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ABSTRACT
Interfacing atomistic-based with continuum-based simula-
tion codes is now required in many multiscale physical and
biological systems. We present the computational advances
that have enabled the first multiscale simulation on 131,072
processors by coupling a high-order (spectral element) Navier-
Stokes solver with a stochastic (coarse-grained) Molecular
Dynamics solver based on Dissipative Particle Dynamics
(DPD). The key contributions are proper interface condi-
tions for overlapped domains, topology-aware communica-
tion, SIMDization of all basic operations, and multiscale vi-
sualization. We study blood flow in a patient-specific cere-
brovasculature with a brain aneurysm, and analyze the in-
teraction of blood cells with the arterial walls that lead to
thrombus formation and eventual aneurysm rupture. The
macro-scale dynamics (about 3 billion unknowns) are re-
solved by N εκT αr - a multi-level parallel spectral element
solver – while the micro-scale flow and cell dynamics within
the aneurysm are resolved by an in-house version of DPD-
LAMMPS (for an equivalent of about 8 billion molecules).

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and Model-
ing—applications, simulation output analysis; J.2 [Computer
Applications]: Physical Science and Engineering—physics;
J.3 [Computer Applications]: Physical Science and En-
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1. INTRODUCTION
Seamless integration of heterogeneous computer codes that

implement discretizations of partial differential equations
(PDEs) with codes that implement atomistic-level descrip-
tions is key to the successful realization of parallel multiscale
modeling of realistic physical and biological systems. Such
multiscale modeling is crucial in many disciplines, e.g. to
tune the properties of smart materials, to probe the func-
tion of living cells and organisms, and to predict the dynam-
ics and interactions of rarefied plasmas with dense plasmas
[3]. In addition to computational developments, fundamen-
tal new advances in algorithms are required to provide the
proper mathematical interface conditions between atomistic
and continuum systems that accurately capture the physics
of the problem and provide numerical accuracy, stability
and efficiency. Moreover, post- or co-processing the results
of multiscale simulations requires new quantitative visual-
ization tools that can handle simultaneously both particle-
based as well as continuum-based parallel simulation data.
We present here new developments on all three fronts – par-
allel computing, mathematical algorithms, and visualization
tools – that enabled us to perform the first parallel multi-
scale realistic simulation of blood flow in a brain of a patient
with an aneurysm.

Cerebral aneurysms occur in up to 5% of the general pop-
ulation, leading to strokes for over 40,000 Americans each
year. Currently, there are no quantitative tools to predict
the rupture of aneurysms and no consensus exists among
medical doctors when exactly to operate on patients with
cerebral aneurysms. Aneurysm treatment involves invasive



techniques such as coil insertion or clipping [25] that reduce
the local flow circulation, leading to flow stagnation and
thrombus (blood clot) formation. The body uses platelets –
the smallest of blood cells (2 to 3 microns in size) – as well as
proteins (tens of nanometers in size) such as fibrin to form
a clot. Hence, realistic simulation of such processes must
be based on resolving the macro (centimeter) scale as well
as the micro (submicron) scale flow features, and also the
interaction of blood cells with the endothelial cells forming
the inner layer of the arterial wall. Such complex process is
clearly multiscale in nature and consequently requires dif-
ferent mathematical models appropriate for each scale.

Figure 1: Blood flow in the brain is a multiscale
problem. Shown on the left is the macrodomain
where the Navier-Stokes equations are solved; dif-
ferent colors correspond to different computational
patches. Shown in the inset (right) is the mi-
crodomain where dissipative particle dynamics is ap-
plied. Of interest in the present paper is the depo-
sition of platelets to the aneurysmal wall.

Interactions of blood flow in the human brain occur be-
tween different scales, determined by flow features in the
large arteries (diameter of 0.5 mm or larger), the smaller
arteries and arterioles (500 µm to 10 µm), and the capillar-
ies (mean diameter of 5 µm) all being coupled to cellular
and sub-cellular biological processes. While there have been
many biomechanical studies of individual arteries in the last
decade, blood flow in the cerebrovasculature has not received
the attention that it deserves. In particular, previous work
on aneurysms [33] has focused exclusively on the macroscale
features in relatively small domains. A high resolution sim-
ulation of a larger patient-specific geometry in [7] revealed
a blood flow instability that can develop in patients with
wide-neck or multiple aneuryms that causes audible sounds
in the brain. However, the present simulation is the first
of its kind to include the largest ever 3D cerebrovascula-
ture (essentially all of the arteries that can be reconstructed
from an MRI) and at the same time model microrheological
mechanisms inside the aneurysm (see Figure 1). The work
presented by Rahimian et al. [29] that received a Gordon
Bell award for best performance involved simulation of blood
flow using only a continuum-based Stokes solver. While this
was indeed an impressive simulation with novel discretiza-
tion and flexible red blood cells, it was neither multiscale nor

