH, and may 
allow SPH to be coupled with other mesoscopic or microscopic particle methods.
The DD-SPH method is validated first for a transient Couette flow, where simulation results 
based on proper coupling of spatial–temporal scales agree well with analytical solutions. 
In particular, we find that the size of the overlap region should be at least rc,1 + 2rc,2, 
where rc,1 and rc,2 are cut off radii in the two sub-domains with rc,1 ≤ rc,2. Subsequently, 
a perturbation wave is considered traveling either parallel or perpendicular to the hybrid 
interface. Compressibility is significant if transient behavior at short sonic-time-scale is 
relevant, while the fluid can be treated as quasi-incompressible at sufficiently long time 
scale. To this end, we propose a coupling of density fields from the two sub-domains. 
Finally, a steady Wannier flow is simulated, where a rotating cylinder is placed next to 
a wall. Lubrication effects are prominent in the gap between the cylinder and the bottom 
wall, rendering a high resolution necessary, whereas in the rest of the domain the flow can 
be simulated at much lower resolution. DD-SPH simulation results with both spatial and 
temporal resolution ratios up to 16 agree well with the results of a single high resolution 
simulation, but with the former two-orders of magnitude faster in the region away from 
the cylinder.
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1. Introduction

In the last few decades there have been many efforts to develop multiscale methods for fluid flows. There are mainly 
two types of multiscale methods. The first method adopts the same fluid solver over the whole computational domain and 
applies high resolution at locations with high gradients. Hence, it is essentially a multi-resolution method, for example, the 
adaptive mesh refinement (AMR) [1] method belongs to this category. The second method couples heterogeneous solvers 
applied in different regions of the computational domain. For example, a Navier–Stokes (NS) solver is applied in one part 
of the domain, while a molecular dynamics (MD) method is applied in the other part of the domain where the microscopic 
boundary condition is unknown a priori [2–5]. In our work, we aim to formulate a more general framework for Lagrangian 
particle methods, which can accomplish both types of multiscale simulation. To this end, we adopt the domain decompo-
sition (DD) methodology [6], which has been primarily utilized in coupling heterogeneous solvers. Here, we apply the DD 
methodology on adaptively refining the smoothed particle hydrodynamics (SPH) method [7]. The DD methodology exhibits 
both flexibility and computational efficiency when applied in a multi-resolution simulation.

In contrast to the mesh-based discretizations, such as the AMR, multi-resolution in particle-based discretizations seems 
to be more difficult to deal with due to its Lagrangian nature. However, it is also exactly the Lagrangian property that pro-
vides particle-based methods with advantages for certain applications, such as advection dominated problems, multiphase 
flows with complex boundaries [8,9], and free surface flows [7], among others. Therefore, it is tempting to develop a multi-
resolution scheme in particle-based discretization of fluid flows. In fact, there have been already several innovative efforts. 
For example, in an astrophysical application of SPH method, a variable smoothing length was adopted to account for changes 
in particle number density so that the dynamic range of spatial resolution is increased [10]. In another engineering applica-
tion of SPH method, a dynamic procedure of particle refinement was proposed, where a parent particle is split into a couple 
of daughter particles to increase local numerical accuracy [11]. Based on the particle refinement procedure, a de-refinement 
algorithm was developed to merge a few small particles into a large one so that computational cost may be saved [12]. It is 
worth noting that these works target the spatial multi-resolution, but the temporal resolution is not distinguished between 
small and large particles. Since these schemes are formulated based on SPH force interactions between different spatial 
resolutions, forces must be exchanged instantaneously between particles of various sizes. This instant exchange is the key 
cause of the difficulty of separating temporal advancement of different spatial resolutions.

To enable decoupling on both spatial and temporal resolutions, we propose to couple state variables and fluxes between 
SPH simulations of different resolutions. In particular, we decompose a global domain into two (or possibly more) overlap-
ping sub-domains, each of which performs an SPH simulation with independent spatial and temporal resolution according to 
the local flow physics. A hybrid description exists in the overlap region, and consistency of the two simulations is achieved 
by constraining each simulation’s artificial boundary, which is embedded in the other sub-domain. The constraint is per-
formed on state variables by a Lagrangian interpolation based on information of the other simulation. The state variables are 
density and momentum for the isothermal fluid considered here. In addition, we introduce a simple and effective condi-
tional rule to correct the pressure force calculation with a non-spherical support at the artificial boundary, which resolves 
automatically also the density inconsistency in the same region. A particle is removed once it leaves the sub-domain while a 
new particle is inserted in the artificial boundary, under the guidance of fluxes in the other simulation. Since SPH blending-
force interactions between two types of particles are intentionally avoided, both smoothing length and time step are separated 
for the two simulations. This implies that particle deletion and insertion are asynchronous in the two sub-domains and are 
performed according to the local time advancement. Synchronization of two simulations is done at selective time instants. 
Therefore, the new coupling scheme enables both spatial and temporal speed-ups in the low resolution sub-domain.

The remainder of this paper is organized as follows. In Section 2, we briefly review the Lagrangian hydrodynamic equa-
tions and the corresponding discrete SPH equations. Later in the same section, we introduce the separation of two particle 
number densities on two sub-domains based on the domain decomposition method. The associated artificial boundary con-
dition for particle methods and particle deletion/insertion procedure are also explained in detail. In Section 3, we validate 
the coupling of momentum and density of two simulations, and the density/pressure wave across the overlap region with 
hybrid description, by performing simulations of transient Couette flow and wave perturbations. Furthermore, we quantify 
the numerical error on temporal coupling with different communication time steps between two simulations. We also ex-
amine the accuracy on the algorithms for asynchronous particle deletion and insertion for the Wannier flow problem with 
fluxes across hybrid interface. In Section 4, we summarize this work and suggest possible extensions.

2. The multiscale particle model based on domain decomposition

2.1. Lagrangian hydrodynamic equations

We consider an isothermal Newtonian fluid with a Lagrangian description governed by the continuity and the Navier–
Stokes equations as follows [13]:

dρ

dt
= −ρ∇·v, (1)

ρ
dv = −∇p + η∇2v + η∇∇ · v, (2)

dt 3
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where ρ , v, p, and η are material density, velocity, pressure and shear viscosity, respectively. An equation of state (EOS) 
relating pressure to density is needed to provide a closure for the weakly compressible description. Both an ideal-gas-like 
linear EOS and liquid-like stiff EOS are widely used in the literature [7,14]:

p = c2
s ρ, (3a)

p = c2
s ρeq

7

[(
ρ

ρeq

)7

− 1

]
+ χ, (3b)

where ρeq is the equilibrium density. The artificial sound speed cs is chosen based on a scale analysis [7,14] such that the 
pressure field reacts strongly to small deviations in density and quasi-incompressibility is fulfilled. Here, χ is a positive 
constant to enforce non-negativity of pressure on any SPH particle [8]. In principle, the constant χ under the gradient 
operator in Eq. (2) should have no contribution to the momentum balance. We shall illustrate the performance of Eqs. (3a)
and (3b) for a weakly compressible flow in Section 3.

2.2. Smoothed particle hydrodynamics

For a comprehensive description of smoothed particle hydrodynamics (SPH) method we refer to recent review articles 
[7,15]. Here we adopt one classical SPH formulation with a B-spline kernel applied to viscous flows [14]. However, the 
proposed coupling methodology should apply to other SPH formulations [7] or other SPH kernels, such as the Wendland 
functions [16].

For convenience, as a reference we define some simple notations

ri j = ri − r j,

vi j = vi − v j,

ei j = ri j/ri j, ri j = |ri j|, (4)

where ri , vi are position and velocity of particle i; ri j , vi j are relative position and velocity of particles i and j; ri j is the 
distance of the two and ei j is the unit vector pointing j to i. The equation of motion for SPH particles and the corresponding 
discrete continuity and momentum equations are:

ṙi = vi, (5)

di = ρi

mi
=

∑
j

W (ri j) =
∑

j

W ij, (6)

mi v̇i =
∑
j �=i

(
FC

i j + FD
ij

)
, (7)

where d is particle number density defined as the ratio of density ρ and particle mass m (constant), and it is calculated 
based on neighboring particle positions. W (r) is a bell-shaped weighting function named as SPH kernel and it has at least 
two properties

lim
h→0

W (r − r′,h) = δ(r − r′),
∫

W (r − r′,h)dr′ = 1, (8)

where h is defined as smoothing length. Any kernel adopted should converge to the Dirac delta function δ as h → 0 and its 
integral must be normalized. In this work a high-order quintic kernel from the B-spline family is adopted, which has been 
widely utilized since the inception of SPH simulation for viscous flows [14]:

W (s) = cD

⎧⎪⎪⎨
⎪⎪⎩

(3 − s)5 − 6(2 − s)5 + 15(1 − s)5, 0 ≤ s < 1;
(3 − s)5 − 6(2 − s)5, 1 ≤ s < 2;
(3 − s)5, 2 ≤ s < 3;
0, s ≥ 3,

(9)

where s = 3ri j/rc = ri j/h and rc is a finite cut off radius based on user’s choice to limit numerical errors. The normalization 
coefficients are c2 = 63/(478πr2

c ) and c3 = 81/(360πr3
c ) in two and three dimensions, respectively.