physiologically accurate as no arteries were included in the
simulation to avoid the presence of arterial walls in favor of
computational convenience. Another impressive simulation
by [6] addressed a similar problem but using a single code
only based on the Lattice Boltzmann method. Although a
patient-specific geometry was used for coronary arteries in
the heart, the red blood cells (RBCs) were modeled as rigid
ellipsoids leading to erroneous RBC aggregation.

Our approach is significantly different in that we use two
heterogeneous codes (continuum and atomistic) with both
codes extensively validated, a patient-specific cerebrovascu-
lature consisting of more than 50 three-dimensional brain ar-
teries, and we develop new multilevel decomposition strate-
gies along with truly multiscale visualization tools to ana-
lyze general biological (or physical) systems. Specifically,
we use MRI data to reconstruct the cerebral vasculature of
a patient with an aneurysm. The reconstructed arterial tree
starts from the neck (internal carotid and vertebral arteries),
includes the Circle of Willis (CoW) with anterial and pos-
terial communicating arteries, middle cerebral, ophthalmic
arteries and also a number of smaller branches as shown in
Figure 1.

1.1 Overview of our multiscale simulation
By incorporating clinical data at the inlet of the two carotid

and vertebral arteries and patient-specific outflow bound-
ary conditions we complete the computational macroscale
domain. To model the macroscale dynamics we employ
N εκT αr - a spectral element based parallel code with
more than 90% parallel efficiency on 122,800 cores of an
IBM Blue Gene/P [1] (BG/P) supercomputer. To achieve
this high parallel efficiency for N εκT αr, which requires the
solution of linear systems with several billion unknowns, we
have developed a multi-level approach, where the computa-
tional domain is divided into smaller overlapped subdomains
(patches) coupled through proper mathematical boundary
conditions. This approach preserves the high-order accuracy
of SEM while it avoids solution of a huge monolithic linear
system [13]. To resolve the microrheology of the aneurysms
and hence shed light in the process of thrombus formation
that may be responsible for the rupture of aneurysms [21],
we employ atomistic simulations inside the aneurysmal cav-
ity using dissipative particle dynamics (DPD) – a coarse-
grained version of molecular dynamics [22]. The micro-
domain of 3.93mm3 is located next to the arterial wall of
the aneurysm. In this micro-domain we resolve the dis-
crete blood cells (e.g. platelets and red blood cells) down
to the protein-level [9]. We have implemented our specific
version of DPD using the Sandia code LAMMPS [4], which
also leads to more than 90% parallel efficiency on 131,072
BG/P cores. Biomechanical and rheological predictions by
this DPD-LAMMPS code have been validated extensively,
e.g. in [11, 28] where comparisons of healthy and malaria-
infected blood have been performed against optical tweezers
and microfluidic experiments.

Coupling of the micro-domain to macrodomain is accom-
plished based on the triple-decker algorithm, first presented
in [12] for steady flows. The triple-decker algorithm couples
three layers of molecular dynamics (MD), DPD, and Navier-
Stokes (NS) equations; DPD forms the middle layer between
MD and NS. Here we extend the method to DPD-NS only
and to unsteady pulsatile flows to represent accurately the
measured flowrate waveform. Specifically, we employ a DPD



domain that overlaps with the NS domain, with the coupling
accomplished by communicating state information at the
subdomain boundaries. This involves the use of body forces,
i.e., a boundary pressure force in order to minimize near-
boundary density fluctuations, and an adaptive shear force
that enforces the tangential velocity component of boundary
conditions. Correspondingly, on the software side we have
developed: i) A multilevel communicating interface (MCI)
that enforces a hierarchical decomposition of the default
“World” communicator and allows seamless communication
between the coupled solvers; MCI employs five layers of sub-
communicators to handle data- and task-parallelism. ii) A
topology- and message size-aware point-to-point message ex-
change library extensively used for point-to-point communi-
cation by the conjugate gradient solver. iii) A suite of lin-
ear vector algebra routines to employ SIMDization by using
XLC intrinsic language on Blue Gene or “#pragma” direc-
tives on CRAY XT5.

1.2 Overview of multiscale visualization and
analysis

Processing of unsteady data of heterogeneous codes is an-
other great challenge that we have to overcome in large-scale
multiscale simulations. To make the data exploration pro-
cess more efficient we have developed a custom ParaView
reader plug-in, which loads data in N εκT αr’s native for-
mat and pushes it into the ParaView pipeline, without the
need to write intermediate data to disk. Users can interac-
tively explore multiple patches of time varying data. In addi-
tion, it is possible to simultaneously visualize the LAMMPS
atomistic data from the coupled simulations, showing both
the large-scale flow patterns and the detailed particle behav-
ior. We have also developed a new technique for analysis of
velocity fields from atomistic simulations, e.g. molecular
dynamics, dissipative particle dynamics, etc. It is an adap-
tive proper orthogonal decomposition based on time win-
dows (WPOD). The method effectively separates the field
into an ensemble average and fluctuation components, and
can be applied to both stationary and non-stationary flows
in simple and complex geometries. It is efficient and its
superior accuracy leads to smooth field gradients that can
be used effectively in multiscale formulations. The WPOD
method is implemented as a co-processing tool which mini-
mizes significantly the IO requirements.

In the following in section 2 we present the computa-
tional algorithms, communication strategy, multiscale visu-
alization and analysis, and optimization. This is followed
by performance results in section 3 along with multiscale
biophysical results.

2. COMPUTATIONAL ALGORITHMS
Our multiscale coupled solver is based on the coupling of

several parallel codes. Each code uses different mathemati-
cal model and is effective for flow simulations at certain spa-
tial and temporal scales. The original codes have been mod-
ified such that they can effectively exchange data required to
impose boundary conditions. The solvers share the default
World communicator, while they compute local solutions in
parallel over the derived sub-communicators. Continuity in
the overall solution is achieved by imposing proper interface
conditions. The treatment of interface conditions is opti-
mized to minimize the inter-solver communication, which
leads to effective implementation of the coupled code on

computers with heterogeneous interconnect. The reuse of
existing software allows a nearly non-intrusive approach in
scaling-up the performance and the solver’s capabilities, as
the overall scalability of the coupled code depends almost
exclusively on the performance of its components.

Figure 2: Structure of the coupled multiscale solver.
MCI enables efficient communication between the
integrated parallel codes.

The schematic representation of the coupled solver struc-
ture is given in Figure 2. The three major components of
our coupled solver are:
(1) N εκT αr – a high-order spectral element solver for un-
steady three-dimensional (3D) flow problems [20].
N εκT αr uses a semi-implicit high-order time stepping scheme
providing high temporal resolution while the spectral ele-
ment method (SEM) allows high spatial accuracy and easy
discretization of complex geometry domains with curved bound-
aries. The Helmholtz and Poisson iterative solvers for solu-
tion of the velocity and pressure fields are based on con-
jugate gradient method and scalable low-energy precondi-
tioners [34, 15]. The solver’s convergence is also acceler-
ated by predicting a good initial state [14]. (2) DPD-
LAMMPS – a modified version of LAMMPS with major
enhancements for DPD simulations of non-periodic and wall-
bounded unsteady flows in complex geometries. DPD [18,
17] is a particle-based simulation technique, where each par-
ticle represents a cluster of atoms or molecules rather than
an individual atom. DPD particles interact through pairwise
soft forces and move according to the Newton’s second law of
motion. The main challenge here is in imposing non-periodic
boundary conditions (BCs) for unsteady flows in complex
geometries. The boundary of a DPD domain is discretized
(e.g., triangulated) into sufficiently small elements where lo-
cal BC velocities are set. In general, we impose effective
boundary forces Feff on the particles near boundaries that
represent solid walls and inflow/outflow BCs. Such forces
impose no-slip at solid walls and control the flow velocities
at inflow/outflow [23]. In addition, at inflow/outflow we
insert/delete particles according to local particle flux [23].
The algorithm allows to handle multiple particle species to
enable simulations of various processes such as platelet ag-
gregation. (3) MCI - a multilevel communicating interface
that couples N εκT αr and DPD-LAMMPS.

N εκT αr is employed for solution of flow problems at
the continuum level. DPD-LAMMPS is used for micro-
scale problems, such as simulations of blood plasma, RBCs,
and platelets dynamics. Each solver can be called by the
coupled solver multiple times; for example it is possible to
couple through lightweight interfaces (MCI, requiring neg-
ligible overhead) two or more 3D domains (patches), i.e.,
N εκT αr to N εκT αr coupling, and also to domains where
the solution is obtained using the DPD method.