Note that Eqs. (5) and (6) already account for the continuity equation (1), which does not need to be discretized explicitly. 
FC

i j and FD
ij are pairwise conservative and dissipative forces between particles, corresponding to a discretization of forces 

due to pressure and viscous stress in Navier–Stokes equations. Following a thermodynamic framework, an expression for 
conservative force is obtained as follows [17],

FC
i j = −

(
Pi

d2
+ P j

d2

)
∂W

∂ri j
ei j, (10)
i j
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Fig. 1. Sketch of domain decomposition (left) and communication pattern (right). The shadowed region is the overlap region of the two sub-domains. ∂�1

and ∂�2 are external boundaries while 	1 and 	2 are artificial boundaries. Sub-domain �1 has time step 
t1 and sub-domain �2 has time step 
t2. 
Values in 	1 and 	2 are updated every 
tcomm .

which was also previously derived in a mathematical manner and has been widely utilized [7]. FC
i j = −FC

ji (Newton’s 3rd 
law) and they are active along ei j , therefore both linear and angular momenta are strictly conserved. The second-order 
derivatives in Eq. (2), corresponding to the viscous forces on particle i, can be discretized as [17],

1

di
(∇2v)i = 2

∑
j

1

did jri j

∂W

∂ri j
vi j, (11)

1

di
(∇∇ · v)i =

∑
j

1

did jri j

∂W

∂ri j

[
(D + 2)ei j · vi jei j − vi j

]
, (12)

where the dimension D (= 2 or 3) of the problem is explicitly introduced into the expression. Therefore, the pairwise 
dissipative force is

FD
ij = η

did jri j

∂W

∂ri j

(
2D − 1

D
vi j + D + 2

D
ei j · vi jei j

)
. (13)

FD
ij also satisfies Newton’s 3rd law so that it conserves linear momentum.

We adopt the velocity Verlet integrator for the time integration of SPH particles. To maintain numerical stability of the 
explicit scheme, the time-step size 
t is restricted by two conditions: 
t ≤ 0.25h/cs and 
t ≤ 0.125h2/ν (kinematic vis-
cosity ν = η/ρ). For low Reynolds number flows, the viscous constraint with a squared dependence on h usually dominates.

2.3. Domain decomposition method

We consider a domain decomposition (DD) method based on the classical alternating Schwartz scheme [6]. A computa-
tional domain has two external boundaries defined in ∂�1 and ∂�2 and periodic boundaries in other directions. The global 
domain is decomposed into two (or more) overlapping sub-domains, as sketched in Fig. 1. An artificial boundary 	1 is at-
tached to �1 and it is embedded in �2; likewise, 	2 is an artificial boundary for �2 and it is embedded in �1. Therefore, 
the bottom sub-domain consists of �1 ∪ ∂�1 ∪ 	1, while the top sub-domain is made of �2 ∪ ∂�2 ∪ 	2.

For a steady problem, a simple alternating Schwartz method together with an iterative solver (e.g., Jacobi method) starts 
with an initial guess value of ω0

1 for �1 and ω0
2 for �2 at 0th step. Subsequently, it solves the problem in sub-domain 

�1 with two Dirichlet boundary conditions in ∂�1 and 	1, to obtain ω1
1 as an updated value in �1. Values in 	1 are 

nothing else but a sub-set of ω0
2 in �2. Concurrently, it solves the problem in sub-domain �2 with two Dirichlet boundary 

conditions in ∂�2 and 	2 to obtain ω1
2 as an updated value in �2. Values in 	2 are a sub-set of ω0

1 in �1. This alternating 
procedure repeats until the two solutions in the overlap region (defined as 	1, 	2 and the gap region between them) match 
within a certain tolerance. Exchange of artificial boundary values takes place every 
tcomm steps. The time step here is a 
pseudo-time for relaxation if we deal with a steady problem.

For a linear system, the procedure just described is equivalent to a block Jacobi method. We obtain new solutions at 
two sub-domains concurrently, based on the values of each other at last step. In contrast, the original alternating Schwartz 
method is identical to the block Gauss–Seidel method and solves two sub-domains consecutively. Therefore, it utilizes 
updated values of the other sub-domain and has better convergence [6]. We prefer the block-Jacobi-type of alternating 
procedure in this work, however, by considering its advantages in the context of parallel execution.
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Fig. 2. Schematic explanation of the coupled simulation. Sub-domain 1 consists of �1, ∂�1 and 	1 and sub-domain 2 consists of �2, ∂�2 and 	2. The 
two sub-domains are bounded by external boundary conditions (solid wall or periodic) and are coupled by an overlap region. Horizontal lines a, bi , ci , di , 
ei and f i are boundaries for different regions. In particular, for �1 the artificial interface boundary region 	1 extends γ1 vertically from b1 to c1. At the 
bottom below d1 we have either periodic or solid wall ∂�1 with thickness of rc,1 (represented by frozen particles). Similarly for �2 the artificial interface 
boundary region 	2 extends γ2 vertically from b2 to c2. At the top above d2 we have either periodic or solid wall ∂�2 with thickness of rc,2 (represented 
by frozen particles). In addition, we designate bath regions between e1 and f1 in �1 and between f2 and e2 in �2 to impose constrains for 	2 and 	1, 
respectively. A gap of δgap is left between 	1 and 	2, and it is arbitrarily split into two equal parts with δ1 = δ2. The horizontal line a in the middle of the 
gap region is referred to as hybrid reference line. Note that �1 does not include ∂�1 or 	1 and �2 does not include ∂�2 or 	2.

In the context of multi-resolution SPH simulation via domain decomposition, we also consider Dirichlet-type boundary 
conditions in the artificial boundaries, as shown in Fig. 2. In particular, we constrain the state variables in 	1 and 	2 of two 
SPH simulations. For the case of an isothermal fluid, the constraints are performed on density and momentum within 	1
and 	2. The thickness of external boundary ∂�1 is taken as rc,1, which is the cut off radius of SPH simulation performed 
within sub-domain 1 (�1 ∪ ∂�1 ∪ 	1). A thinner boundary of ∂�1 weakens coupling between fluid and boundary particles 
while a thicker one beyond cut off does not contribute to the coupling. Similarly, the thickness of external boundary ∂�2
is taken as rc,2, which is the cut off radius of SPH simulation performed within sub-domain 2 (�2 ∪ ∂�2 ∪ 	2). The overlap 
region is indicated as the shadowed region in Fig. 2, including 	1, 	2 and a gap region between them. The gap region is 
created intentionally so that the constrained values in one artificial boundary are not immediately applied to constrain the 
other artificial boundary again. Otherwise temporal coupling would be weak (see results of Section 3.1). The length scales 
in the overlap region should be as follows:

γ1 ≥ rc,1, (14a)

γ2 ≥ rc,2, (14b)

δgap ≥ max
(
rc,1, rc,2

)
, (14c)

where the minimum thickness of artificial boundaries 	1 and 	2 is taken as the corresponding cut off radius, for the same 
reason as for the external boundaries. The minimum of the thickness δgap of the gap region is taken as the maximum of 
the two cut off radii to avoid weak coupling. In practice, we prefer the minimal computation by taking the lower bound 
values in Eq. (14). Therefore, the thickness of the overlap region is δoverlap = γ1 + γ2 + δgap = rc,1 + 2rc,2, where rc,1 ≤ rc,2. 
The reasons of choosing such lengths will become more clear as we explain how to constrain state variables based on 
Lagrangian interpolations in Sections 2.4, 2.5 and 2.7.

Since two solutions exist in the overlap region, we arbitrarily split the gap region into two equal parts, that is, δ1 = δ2 =
δgap/2, and refer to the middle line a as hybrid reference line. Therefore, the solution of �1 below a and the solution of �2
above a are glued together to provide the global solution.