In the current study the flow at the macro-vascular scale
is computed by N εκT αr. The computational domain ΩC



is subdivided into four overlapping patches as illustrated in
Figure 1; this requires N εκT αr to N εκT αr coupling [13]
at three artificial interfaces. Flow dynamics at the micro-
vascular scale is computed by the atomistic solver DPD-
LAMMPS. The corresponding subdomain ΩA is embedded
into one of the patches of ΩC as illustrated in Figure 1; this
requires N εκT αr to DPD-LAMMPS coupling.

Figure 3: Multilevel Communicating Interface.
MPI COMM WORLD is subdivided according to
the computer topology to form three non-
overlapping process sub-groups (Level 2 sub-
communicators, L2). The L2 groups are sub-
divided using task-oriented splitting and four non-
overlapping groups (Level 3 sub-communicators, L3)
are created. Cells represent processes.

In the following we describe the general approach for cou-
pling parallel solvers. First, we describe the Multilevel Com-
municating Interface designed for efficient coupling of two or
more parallel solvers and subsequently review N εκT αr

to N εκT αr coupling and N εκT αr to DPD-LAMMPS
coupling. Then we present our multiscale visualization and
analysis and we conclude with highlights on our tuning and
optimization work.

2.1 Multilevel Communicating Interface
Let us consider a flow problem defined in a computational

domain Ω, which can be subdivided into overlapping or non-
overlapping subdomains Ωj , j = 1, 2, .... The key feature of
the MCI architecture is the hierarchical decomposition of
the default World communicator into sub-communicators.
The communicator splitting is done according to the de-
composition of domain Ω into Ωj , and is performed in sev-
eral stages as illustrated in Figure 3. At the first stage the
topology-oriented splitting is performed, and the processors
from different computers or racks are grouped into Level
2 (L2) sub-communicators. In simulations on a computer
with a homogeneous network the L2 communicator is set to
be the same as the default communicator. The L2 groups
are further subdivided according to the task-decomposition
into Level 3 (L3) non-overlapping groups. The communica-
tions required for solving tightly coupled problems by either
N εκT αr or DPD-LAPPMS are thus limited to a subset of
processors communicating within the L3 group.

The L3 sub-communicators used by each solver are further
subdivided according to low-level task-parallelism to form
the Level 4 (L4) sub-communicators. For example, com-
putations and communications required for interface con-
ditions are performed on small subsets of processors (L4
groups) mapped to partitions intersected by the interfaces.
Data required by the interface conditions are communicated
between the roots of the corresponding L4 groups, as illus-

Figure 4: Multilevel Communicating Interface.
Three-step algorithm for inter-patch communica-
tion. Step 1: Data required for interface condi-
tions are gathered on the root processor of L4 sub-
communicator. Step 2: Data is transferred via
point-to-point communication. Step 3: Data are
scattered from the root processor of the L4 com-
municator of the adjacent patch to be imposed as
boundary conditions.

trated in Figure 4. Such communications are performed only
a few times at each time step and thus have negligible im-
pact on the performance. The communications between the
L4 groups will be covered in more detail in the next section.

2.2 N εκT αr to N εκT αr coupling
The scalability of effective solvers in large-scale parallel

flow simulations based on semi-implicit time-stepping dete-
riorates as the number of processors increases. One of the
big bottlenecks in scalability is the solution of linear sys-
tems, especially when effective preconditioners are employed
since they require a high volume of communications and are
typically not scalable on more than one thousand proces-
sors. The multi-patch domain decomposition implemented
in N εκT αr addresses this issue as follows. A large mono-
lithic domain is subdivided into a series of loosely coupled
subdomains (patches) of a size appropriate for good scala-
bility of the parallel solver. Once at every time step the data
required by the interface conditions are transferred between
the adjacent domains, and then the solution is computed in
parallel for each patch. Such an approach limits the proces-
sor count participating in the high volume of blocking and
non-blocking communications, which alleviates the scalabil-
ity limitations and leads to an optimal allocation of com-
putational resources. The mathematical formulation of the
algorithm is described in [13]; here we focus on the parallel
implementation of the algorithm applied to the domain of
arteries presented in Figure 1.

Following this geometric domain decomposition of ΩC into
four patches Ωj , j = 1, ..., 4, four L3 sub-communicators are
created. The sizes of the L3 sub-communicators are chosen
a priori such that the solution for each Ωj can be obtained
within approximately the same wall-clock time at each time-



step, and in general it is related to the number of degrees of
freedom in each Ωj . Each patch is subsequently partitioned
into non-overlapping partitions in order to apply a parallel
solver locally. The boundaries of ΩC are the arterial walls,
inlets and outlets. Decomposition of ΩC into four overlap-
ping subdomains Ωj introduces six artificial interfaces (three
inlets and three outlets), where inter-patch conditions must
be imposed to enforce continuity in the velocity and pres-
sure fields. To handle operations associated with boundary
and interface conditions at each inlet and outlet, the L4 sub-
communicators are derived from the corresponding L3. For
example, in the sub-domain of the left interior carotid artery
(shown in yellow in Figure 1) four L4 groups are created:
one contains elements facing the inlet of ΩC , one contains
elements facing the outlet of ΩC and two with elements fac-
ing the two interfaces with the adjacent sub-domains. In
Figure 4 we illustrate the process of data transfer between
the two adjacent patches. The data exchange is a three-step
process. In the first step data are gathered on the root of L4.
In the second step roots from corresponding two L4 groups
communicate over MPI COMM WORLD. In the final step
data are scattered from the root of L4 to the other ranks.

2.3 N εκT αr to DPD-LAMMPS coupling
To couple N εκT αr to DPD-LAMMPS we adopt the

framework described in [12], where the continuum solver for
NS was coupled to DPD and also to MD. The flow domain is
decomposed into a number of overlapping regions, in which
MD, DPD, or a continuum solver can be used. Each sub-
domain is integrated independently. Coupling among over-
lapping subdomains is done through BC communications,
which is done every ∆τ in time progression as shown in Fig-
ure 5. The time ∆τ may correspond to a different number
of time steps for distinct multiscale descriptions.

∆ t
NS

∆ t
DPD

t

∆ τ

communication

     step K

communication

    step K+1

Figure 5: A schematic representation of the time
progression in different subdomains. The time step
ratio employed in our study is ∆tNS/∆tDPD = 20, and
∆τ = 10∆tNS = 0.0344s.

To setup a multiscale problem with heterogeneous descrip-
tions we are required to define length and time scales. In
principle, the choice of spatiotemporal scales may be flex-
ible, but it is limited by various factors such as method
applicability (e.g., stability, flow regime) and problem con-
straints (e.g., temporal resolution, microscale phenomena).
For example, a unit of length (LNS) in the NS domain cor-
responds to 1 mm, while a unit of length (LDPD) in DPD
is equal to 5 µm in order to adequately capture platelet
aggregation phenomena. In addition, fluid properties (e.g.,
viscosity) in different descriptions may not necessarily be in
the same units in the various methods. To glue different
descriptions together we need to consistently match non-

dimensional numbers which are characteristic for a certain
flow, for example Reynolds and Womersley numbers in our
blood flow problem. The following formula provides veloc-
ity scaling between NS and DPD subdomains and implies
consistency of Reynolds number

vDPD = vNS
LNS

LDPD

νDPD

νNS

, (1)

where νNS and νDPD are the kinematic fluid viscosities in
the NS and DPD regions. The time scale in each subdomain
is defined as t ∼ L2/ν and is governed by the choice of fluid
viscosity. In our simulations we selected that a single time
step in the N εκT αr solver (∆tNS) corresponds to 20 time
steps in the DPD (∆tDPD). The data exchange between
the two solvers occurs every ∆τ = 10∆tNS = 200∆tDPD ∼
0.0344 s.

The methodology developed in [12] has been applied to
steady flow problems in simple geometries, while here we
consider unsteady flow in a domain with complex geometry.
In the coupled continuum-atomistic simulation we employ
the domain of CoW ΩC with an insertion of an additional
domain ΩA inside the aneurysm as depicted in Figure 1. The
methodology proposed in the current study allows placement
of several overlapping or non-overlapping atomistic domains
coupled to one or several continuum domains to simulate the
local flow dynamics at micro-vascular scales.