Unlike an iterative solver, such as the Jacobi method, the SPH method should rather be understood as a direct solver, so 
that the final solutions in �1 and �2 for known external and artificial boundary conditions are obtained without pseudo-
time iterations. This makes the domain-decomposition based SPH (DD-SPH) method suitable not only for steady but also 
for transient problems. In this case, all temporal quantities in Fig. 1 are physical time instead of pseudo-time for iterative 
relaxation.
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2.4. Dirichlet boundary for momentum in 	1 and 	2: constrained particle dynamics

At t = tn
comm , the simulation in sub-domain 1 completes the previous (
tcomm/
t1) time steps, where 
t1 is the time 

step of SPH simulation in the sub-domain. We impose the velocity constraint within 	1 before the simulation proceeds, 
that is, for every particle k within 	1, we calculate its constrained velocity uconstr

k imposed by the simulation in �2 by SPH 
interpolation

uconstr
k =

∑
l

vl

dl
Wkl, (15)

where l is the index of particles in �2 within a spherical region of radius rc,2 away from particle k. Note that rc,2 is selected 
instead of rc,1, as the former is the characteristic length of dynamics in �2. In Eq. (15), uconstr

k can be understood as an 
interpolated velocity at position xk in �2. This constraint involves particles of �2 located in the region between horizontal 
lines f2 to e2, as shown in Fig. 2, which is referred to as the bath region of �2 for 	1. It is simple to see that the thickness 
of the bath region is rc,1 + 2rc,2. Thereafter, the simulation in �1 ∪ ∂�1 proceeds as usual until t = tn+1

comm .
Similarly, at t = tn

comm the simulation in sub-domain 2 completes the previous (
tcomm/
t2) time steps, where 
t2 is the 
time step of SPH simulation in the sub-domain. We impose the velocity constraint within 	2 before simulation proceeds, 
that is, for every particle k within 	2, we calculate its constrained velocity vconstr

k imposed by the simulation in �1 by SPH 
interpolation

vconstr
k =

∑
l

ul

dl
Wkl, (16)

where l is the index of particles in �1 within a spherical region of radius rc,1 away from particle k. This constraint involves 
particles of �1 located in the region between horizontal lines e1 to f1, as shown in Fig. 2, which is referred to as the bath 
region of �1 for 	2. It is simple to see that the thickness of the bath region is rc,2 + 2rc,1. Thereafter, the simulation in 
�2 ∪ ∂�2 proceeds as usual until t = tn+1

comm .
From tn

comm to tn+1
comm , the velocity vl in Eq. (15) is a constant copy of values taken from �2 at time tn

comm . The constraint 
on uconstr

k is performed at every 
t1 between tn
comm and tn+1

comm , instead of merely at tn
comm and tn+1

comm; likewise, the constraint 
on vconstr

k in Eq. (16) is performed at every 
t2 instead of merely at tn
comm and tn+1

comm . This means that the communication 
between two simulations takes place every 
tcomm and the constraints in 	1 and 	2 are performed at every time step of 
individual simulations. The frequent constraints in artificial boundaries allow for a rapid convergence of individual simula-
tions in the two sub-domains, which is effective for time-dependent flows, as shown in Sections 3.1 and 3.2. For a steady 
problem, a less frequent constraint may be sufficient.

Although other high-oder Lagrangian interpolations may be utilized in Eqs. (15) and (16), such as the moving least 
squares method, we adopt SPH interpolation for its simplicity and accuracy level consistent with the SPH simulations. The 
interpolation kernel in Eqs. (15) and (16) is taken to be the same as the SPH simulation kernel in Eq. (9).

2.5. Dirichlet boundary for density in 	1 and 	2: constrained particle dynamics

Compressibility is present almost universally in particle-based methods, therefore we further consider density coupling 
and enable pressure waves across the overlap region.

For any particle k within 	1 (likewise for each particle within 	2), there is no full spherical support for calculating 
density of particle k. There exist a few effective schemes, e.g., in Ref. [18], to correct the density of a particle at or near 
a boundary. However, these schemes would achieve a local equilibrium density in 	1 (and in 	2), without reflecting any 
density/pressure variation in the other simulation.

To couple the dynamics of density/pressure of two simulations, for every particle k within 	1 we calculate its constrained 
density dcons

k imposed by particles in the bath region of �2 via SPH interpolation

dcons
k =

∑
l

m2

m1
Wkl, (17)

where l is the index of particles in �2 within a spherical region of radius rc,2 away from particle k. Here, m1 (constant) is 
the mass of each particle in sub-domain 1 and m2 (constant) is the mass of each particle in sub-domain 2. Similarly, for 
every particle k within 	2 we calculate its constrained density dcons

k imposed by particles in the bath region of �1 via SPH 
interpolation

dcons
k =

∑
l

m1

m2
Wkl, (18)

where l is the index of particles in �1 within a spherical region of radius rc,1 away from particle k. The interpolation kernel 
in Eqs. (17) and (18) is taken to be the same as the SPH simulation kernel in Eq. (9).

Some remarks are in order. The density constraints in the artificial boundaries 	1 and 	2 indeed allow for propagation 
of density/pressure variation across the overlap region, as they reflect the dynamic changes of density and hence of the 
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pressure. The density constraint, however, is too restrictive, since the real particle distribution in 	1 (similarly in 	2) does 
not necessarily correspond to the constrained density. More precisely, the SPH density in 	1 based on real particle positions 
does not necessarily equal to the constrained density. Some kind of relaxation for particle configuration in 	1 is definitely 
needed to resolve this density inconsistency. An ideal relaxation protocol would be: keep particles in �1 next to 	1 fixed 
and apply an iterative search for the particle configuration within 	1 so that SPH density calculation from Eq. (6) (with a 
correction for non-spherical support) agrees with the density constraint of Eq. (17) up to a certain tolerance. This iterative 
procedure, however, would involve the solution of a nonlinear system, size of which is in the order of particle numbers in 
	1 and its neighborhood. The same iterative procedure would be also needed for 	2 and its neighborhood. Even worse, the 
search for particle configurations in artificial boundaries would be needed at every time of exchanging informations between 
the two simulations. This procedure would inevitably cause significant computational cost and is not recommended. We 
have developed an alternative effective procedure, as a result of trying to correct conservative force calculation in 	1 and 	2, 
which will be presented in Section 2.6.

Similarly to the consideration of velocity in Section 2.4, the communication between two simulations takes place at every 

tcomm and the constraints on density are performed at each time step of individual simulations, that is, every 
t1 for 	1
and 
t2 for 	2.

2.6. Correction on conservative force in 	1 and 	2 , and particle relaxation

For every particle k within 	1 (likewise for each particle within 	2), there is no full spherical support for calculating 
the conservative force FC

k on particle k. There exist a few methods, e.g., Ref. [18], to correct the calculation of conservative 
force with non-spherical support. However, these schemes are designed for simulations at steady state and are not proper 
for coupling transient phenomena.

To allow for dynamic change of pressure in the overlap region, we apply a conditional rule as follows. For every particle 
k within 	1 and its neighboring particle l in sub-domain 1, their normal distances to the exterior boundary (horizontal 
line c1 in Fig. 2) are hk and hl; FC

kl is their conservative force and F C
kl is its magnitude. The tangential components, namely, 

FC
kl · ex and FC

kl · ez , remain unchanged between the two particles but the normal components are selected conditionally: if 
hl ≤ 2hk, FC

kl · ey is active for particle k; otherwise is discarded. The main point of this rule is to satisfy that the sums of pairwise 
conservative forces on particle k from both sides of yk along ey direction are similar at equilibrium and present proper 
variation at non-equilibrium. The same rule applies to particle l: if hk ≤ 2hl , FC

lk · ey is active for particle l; otherwise is discarded.
The same conditional rule applies to each particle within 	2 and its neighboring particles in sub-domain 2 as well.
Due to the conservative formulation adopted in Eq. (10), the pairwise conservative force is repulsive between particles 

and always promotes regularization of particle configurations [15]. Therefore, as a by-product, the conditional rule also in-
troduces a “natural” relaxation (without any iterative procedure) for the inconsistent particle configurations in 	1 and 	2, 
which result from the density over-constraining of Eqs. (17) and (18). As another advantage of the conditional rule, after 
insertion in the artificial boundary a new particle will not be repelled to exterior immediately (see Section 2.7). The condi-
tional rule also has two drawbacks. Effectively, as a particle k approaches the exterior within 	1 (and 	2), the conditional 
rule reduces the number of its neighboring particles for calculating the conservative force in the normal direction on parti-
cle k. Furthermore, the asymmetric operation violates momentum conservation within 	1 and 	2, similarly to the situation 
close to a solid boundary. Nevertheless, the conservation within �1 and �2 are preserved as usual. In this work, we focus 
on the dynamic feature and computational advantages for particle relaxation of this conditional rule and accept its two 
drawbacks.

2.7. Particle deletion and insertion

In any particle-based approach particles should be able to leave and enter freely the artificial boundaries 	1 and 	2, 
which are flow regions but not wall regions. For particle deletion, it is straightforward to simply remove any particle leaving 
the sub-domain. For particle insertion in one sub-domain, since the influxes of momentum and mass are location-dependent, 
we consider the fluxes at the inserting locations provided by the simulation in the other sub-domain.