Let ΓI denote the boundaries of ΩA, where interface con-
ditions are imposed; ΓI are discretized by triangular ele-
ments T as presented in Figure 1. To couple the atom-
istic and continuum domains, the following steps are per-
formed during preprocessing: 1) Processors assigned to ΩA

and mapped to partitions intersecting the ΓI form an L4
sub-communicator. 2) The coordinates of T mid-points are
sent from the root of L3 of ΩA to the L3 roots of each ΩCi

,
where the continuum solver is applied. 3) The L3 roots of
continuum domains not overlapping with ΓI report back to
the L3 root of ΩA that coordinates of T ∈ ΓI are not within
the boundaries of those domains. If the coordinates of T are
included in a particular ΩCi

, then a new L4 group is derived
from L3 of this ΩCi

. This L4 group consists of the processes
mapped to partitions of ΩCi

including the T coordinates.
L3 root of ΩCi

signals to the L3 root of ΩA that commu-
nication between the L4 groups of ΩCi

and ΩA should be
established in order to allow data transfer between ΩCi

and
ΩA. From this point the communication between ΩA and
the relevant ΩCi

is performed between the L4 roots from
both sides.
During the time-stepping scheme the velocity field computed
by the continuum solver is interpolated onto the predefined
coordinates and is transferred to the atomistic solver.

One of the features of the original LAMMPS solver is that
it is capable of replicating the computational domain and
solving an array of problems defined in the same domain
but with different random forcing. Averaging solutions ob-
tained at each domain replica improves the accuracy of the
statistical analysis. In order to preserve this capability of
DPD-LAMMPS to concurrently obtain several realizations
without introducing additional complexity into ΩA − ΩC

data exchange, we need to design a computational algorithm
that will seamlessly collect or distribute data required for
the interface conditions over all replicas of ΩA and trans-
fer it via one point-to-point (p2p) communication to a pro-
cess from ΩC . To accommodate this requirement the com-



municating interface is constructed as follows. Let us con-
sider NA replicas; subsequently the L3 group associated with
ΩA is further sub-divided into NA non-overlapping groups
L3j , j = 1, ..., NA as illustrated in Figure 6. Each replica
is partitioned in order to apply a parallel DPD-LAMMPS
solver locally, and L4 groups are derived from each L3j .
The L4 group of L31 is then considered as a master and L4
groups of L3j , j > 1 are the slaves. The master L4 commu-
nicates with the process of corresponding ΩC and broadcasts
data to, or gathers data from, the slaves, as illustrated in
Figure 6.

Figure 6: Schematic for coupling N εκT αr and
DPD-LAMMPS. Cells correspond to processors
of L3 sub-communicator of continuum domain ΩC

(blue) and L3j , j = 1, 2, 3 sub-communicator of atom-
istic domain ΩA (green). Cells marked by col-
ors with gradients represent processors of L4 sub-
communicators. Communication between the L4
processors of ΩC and ΩA is accomplished via roots
of L4 communicators derived from corresponding L3
and L31 communicators.

2.4 Multiscale visualization and analysis
Simultaneously processing data from the discrete NS solu-

tions and from the atomistic DPD simulations requires new
quantitative tools that can efficiently handle the disparity in
length scales and correspondingly the degraded smoothness
of the solution. To this end, we have developed a hierar-
chical adaptive approach, WPOD – see below, that can be
used for both types of data sets. For visualization we lever-
age the parallel processing and rendering infrastructure of
ParaView. Using our custom N εκT αr reader plug-in, the
SEM mesh and data are partitioned across nodes of the vi-
sualization cluster, where it is converted to a vtkUnstruc-
turedGrid of tetrahedra. N εκT αr is used to preserve the
spectral accuracy of the data and to calculate derived quan-
tities such as vorticity. The vtkUnstructuredGrid is then
passed on to the ParaView pipeline, which is used to apply
various visualization algorithms, or filters, to the data. Once
multiple patches have been loaded into ParaView the same
filter can be applied to all patches. For instance, streamlines
can be generated to illustrate the overall flow through the
arterial system. Glyphs, such as arrows, can be used to in-
dicate the direction of the flow at given points on the mesh.
Of particular interest is the flow through interfaces between
the various patches, as well as through the aneurysm.

There are a number of different types of data from the
DPD-LAMMPS calculations that can be visualized along
with the N εκT αr data. The particles are separated by
type, e.g. solvent particles or platelets. The platelets are
further categorized as active or inactive. For each time step
a vtkUnstructuredGrid of vertices is created for each of the

various particle types. Particles can use data attributes to
influence their appearance, such as scaling or coloring based
on their current velocity, or their particle type. Over time
the particles move through the flow and their positions are
updated to reflect movement. The WPOD data (see below)
results in a mesh that coincides with the DPD-LAMMPS
subdomain and includes an ensemble averaged velocity field.
This data is converted to a tetrahedral vtkUnstructuredGrid
and loaded into ParaView along with the SEM and particle
data. Like the SEM data filters such as streamlines and
glyphs can be used to illustrate the movement of the flow
through the subdomain. Comparing the macro-scale flow
calculated by N εκT αr with the micro-scale flow calculated
by DPD-LAMMPS is important for verifying the accuracy
of the computation.