2.7.1. Deletion
According to the time advancement of simulation in �1 ∪ ∂�1 ∪ 	1, for every particle k within 	1 at time step tn

1, 
if k leaves 	1 to the exterior during tn

1 −→ tn+1
1 = tn

1 + 
t1, that is, it goes outside of line c1 in Fig. 2, k is removed 
at time tn+1

1 . The same deletion applies to the simulation in �2 ∪ ∂�2 ∪ 	2 but with its own time advancement from 
tn

2 −→ tn+1
2 = tn

2 + 
t2, and a particle is removed at tn+1
2 .

2.7.2. Insertion
For inserting new particles into 	1, we select inserting sample points A1, A2, . . . , An along the horizontal line c1, that 

is, y Ai = yc1 . For simplicity, we set the sample points with equal distance 
x1 along x direction, where 
x1 is the initial 
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particle spacing in �1 ∪ ∂�1 ∪ 	1. Therefore, we can calculate the density at point Ai at time tn
1 based on data in the bath 

region of �2,

dAi =
∑

l

m2

m1
W Ail, (19)

where l is the index for �2 particles that are within cut off radius rc,2 of position Ai . Likewise, we are also able to calculate 
the particle number flux N Ai (defined as mass flux divided by m1) at point Ai accumulated from t0

1 = 0 to tn
1 = n
t1, based 

on the momentum flux in y direction at Ai , which is interpolated from data in the bath region of �2 as follows,

uAi =
∑

l

vl

dl
W Ail, (20)

N
tn
1

Ai
= N

tn−1
1

Ai
+ dAi u Ai ,y
x1
t1, (21)

where u Ai ,y is the y component of uAi and particle number flux N
t0
1

Ai
= 0 at time step 0. Therefore, at tn

1 = n
t1, we insert a 

new particle at point Ai , if N
tn
1

Ai
≤ −1. N

tn
1

Ai
= N

tn
1

Ai
+ 1 is performed after the insertion. The inserted particle has mass m1 and 

velocity uAi . Note that u Ai ,y as the y component of the velocity is always downwards so that the inserted particle moves 
towards �1.

The same inserting procedure applies to the simulation in �2 ∪ ∂�2 ∪ 	2 as well, where the inserting sample points 
are B1, B2, . . . , Bn along the horizontal line c2, that is, yBi = yc2 . The sample points are with equal distance 
x2 along x
direction, where 
x2 is the initial particle distance. The only difference from sub-domain 1 is the directional condition.

Therefore, we can calculate the density at point Bi at time tn
2 based on data in the bath region of �1.

dBi =
∑

l

m1

m2
W Bil, (22)

where l is the index for �1 particles that are within cut off radius rc,1 of position Bi . Likewise, we are also able to calculate 
the particle number flux NBi (defined as mass flux divided by m2) at point Bi accumulated from t0

2 = 0 to tn
2 = n
t2, based 

on the momentum flux in y direction at Bi , which is interpolated from data in the bath region of �1 as follows,

vBi =
∑

l

ul

dl
W Bil, (23)

N
tn
2

Bi
= N

tn−1
2

Bi
+ dBi v Bi ,y
x2
t2, (24)

where v Bi ,y is the y component of vBi and particle number flux N
t0
2

Bi
= 0 at time step 0. Therefore, at tn

2 = n
t2, we insert 

a new particle at point Bi , if N
tn
2

Bi
≥ 1. N

tn
2

Bi
= N

tn
2

Bi
− 1 is performed after the insertion. The inserted particle has mass m2

and velocity vBi . Note that v Bi ,y as the y component of the velocity is always upwards so that the inserted particle moves 
towards �2. Recall the asymmetric operation of the conditional rule in Section 2.6, i.e., the newly inserted particles are not 
repelled to the exterior.

This procedure of particle deletion and insertion applies, in general, to both compressible and incompressible flows. 
However, for incompressible flows, such as the Wannier flow in Section 3.3, a slightly modified procedure is preferred to 
have strict mass conservation in each simulation. More precisely, each removed particle is inserted back immediately at the 
sampling point, which has the maximum inwards particle number flux accumulated. The rest of the operations are the same 
as in the case for general compressible flows.

We note that the particle deletion and insertion are executed according to different time advancements of the two 
simulations, that is, they are achieved asynchronously, in contrast to the synchronous deletion and insertion (named as 
refinement and de-refinement) adopted in previous work [11,12]. Therefore, both spatial and temporal speed-ups can be 
achieved in the sub-domain of low resolution simulation.

A flowchart is depicted in Appendix A to facilitate the understanding of the coupling algorithms.

3. Results and discussions

In this section, we perform multi-resolution simulations by the domain decomposition based SPH method (DD-SPH) 
presented in Section 2. The parameters considered are for liquid water at room temperature with density ρeq = 103 kg m−3, 
dynamic viscosity η = 10−3 kg m−1 s−1, and kinematic viscosity ν = 10−6 m2 s−1. The artificial sound speed is 10–100 times 
the characteristic speed of the flow. To test the DD-SPH method, we consider a transient Couette flow, perturbed waves with 
decaying characteristics, and a two dimensional Wannier flow.
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3.1. Transient Couette flow

We first consider a transient Couette flow, a simple one-dimensional flow, but useful due to the nonlinear velocity 
profiles before steady state. We can rely on analytical solutions to verify closely the coupled simulations. A simulation 
domain is defined with size Lx = Lz = 2.22 × 10−4 m, L y = 10−3 m and two parallel walls are perpendicular to y direction. 
Solid walls in ∂�1 and ∂�2 are modeled by frozen particles and the no-slip boundary condition is preserved between fluid 
and solid [14]. Initially fluid particles are at rest and the velocity of bottom wall is set at v w = 9.54 × 10−5 m s−1. The 
Reynolds number is defined as Re = v w L y/ν = 0.0954; cs = 10v w is taken. Either of the EOS in Eq. (3) can be employed, 
since we evaluate mainly momentum coupling for this problem.

We start with a trivial case of equal resolutions at two sub-domains in order to establish the baseline of coupled simu-
lations. Thereafter, we consider coupling of two resolutions and quantify the numerical error on temporal coupling.

3.1.1. Equal resolutions
Initially particles in �1 ∪∂�1 ∪	1 are placed on a cubic lattice with 
x1 = L y/36 ≈ 2.78 ×10−5 m. Similarly, particles in 

�2 ∪∂�2 ∪	2 are also placed on a cubic lattice with 
x2 = L y/36 ≈ 2.78 ×10−5 m. Therefore, m1 = ρeq
x3
1 = m2 = ρeq
x3

2. 
The cut off radii are taken as rc,1 = 3.6
x1, rc,2 = 3.6
x2 and time steps are 
t1 = 
t2 = 1.38622 × 10−4 s. Without loss of 
generality, we take the hybrid reference line a at ya = L y/2 = 5 × 10−4 m and the overlap region is around a as explained 
in Fig. 2. Communication for updating boundary conditions in 	1 and 	2 takes place at each 
tcomm = 
t2 = 
t1, so that 
transient behavior is traced closely. We first take sufficiently large artificial boundaries, that is, γ1 = rc,1 and γ2 = rc,2. Effects 
of different gap sizes on the velocity profiles are examined, as shown in Fig. 3. Without sufficient gap size, the coupling of 
the two sub-domains is not sufficiently strong and the transient results deteriorate with time, as indicated by Fig. 3(a) and 
Fig. 3(b). In particular, with δgap = 0, a false steady state is achieved. With δgap = rc,2/3.6 = 
x2, the steady state is delayed. 
The effect of the insufficient gap size can be understood better, if we recall the coupling algorithm in Section 2.4. At tcomm , 
the velocity in 	1 is constrained based on velocity in �2 ∪	2 at tcomm and the constrained velocity in 	1 (or portion of 	1) 
is utilized immediately again to constrain the velocity in 	2 at tcomm + 
tcomm . Therefore, the same information is utilized 
recursively without sufficient relaxation, which results in the weak coupling. In contrast, gap size δgap = rc,2 = rc,1 bypasses 
using values in 	1 or 	2 to avoid such ineffective coupling and its result agrees well with the analytical solution [14], as 
shown in Fig. 3(c). The gap condition δgap = max(rc,1, rc,2) proposed in Section 2.3 proves to be a useful guide to closely 
couple the transient dynamics of two simulations.

Furthermore, we emphasize that the thickness of artificial boundary should also be sufficient so that information can be 
effectively propagated towards the interior regions. The effect of different sizes of the artificial boundary is shown in Fig. 4. 
For smaller artificial boundaries, that is, γ1 < rc,1 and γ2 < rc,2, the dynamics of coupled simulation is not captured closely, 
as shown in Figs. 4(a) and 4(b). If the thickness of the artificial boundary is taken as the cut off radius of the sub-domain, 
the result agrees well with the analytical solution, as shown in Fig. 4(c). This is not surprising, as the characteristic length 
of an artificial boundary should be taken sufficiently large (above the cut off radius), resembling the case of a moving solid 
boundary [19].

We note that as long as δgap > 0, γ1 > 0 and γ2 > 0, the steady state solution of coupled simulations is not affected. The 
minimum length scales suggested in the overlap region, however, are crucial to obtain accurately the transient solutions of 
coupled simulations. After examining the length scales of the overlap region for coupling two equal resolutions, next we 
focus on coupling of different resolutions.

3.1.2. Different resolutions
Based on the setup of Section 3.1.1, we increase the resolution in �1 ∪ ∂�1 ∪ 	1 by taking 
x1 = L y/72 while the 

resolution in �2 ∪ ∂�2 ∪ 	2 remains unchanged. Therefore, rc,1 = rc,2/2, 
t1 = 
t2/4 and m1 = m2/8. Communication for 
updating boundary conditions in 	1 and 	2 takes place at each 
tcomm = 
t2, so that the transient behavior is captured 
closely. Following the established minimum length criterion in the overlap region, we take δgap = rc,2, γ1 = rc,1 and γ2 = rc,2. 
Two coupled simulations with hybrid reference line a at either ya = L y/2 = 5 × 10−4 m or ya = L y/4 = 2.5 × 10−4 m
are performed. Results of both simulations agree well with the analytical solution, as shown in Fig. 5. We observe that 
simulation results are not sensitive to the location of the overlap region, which may enclose different slopes of velocity 
profiles.

Compared to the coupled simulation of two equal resolutions in Section 3.1.1, 	1 shrinks due to the decreasing cut off 
radius in sub-domain 1 on the left in Fig. 5. Therefore, the total volume of the overlap region is also reduced. The case 
with ya = L y/4 is particularly interesting, since the high resolution sub-domain is much smaller than that of the case with 
ya = L y/2. Minimizing the high resolution cost is beneficial to resolve complex flow with a small amount of computation 
(see Section 3.3). Therefore, we select the case of ya = L y/4 and investigate in detail the temporal coupling behavior.

We take a snapshot at t = 400
t2 = 1600
t1 = 0.0554 s as an example and demonstrate how 
tcomm affects the results 
qualitatively. It is not surprising that increasing 
tcomm deteriorates the coupled dynamics as shown in Fig. 6, where results 
of 
tcomm ≥ 64
t2 are visually not acceptable at all. To evaluate quantitatively whether results at different 
tcomm are good 
enough, we select three snapshots at early, middle and late development of the flow profile and calculate the relative error 
expressed in the L2 norm. More precisely, we first calculate the velocity differences between SPH particles and analytical 
solutions at the same locations. Thereafter, the L2 norm of the differences is evaluated and normalized by the L2 norm of 
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Fig. 3. Transient Couette flow at two equal resolutions: effect of different δgap on velocity profiles is shown in (a), (b), and (c). m1 = m2, rc,1 = rc,2, γ1 = rc,1, 
γ2 = rc,2, 
tcomm = 
t1 = 
t2. Solid symbol is for sub-domain 1 on the left and empty symbol is for sub-domain 2 on the right. Definitions of variables 
are in the text.

the analytical solutions. The results are shown for t = 0.0208 s, 0.0554 s and 0.1109 s in Fig. 7, where the error in general 
increases as 
tcomm increases. We note that the error calculated is the total error including SPH spatial discretization error, 
time integration error, and the coupling error due to domain-decomposition and its associated constraining interpolations. 
However, the first two errors depend only on SPH parameters and are fixed values. Therefore, the trend in Fig. 7 reflects the 
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Fig. 4. Transient Couette flow at two equal resolutions: effect of artificial interface region on velocity profiles is shown in (a), (b), and (c). m1 = m2, 
rc,1 = rc,2, δgap = rc,2, 
tcomm = 
t1 = 
t2. Solid symbol is for sub-domain 1 on the left and empty symbol is for sub-domain 2 on the right. Definitions of 
variables are in the text. (c) is identical to Fig. 3(c).

effect of the coupling error. It can also be observed that the error in �1 with high resolution (solid symbols) is generally 
smaller than the error in �2 with low resolution (empty symbols). For t = 0.0208 s (t = 150
t2), there is no data at 

tcomm = 256
t2, since t < 
tcomm , �1 and �2 are not coupled for dynamics yet and the error is undefined. Results in 
Fig. 7 also imply: if one accepts error of 0.6% for �1 and 5% for �2, one may use any value of 
tcomm ≤ 8
t2 safely, if 
and only if the error is not accumulated as the coupled simulation proceeds. In fact, the error is a decreasing function of time, as 
shown in Fig. 8. The coupled simulations show noticeable but acceptable errors for 
tcomm ≤ 8
t2. For any 
tcomm , the error 
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Fig. 5. Transient Couette flow at two different resolutions: effect of overlap region at different locations is shown in (a) and (b). m2 = 8m1, rc,2 = 2rc,1, 
γ1 = rc,1, γ2 = rc,2, δgap = rc,2, 
tcomm = 
t2 = 4
t1. Solid symbol is for sub-domain 1 on the left and empty symbol is for sub-domain 2 on the right.

Fig. 6. Transient Couette flow at two different resolutions at t = 0.0554 s: effect of communication time step. m2 = 8m1 and 
t2 = 4
t1. Small symbol is 
for �1 and large symbol is for �2. Values of artificial boundary particles are omitted for clarity.
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Fig. 7. Transient Couette flow at two different resolutions: effect of different communication time steps 
tcomm on the relative error at three simulation 
time instants, corresponding to the early, middle and late development of the velocity profiles. The time steps of two simulations are related as 
t2 = 4
t1. 
Solid symbol is for �1 and empty symbol is for �2. The linear slope is guide for the eye.

Fig. 8. Transient Couette flow at two different resolutions: effect of three communication time steps on the relative error at different simulation time 
instants. Solid symbol is for �1 and empty symbol is for �2. In addition, results of two single resolution SPH simulations are also shown by lines, where 
(m1, 
t1) corresponds to high resolution over the whole domain and (m2, 
t2) corresponds to low resolution over the whole domain.

diminishes as it approaches steady state, as flow physics tends to be steady at sufficiently long time and any discrepancy 
between �1 and �2 is reduced as time proceeds. Finally, for any 
tcomm , an identical and correct steady solution of the 
coupled simulations is achieved at sufficiently long time. It is only that larger 
tcomm delays the convergence to steady 
state. If one knows how to measure the error for a particular transient problem, one may choose 
tcomm adaptively to keep 
the error below a certain threshold efficiently.

We note that the errors in Fig. 8 do not decrease strictly monotonically, as the solution approaches to the steady state. 
There is always a minimal “spike” of the error for each coupled simulation before steady state. However, this spike has 
nothing to do with the coupling algorithm and is also present for the single resolution SPH simulations, as shown by lines 
in Fig. 8. The spike is tightly associated with the particular SPH formulation adopted, which carries an inherent mechanism 
for regularizing particle configurations and therefore discretization errors [15]. DD-SPH simulations only shift the time 
instant of the minimal spike of error. Other SPH formulations (e.g., Ref. [8]) may be adopted to avoid the error spike.

The original domain decomposition method is based on the classical Schwartz alternating relaxation of an iterative solver 
and it was developed for a steady state problem. Solutions of the two sub-domains become consistent to each other after 
a sufficiently long pseudo-time of alternating procedure. We adopt a similar idea on a transient flow problem without any 
pseudo-time relaxation, since the SPH method should be understood as a direct solver in this context. At every tcomm of the 
coupled simulation, we assume that �1 is at quasi-steady state. With known external and artificial boundary conditions, �1
is solved by the SPH method with one real time step 
t1. The same arguments apply to �2, which is solved with one real 
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Fig. 9. Schematic of coupling in one periodic direction. Periodic boundaries are applied in all directions and the coupling between sub-domains is performed 
twice in y direction. The first overlap region is around hybrid reference line a and the second overlap region is around hybrid reference line a′ . The 
associated artificial boundaries are 	1, 	2 for a and 	′

1, 	′
2 for a′ , respectively, as explained in Fig. 2.

time step 
t2. The assumption of quasi-steady state at each time instant of the coupling enables us to simulate transient 
problems.

During the communication time interval [tcomm, tcomm +
tcomm), the constraints on 	1 and 	2 are constant values taken 
at tcomm , therefore they always lag behind the transient dynamics for a few time steps. It is possible to linearly extrapolate 
the time-dependent constrains during the 
tcomm for this simple Couette flow. However, this extrapolation would not apply 
to a more general flow problem, e.g., an oscillatory shear flow. Therefore, we prefer the constant constrains during 
tcomm
and select 
tcomm = 
t2 for the minimal error of latency.