In particular, we can process both stationary and time-
dependent heterogeneous simulations data using WPOD.
The ensemble average solution ū(t,x) and corresponding
fluctuations u′(t,x) of the velocity field are two very im-
portant quantities in analyzing atomistic simulation. How-
ever, computing these two parameters for a non-stationary
process is quite difficult. In stationary flow simulations the
average solution ū(x) is typically computed by sampling
and averaging the trajectories of the particles over a sub-
domain (bin) Ωp and over a very large time interval. In
non-stationary flow simulations, an ensemble average ū(t,x)
is required, but it is not obvious how to define a time inter-
val T ≫ ∆t over which the solution can be averaged. It is
possible to perform phase averaging, if the flow exhibits a
limit cycle and integrate the solution over a large number of
cycles. Constructing the ensemble based on number of real-
izations Nr improves the accuracy by a factor of

√
Nr. In

our simulation we utilized about 130K compute cores by the
atomistic solver; doubling the number of realizations would
require more computational resources than available, while
resulting in only

√
2 accuracy improvement. To this end, we

have developed a WPOD of general atomistic simulations
that leads to a significant reduction of the computational
load and enhances the quality of the numerical solutions.
WPOD applied to the atomistic data computed in stochas-
tic simulations helps to extract information on the collective
and correlated in time and space motion of particles. We em-
ploy the method of snapshots [35] and extend it to analyze
a certain space-time window adaptively. A similar exten-
sion but for continuum based systems was presented in [16],
where WPOD was employed for the analysis of intermittent
laminar-turbulent flows.

In Figure 7 we present the results of DPD simulations of
healthy and diseased RBCs. WPOD was applied as a co-
processing tool performing spectral analysis of the velocity
field to compute ū(t,x) and u′(t,x).

WPOD is a spectral analysis tool based on transform-
ing a velocity field into orthogonal temporal and spatial
modes: ū(t,x) =

P

Npod
ak(t)φk(x). The temporal modes

are computed as the eigenvectors of the correlation matrix
constructed from the inner product of velocity fields (snap-
shots) computed at different times. The velocity field snap-
shots are computed by sampling (averaging) data over short
time-intervals, typically Nts = [50 500] time-steps. The data
are sampled over spatial bins of a size comparable to the
DPD cut off radius rc. As an example, in Figure 8 we plot
the POD eigenspectrum for two velocity components in an
unsteady flow simulation. The eigenspectrum can be sub-



Figure 7: a) - DPD-simulation of healthy (red) and
malaria-infected (blue) red blood cells; the crossflow
slices are colored by the value of velocity component
in the streamwise direction (u). Ensemble average
solution is shown as obtained with standard averag-
ing (b) and with WPOD (c). d) - probability density
function (PDF) of fluctuations of the streamwise ve-
locity computed with WPOD; the red curve corre-
sponds to Gaussian PDF with σ = 1.03.

divided into two regions: the first region contains the fast
converging eigenvalues λk, corresponding to the low-order
modes, while the second region contains the slow converging
λk, corresponding to the high-order modes. When computed
with WPOD ū(t,x) was about one order of magnitude more
accurate than when computed with standard averaging pro-
cedure. Comparable accuracy was achieved by performing
25 concurrent realizations, which demanded 25 times more
computational resources. The smoother velocity field recon-
structed with WPOD allows better accuracy in predicting
the mean wall shear stress, which is a very important quan-
tity in biological flows.