So far we have evaluated only momentum coupling for a non-equilibrium, accelerating flow problem. In the next sec-
tion, we consider another two non-equilibrium decaying flow problems, where the correctness of the coupled simulation 
does not depend on external walls but solely on the coupling algorithm. In the second decaying problem, we also verify 
density/pressure coupling against the analytical solution.

3.2. Perturbation wave of a bulk fluid

An initial perturbation wave proves to be a useful means to verify numerical schemes [17,20], since the transient solu-
tions at low Reynolds number and low Mach number can be obtained by solving the linearized hydrodynamic equations in 
Fourier space. This type of non-equilibrium problem is different from the previous Couette flow in the sense that it has a 
decaying characteristic without new kinetic energy being injected into the system, therefore the simulation result depends 
solely on the coupling algorithm employed in the overlap region.

Since the external boundary conditions are periodic, we need to couple two sub-domains twice in one periodic direction, 
as illustrated in Fig. 9. Two hybrid interface reference lines are taken at ya = 2L y/3 and ya′ = L y/3. The wave vector k is 
taken along the y-direction, which is perpendicular to the hybrid reference lines, namely, k = (0, k, 0). We consider both 
transversal and parallel waves, the velocity of which is either perpendicular or parallel to the wave vector. The former 
verifies the momentum coupling while the latter verifies the density coupling and pressure across the overlap region. 
The simulation domain has size Lx = Lz = 2.22 × 10−4 m and L y = 2.0 × 10−3 m. We focus on one periodic wave with 
k = 2π/L y , as resolving an even smaller wave length is just a matter of higher resolution.

3.2.1. Transversal wave
The fluid domain is perturbed with an initial velocity vx(t = 0) = v0 sin(ky). Velocities in the other two directions are 

unperturbed as v y(t = 0) = vz(t = 0) = 0. To maintain validity of the analytical solution, v0 = 9.54 × 10−5 m s−1 is selected 
so that Reynolds number Re = v0L y/ν = 0.181. The sound speed cs = 9.54 × 10−3 m s−1 is taken so that Mach number 
Ma = v0/cs = 0.01 is also small. The analytical solution is [20]:

vx(t) = v0 sin(ky)exp(−νk2t) (25a)

v y(t) = vz(t) = 0, (25b)

where vx is an exponentially decaying function of the product of kinematic viscosity, wave number squared and time. The 
velocity in the other two directions remains unchanged with time. We start with a trivial DD-SPH simulation, where reso-
lutions of two sub-domains are equal, that is, 
x1 = 
x2 = L y/72, rc,1 = rc,2 = L y/20, and 
t1 = 
t2 = 1.38622 × 10−4 s. 
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Fig. 10. Transversal wave: transient velocity profiles for two coupled simulations are shown in (a) and (b). ρconstr
k = ml

∑
l Wkl and (FC

k · ey ) conditional. 
Particle k ∈ 	1, 	2, 	′

1, or 	′
2. Solid symbol is for the middle sub-domain and empty symbol is for the side sub-domain.

Communication for updating the artificial boundary conditions in 	1 (or 	′
1) and 	2 (or 	′

2) takes place at each 
tcomm =

t1 = 
t2, so that the transient behavior is tracked closely. The result of DD-SPH simulation with equal resolutions agrees 
very well with the time-dependent analytical solution, as shown in Fig. 10(a), and is almost identical to a single SPH simu-
lation with the same resolution (results not shown). The result implies that as long as numerical resolution is sufficient to 
resolve the wave length, the coupling algorithm in DD-SPH method does not compromise any physics.

Furthermore, we increase the resolution in �1 ∪ 	1 ∪ 	′
1 by taking 
x1 = L y/144 while the resolution in �2 ∪ 	2 ∪ 	′

2
remains unchanged. Therefore, m1 = m2/8, rc,1 = rc,2/2, and 
t1 = 
t2/4. Communication for updating boundary conditions 
in 	1 (or 	′

1) and 	2 (or 	′
2) takes place at each 
tcomm = 
t2. The result of DD-SPH simulation with different resolutions, 

as shown in Fig. 10(b), still matches very well the analytical solution, which proves that accurate momentum coupling is 
obtained for this type of non-equilibrium problem with a decaying characteristic.

We note that for the transversal wave, different combinations of density correction or constraint and conservative force 
correction in 	1 (or 	′

1) and 	2 (or 	′
2) do not affect the velocity profiles significantly, since only the momentum coupling 

in Eqs. (15) and (16) matters. Therefore, we only show results of the constrained density (Section 2.5) together with the 
corrected conservative force by the conditional rule (Section 2.6) in the artificial boundaries.

3.2.2. Parallel wave
We further consider a velocity perturbation applied parallel to the wave vector and perpendicular to the hybrid interface, 

that is, v y(t = 0) = v0 sin(ky) while the other two directions remain unperturbed with vx(t = 0) = vz(t = 0) = 0. All other 
parameters of the parallel wave are identical as in the case of the transversal wave. The analytical solution reads [20]:

ρ(t) = ρeq

[
1 − Ma cos(ky) sin(cskt)exp(−2νk2t/3)

]
. (26)

The overall magnitude of the oscillation is bounded by Mach number Ma and decays exponentially with time. Since the 
velocity travels along the wave vector (y direction), initially the fluid is compressed in one half of the domain (L y/4 < y <
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Fig. 11. Parallel wave: transient density profiles at two equal resolutions with the equilibrium density at the artificial boundaries are shown in (a) and (b). 
m1 = m2, 
t1 = 
t2 and EOS with Eq. (3b). Density is set to be the equilibrium value at the artificial boundaries. In (a), the conservative force is set to the 
equilibrium value in the normal direction. In (b), the conservative force is corrected by the conditional rule in the normal direction. Particle k ∈ 	1, 	2, 	′

1, 
or 	′

2. Solid symbol is for the middle sub-domain and empty symbol is for the side sub-domain.

3L y/4) and is stretched in the other half of the domain (y < L y/4 and y > 3L y/4). Compression and elongation of the fluid 
alternate as velocity evolves with time. Therefore, we can adopt this problem to investigate the dynamic change of density 
in a DD-SPH simulation. At first, we consider a trivial case, where the resolutions of two sub-domains are equal, that is, 

x1 = 
x2 = L y/72, rc,1 = rc,2 = L y/20, and 
t1 = 
t2 = 1.38622 × 10−4 s. Communication for updating artificial boundary 
conditions in 	1 (or 	′

1) and 	2 (or 	′
2) takes place at each 
tcomm = 
t1 = 
t2. If the density in the artificial boundaries 

are set to the equilibrium value, the coupling of density fields in two sub-domains is completely ignored. Therefore, it is 
not surprising that the density profile deteriorates from the artificial boundary towards the interior of the sub-domain as 
simulation time proceeds, as shown in Fig. 11. Any correction on the conservative force calculation in the artificial boundary 
does not help, as the correction is again not based on the dynamics of the other sub-domain. For example, applying either 
an equilibrium conservative force or a conditional conservative force in the normal direction in the artificial boundaries does 
not improve the results, as shown in Figs. 11(a) and 11(b).

Alternatively, we apply Eqs. (17) and (18) to constrain the density dynamically in the artificial boundaries of one simula-
tion based on the information of the other simulation. Intuitively, this operation makes sense since the dynamics of density 
in one simulation is reflected and propagated in the other simulation. Together with the density constraint, we assume that 
the normal component of the conservative force in the artificial boundaries vanishes as in the equilibrium. Results shown 
in Fig. 12(a), indicate a significant improvement over the previous choices in Fig. 11. It can be observed that the dynamics 
of the density is indeed coupled and it propagates gracefully across the overlap region, even after the alternating period 
between the fluid compression (high density) and elongation (low density). Since the pressure is determined by the EOS, the 
effective coupling of the density field also means that the pressure wave propagates across the two simulations naturally. 
There is a slight mismatch, however, as indicated by arrows in Fig. 12(a), in the gap region between artificial boundaries. 



148 X. Bian et al. / Journal of Computational Physics 297 (2015) 132–155
Fig. 12. Parallel wave: transient density profiles at two equal resolutions with the constrained density at the artificial boundaries are shown in (a) and (b). 
m1 = m2, 
t1 = 
t2 and EOS with Eq. (3b). Density is constrained at artificial boundaries based on information of the other sub-domain. In (a), the 
conservative force is set to the equilibrium value in the normal direction. In (b), the conservative force is corrected by the conditional rule in the normal 
direction. Particle k ∈ 	1, 	2, 	′

1, or 	′
2. Solid symbol is for the middle sub-domain and empty symbol is for the side sub-domain.

This small inconsistency results from constraining both velocity and density at the same time in the artificial boundaries. 
More precisely, the velocity constraint on particles in 	1 determines their trajectories. The SPH calculation of density in 
	1 and its neighborhood would yield slightly different density field from the one obtained from the constrained density. In 
other words, the density constraint is a bit too strong, causing the discrepancy between the constrained value and the actual 
particle configuration in 	1. The same argument applies to particles in 	2, 	′

1, and 	′
2. It is expected that the discrepancy 

would be amplified in longer time.
As mentioned in Section 2.6, one of the features about the conditional conservative force at the artificial boundary is to 

regularize the particle configuration according to the density. Hence, the previous minor inconsistency can be completely 
removed, if we apply the conditional rule to correct the calculation of conservative force in the artificial boundaries, as 
shown in Fig. 12(b).

After establishing the baseline for coupling equal resolutions, we further consider a DD-SPH simulation with different 
resolutions by increasing the resolution in �1 ∪ 	1 ∪ 	′

1 to be 
x1 = L y/144. The resolution in �2 ∪ 	2 ∪ 	′
2 remains 

unchanged. Therefore, m1 = m2/8, rc,1 = rc,2/2, and 
t1 = 
t2/4. Communication for updating boundary conditions in 	1
(or 	′

1) and 	2 (or 	′
2) takes place at each 
tcomm = 
t2. Results are shown in Fig. 13, where density fields are matched 

accurately between the two simulations with different resolutions. A slightly larger value of density inside 	2 and 	′
2

is observed, which is different from the discrepancy resulted from density over-constraining mentioned above. The small 
deviation of density inside 	2 and 	′

2 in Fig. 13 is due to the bias in the SPH interpolation for density on non-random 
locations. This is a well known artifact of the SPH interpolation and can be corrected empirically [16]. Other higher order 
Lagrangian interpolations, such as the moving least squares method, may avoid such a bias in the interpolation.



X. Bian et al. / Journal of Computational Physics 297 (2015) 132–155 149
Fig. 13. Parallel wave: transient density profiles at two resolutions with the constrained density and the conditional conservative force applied in the 
artificial boundaries. m2/m1 = 8; 
t2/
t1 = 4. EOS with Eq. (3b). Solid symbol is for the middle sub-domain and empty symbol is for the side sub-domain.

Fig. 14. Parallel wave: effect of equation of state (EOS) on the transient density profiles. The linear EOS in Eq. (3a) is applied. The constrained density 
and the conditional conservative force are applied at the artificial boundaries. m1 = m2, 
t1 = 
t2. Solid symbol is for the middle sub-domain and empty 
symbol is for the side sub-domain.

Finally, we note that the linear EOS in Eq. (3a), which has been widely used in simulations of steady state flows, e.g., 
Ref. [14], is not proper to study the transient behavior of the density dynamics from the parallel wave perturbation, as 
shown in Fig. 14. The erroneous result is due to its non-stiffness, which causes the pressure not to respond correctly to any 
dynamic change of the density.

Until now, we have considered only one-dimensional flow problems. Even though in the simulation of the parallel wave 
perturbation the particle momentum is in the normal direction to the hybrid interface, no particle deletion and insertion 
operations were actually needed for the short time behavior. In the next section, we will consider a two dimensional flow 
problem, where mass and momentum fluxes are significant across the hybrid interface, and this serves as a testbed to 
validate the asynchronous particle deletion and insertion operations.

3.3. Wannier-type flow

In this section, we consider the so-called Wannier flow [21], where a cylinder rotates next to a moving wall. We run 
an SPH simulation with single high resolution and take its result as the “true” solution. As long as results of DD-SPH 
simulations agree with the reference simulation, we will consider the coupling algorithm of DD-SPH method validated.

The schematic of Wannier flow and its corresponding domain decomposition are shown in Fig. 15. The cylinder has 
radius R = 10−3 m and the domain size is Lx = L y = 20R . The cylinder center is located at xR = Lx/2 and yR = 2R . The 
cylinder rotates counter-clockwise at a constant speed of ω = 9.46 × 10−2 s−1 and the bottom wall moves to the right 
with a constant speed of v w = ωR . The top wall stays still, and periodic boundary conditions are applied along x-direction. 
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Fig. 15. Schematic of the Wannier flow and its domain-decomposition. Sub-domain 1 is the upper part and sub-domain 2 is the lower part. The overlap 
region is around the hybrid reference line a, as explained in Fig. 2, in the middle. Three vertical lines at xo = Lx/2, xp = Lx/4 and xq = 3Lx/4 are considered 
as representative locations, where velocity profiles will be evaluated.

Fig. 16. Streamlines and velocity field of Wannier flow by a single resolution SPH simulation. The cylinder has radius R and rotates counter-clockwise with 
speed ω. Box size is Lx = L y = 20R and bottom wall moves with speed ωR to the right. Reynolds number Re = ωR2/ν = 0.0946. Color indicates velocity 
magnitude (v2

x + v2
y)1/2 normalized by ωR .

The artificial sound speed is taken as cs = 20ωR = 1.892 × 10−3 m s−1 and the EOS is taken as Eq. (3b). Therefore, the 
non-dimensional numbers are Re = ωR2/ν = 0.0946 and Ma = ωR/cs = 0.05.

For a single resolution simulation, based on previous experience we need 10 particles along the cylinder radius direction 
and 10 particles spanning the gap region between cylinder and the wall to have a well resolved fluid flow [22]. Therefore, 
SPH particles are initially placed on a square lattice with spacing 
x1 = R/10 = 10−4 m, and particle mass m1 = 10−5 kg
for density ρ = 103 kg m−2; the cut off radius rc,1 = 4.4
x1 and time step 
t1 = 2.642 × 10−3 s. The thickness of the walls 
is taken as the cut off radius. No-slip boundary condition is applied between fluid and solid [14,22]. The total number of 
particles for fluid, cylinder and walls is N1 = 41 504. We ran the simulation for 106 time steps to ensure that the particle 
configuration becomes disordered and a steady state is achieved. The velocities of particles are averaged in each Eulerian 
bin of square size 
x2

1 over the last 400 steps. Streamlines drawn according to the bin-averaged velocity field are shown in 
Fig. 16, which are taken as the reference and will be compared with DD-SPH simulations later on. As Reynolds number is 
small but above zero, the overall profiles are slightly asymmetric in the x direction.

In the upper part of the domain away from the cylinder, no high resolution is actually needed for the fluid flow, therefore 
it makes sense to reduce the resolution in the region to save computational cost. In the following, we perform DD-SPH 
simulations by retaining high resolution in the lower sub-domain (with m1 and 
t1) and decreasing resolution in the upper 
sub-domain (with m2 and 
t2). Indeed we have simulated a trivial case with m1 = m2, 
t1 = 
t2 and a low resolution-ratio 
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case with m2 = 4m1, 
t2 = 4
t1, but we only show results for a more aggressive and interesting case with m2 = 16m1, 

t2 = 16
t1.

3.3.1. Hybrid reference line a at ya = L y/2 = 10R
We start with the hybrid reference line a at ya = L y/2 = 10R and build up the overlap region around ya as explained 

in Fig. 2. Therefore, the lower and upper boundaries of the overlap region are at y = 7.2R and y = 11.4R , respectively. 
In the upper sub-domain, we reduce the particle resolution four times in both directions, that is, particles are initially 
placed on a square lattice with equal spacing of 
x2 = 4
x1. Therefore, rc,2 = 4rc,1, m2 = 16m1 and 
t2 = 16
t1. The total 
number of particles in the lower sub-domain is reduced to N1 = 23 704 and the total number of particles in the upper 
sub-domain is N2 = 1850. The communication time step is taken as 
tcomm = 
t2, and the coupled simulation runs for 
t = 1.12 × 106
t1 = 7 × 104
t2. The procedure of particle deletion and insertion is performed as described in Section 2.7. 
More precisely, particles are removed once they leave the artificial boundaries towards the exterior. Inserting locations of 
new particles are along the exterior edges of the artificial boundaries with equal spacing of 
x1 in the lower sub-domain 
and 
x2 in the upper sub-domain, respectively. The velocities of particles in the lower sub-domain are averaged in each 
Eulerian bin of square size 
x2

1 over its last 400 steps, while the velocities of particles in the upper sub-domain are averaged 
in each Eulerian bin of square size 
x2

2 over its last 25 steps. Velocity contours according to the bin-averaged velocity field 
are shown in Figs. 17(a) and 17(b). Velocity contours (both vx and v y) in the lower sub-domain from DD-SPH simulation 
compare very well with the reference simulation. In contrast, velocity contours (especially vx) in the upper sub-domain from 
DD-SPH simulation deviate apparently from the reference simulation. The discrepancy is more significant in the left overlap 
region than in the other regions. Recall the streamlines of the flow, as shown in Fig. 16, the larger deviation takes place at 
the inflow region of the upper sub-domain. Therefore, it is reasonable to suspect that the particle insertion algorithm with 
the regular inserting spacing is not accurate and introduces a bias for the flow field. Based on this speculation, we refine the 
inserting locations of new particles at equal spacing of 
x1/2 and 
x2/2 for the lower and upper sub-domains, respectively. 
Results with refined inserting locations are shown in Figs. 17(c) and 17(d), which represent a significant improvement over 
the insertion with regular spacings.

3.3.2. Hybrid reference line a at ya = 8R and 7R
We further move the hybrid reference line a down to be at ya = 8R and ya = 7R and keep the resolution ratio of two 

sub-domains fixed, that is, m2/m1 = 16 and 
t2/
t1 = 16, and perform DD-SPH simulations again. Therefore, for the former 
case with ya = 8R , the overlap region is between y = 5.2R and y = 9.4R and the total particle numbers are N1 = 19 704
and N2 = 2100 in the lower and upper sub-domains, respectively. For the latter case with ya = 7R , the overlap region is 
between y = 4.2R and y = 8.4R and the total particle numbers are N1 = 17 704 and N2 = 2250 in the lower and upper 
sub-domains, respectively. Particle inserting locations are with equal spacing 
x1/2 for the lower sub-domain and 
x2/2
for the upper sub-domain. Velocity profiles of all DD-SPH simulations including the case of ya = 10R are shown in Fig. 18, 
where the focus is along the three representative vertical lines as illustrated in Fig. 15. Values in the artificial boundaries 
are removed for clarity and results of two sub-domains are pieced together at the hybrid reference line a. Data on the right 
in �2 are sparse due to its low resolution. We observe that results of DD-SPH simulations for ya = 10R match closely the 
velocity profiles of the reference simulation. Only a small deviation is observed for the cases of ya = 8R and 7R in the 
overlap region along line q, where the overlap region already crosses the vortex above the cylinder.

4. Summary

We present a methodology on concurrent coupling of state variables and fluxes of two resolutions of the smoothed 
particle hydrodynamics (SPH) method. In particular, we decompose a simulation domain into two overlapping sub-domains 
via the domain decomposition (DD) method. The overlap region consists of two artificial boundary regions and a gap region 
between them. As the artificial boundary of one sub-domain is embedded in the other sub-domain, constraints are imposed 
on the density and momentum by Lagrangian interpolation based on information of the other simulation. A conditional rule 
is applied at the artificial boundaries to correct the conservative force calculation without spherical support and to relax 
the particle configuration towards the constrained density. Particles are removed once they leave their sub-domain and new 
particles are inserted at locations with sufficient inward momentum flux accumulated (over a few time steps), as guided 
by the other simulation. Any newly inserted particle has the corresponding particle mass in the sub-domain and carries 
the local flow velocity provided by the other simulation. To this end, the global problem is essentially equivalent to two 
smaller problems in the two sub-domains, yet on each sub-domain we have the flexibility to select a proper resolution in 
both space and time according to the local flow physics.

We first validated the new coupling method for a transient Couette flow. Based on the analytical solutions, we were able 
to establish the minimum length scales around the overlap region so that an appropriate thickness of the overlap region 
enables effective coupling for the transient problem. The overlap region may still be further reduced for a steady problem. 
From the study on temporal coupling with communication step 
tcomm , we observed that if the tolerance on numerical 
error is not so stringent, we may select 
tcomm ≥ 
t2 ≥ 
t1 for a transient problem, where 
t1 and 
t2 are time steps 
for the fine and coarse SPH simulations, respectively. For a steady problem, although any value of 
tcomm ≥ 
t2 would not 
affect the error level, a larger 
tcomm seems to slow down the convergence to steady state.
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Fig. 17. Velocity contours of Wannier flow by a domain decomposition based SPH (DD-SPH) method with m2/m1 = 16, 
t2/
t1 = 16 and hybrid refer-
ence line at L y/2. Velocity contours of a single high resolution SPH simulation are presented in different colors bordered by solid lines. The rectangular 
region marked by dashed lines in the middle indicates the overlap region and the horizontal solid line indicates the hybrid reference line. In the DD-SPH 
simulation, results of sub-domain 1 are below the hybrid reference line (light dash lines) and results of sub-domain 2 are above the hybrid reference line 
(light dash–dot lines). In (a) and (b), particle insertion locations are at regular spacing of 
x1 and 
x2 for sub-domain 1 and 2, respectively. In (c) and (d), 
particle insertion locations are at refined spacing of 
x1/2 and 
x2/2 for sub-domain 1 and 2, respectively. Length is normalized by cylinder radius R and 
velocity is normalized by its rotating speed ωR .

Subsequently, we simulated another type of non-equilibrium problems, where a perturbation wave travels either parallel 
or perpendicular to the hybrid interface. This type of problem is different from the Couette flow, as there is no external 
boundary injecting kinetic energy and the wave has a decaying nature. As a consequence, the validity of DD-SPH simulation 
is completely determined by the correctness of artificial boundary conditions in the overlap region. We showed that the 
magnitude of momentum and density in the overlap region from the two simulations is equal and the overall numerical 
solution agrees well with the analytical solution. We further noted that compressibility at short time scale is important and 
hence we coupled the density fields of the two sub-domains.

Finally, we studied the so-called Wannier flow. In the lower region near the cylinder and its adjacent wall, a high 
particle number density is required to resolve the lubrication gap. To save computational cost, we replaced a single high 
resolution simulation in the global domain with two smaller simulations in two sub-domains. In particular, we employed 
high resolution in sub-domain 1 around the cylinder and low resolution in sub-domain 2 away from the cylinder. For the 
highest mass ratio of two types of particles, we had m2/m1 = 16 and the corresponding time step ratio was 
t2/
t1 = 16. 
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Fig. 18. Velocity profiles at representative lines of Wannier flow. DD stands for domain decomposition based SPH simulations with m2/m1 = 16 and 

t2/
t1 = 16. Hybrid reference line a is at ya = 10R , 8R or 7R , as indicated by vertical lines.

Hence, we had approximately a computational speed-up of 162 = 256 for the simulation in the sub-domain 2 for a small 
additional cost of communication at the artificial boundaries. A further higher mass and time step ratio, and therefore 
more computational savings would be possible, if the sub-domain 2 was larger. The amount of the additional cost on 
communication depends strongly on how smart the data structure, distribution of work, and communication pattern are 
selected in the implementation [23]. For example, the low resolution sub-domain may run on one processor while high 
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Fig. 19. Flow chart of the algorithm and its corresponding routines in LAMMPS: routines for parallelization are omitted for clarity.

resolution sub-domain may run on four processors, where communication takes places between processor 1 and processors 
2–5, in addition to the internal communication within processors 2–5.

The proposed coupling methodology has strict mass conservation in each sub-domain in the case of an incompressible 
flow simulation, such as the Wannier flow, since any removed particle is inserted back immediately at the location which 
has the maximum inward momentum flux accumulated (over a few time steps). The momentum conservation is violated 
locally by the asymmetric calculation of conservative force at artificial boundaries while it is preserved in the rest of the 
fluid region. However, the results at/near the artificial boundaries are sacrificial and the global result consists of results in the 
two sub-domains glued together at the hybrid reference line. Therefore, a DD-SPH simulation preserves momentum conservation 
as a single resolution SPH simulation does.

The proposed coupling methodology avoids intentionally SPH force interactions between two types of particles. Instead, 
we choose to match the state variables, e.g., velocity and density, in the overlap region with hybrid description. This choice 
is a key ingredient of the DD-SPH simulations, as this allows for 
t2 > 
t1. Furthermore, state variable coupling does not 
depend on the specifics of the particle method, hence it can be extended in coupling other mesoscopic and microscopic 
particle methods, such as dissipative particle dynamics (DPD) and molecular dynamics (MD).

In future work, we would address the issues of moving non-planar interfaces, coupling of more adjacent sub-domains, 
and also coupling of stochastic–deterministic descriptions.
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Appendix A. Flowchart for the coupling algorithm within LAMMPS code

We provide a flow chart, as shown in Fig. 19, for the multi-resolution simulation of SPH via the domain decomposition. In 
particular, we implemented the particle algorithms and multi-domain coupling within LAMMPS, which is a very popular and 
fast open source code for particle methods [24]. We show the process flow of one time step of a velocity Verlet integration 
so that any potential user may implement the coupling algorithm presented. Note that parallelization based on message 
passing interface is omitted for clarity and readers are referred to the manual of LAMMPS online (http://lammps.sandia.gov) 
for further technical details.
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