2.5 Performance tuning and optimization
We have carried out a performance tuning of our compu-

tational kernels as well as a communication strategy to max-
imize the messaging rate. Specifically, our single core perfor-
mance tuning is based on the fact that most microprocessors
provide an additional floating point hardware unit, which
maximizes the floating point performance rate by executing
SIMD instructions. To this end, based on AMD Opteron
microprocessors, the Cray XT5 supercomputer can execute
SIMD SSE instructions. Similarly, based on PowerPC 450
microprocessor with special Double Hummer floating point
unit, the BG/P can execute double FPU instructions. Both
types of microprocessors set certain restrictions on the us-
age of SIMD instructions (see details in References [5, 19]),
which we address as follows. Specifically, we focus on the
following optimization tasks: a) proper data alignment is
enforced by the use of posix memalign calls to guarantee the
memory allocation with 16 byte alignment for the most im-
portant data structures; and b) a number of the kernel rou-
tines with high flop and/or memory access rate requirements
are identified and studied to determine if they can benefit
from SIMD instructions. We either explicitly instruct a com-
piler to automatically generate vector instructions (by pro-
viding proper pragmatic information with “#pragma” state-
ments), or in such cases when a compiler cannot resolve

Figure 8: DPD-simulation: 3D unsteady flow.
Eigenspectra of velocity in x− (streamwise velocity
component, black dots) and cross-flow direction (red
crosses), and three POD temporal modes. Right
top - velocity profile (streamwise component) re-
constructed with the first two POD modes. Nts =
50, Npod = 160

dependencies, write SIMD specific code with the use of com-
piler intrinsics. In many cases, additional optimization, such
as loop unrolling is also required. Results of our optimiza-
tion for selected routines are presented in Table 1. Overall,
we achieve a factor of 1.5 to 4 fold speed up depending on
the routine. We also mention that the benefit from SIMD
instructions is more pronounced when the data are located
in cache, and therefore we pay special attention to keep the
participating vectors in use as long as possible.

function speed-up factor
i = [0,N-1] Cray XT5 Blue Gene/P

z[i] = x[i] ∗ y[i] 2.00 3.40
a =

P

i
x[i] ∗ y[i] ∗ z[i] 2.53 1.60

a =
P

i
x[i] ∗ y[i] ∗ y[i] 4.00 2.25

Table 1: SIMD performance tuning speed-up factor.

BG/P compute nodes are connected with three networks
that the application may use: a 3D torus network that pro-
vided p2p messaging capability, a collective network which
implements global broadcast-type operations, and a global
interrupt network for fast barrier synchronizations.

On the 3D torus, packets are routed on an individual basis
with either deterministic or adaptive routing. With deter-
ministic routing, all packets between a pair of nodes follow
the same path along X,Y,Z dimensions in that order. With
adaptive routing, each packet can choose a different path
based on the load on the torus router ports. The BG/P ar-
chitecture also has a Direct Memory Access (DMA) engine
to facilitate injecting and receiving packets to/from the net-
work. To maximize the messaging rate, all six links of the
torus can be used simultaneously.

The BG/P specific implementation of the message ex-
change library is implemented in N εκT αr based on the
information provided by the personality structure, such as
the torus coordinates (X,Y,Z) of the node, the CPU ID num-
ber T within the node, and the coordinates of the p2p tar-
gets. In particular, for communication-intensive routines,
such as a parallel block-sparse matrix-vector multiplication,
we create a list of communicating pairs and schedule the



communications so that at each time, the nodes have at
least six outstanding messages targeting all directions of the
torus simultaneously. The incoming messages are processed
on a “first come, first served” basis. For partitioning of the
computational domain into non-overlapping partitions we
employ the METIS PartGraphRecursive routine of the
METIS library [32]. In unstructured meshes a relatively
high number (O(10)−O(100)) of adjacent elements sharing
a vertex, edge or face may exist, hence the large volume of
p2p communications. To minimize the communication be-
tween partitions we provide METIS with the full adjacency
list including elements sharing only one vertex. The weights
associated with the links are scaled with respect to the num-
ber of shared degrees of freedom per link. According to our
measurements, the topology-aware p2p communication al-
gorithm reduces the overall run time for the application by
about 3 to 5% while using 1024 to 4096 compute cores of
BG/P. In Table 2 we compare the computational time re-
quired in simulations of a turbulent flow in a carotid artery
where: a) partitioning considers only elements sharing the
face degrees of freedom, and b) all neighbor elements are
taken into account.

N cores 512 1024 2048 4096
a 1181.06 654.94 381.53 238.05
b 1171.82 638.00 361.65 219.87

Table 2: Blue Gene/P Simulations with two parti-
tioning strategies: CPU-time (seconds) required for
1000 time-steps.

3. RESULTS
In the following we first present the performance of our

coupled solver in unsteady 3D flow simulations. The com-
putations have been carried out on BG/P and CRAY-XT5
[2] computers. The superior parallel performance in simula-
tions with N εκT αr and multi-patch decomposition com-
pared to a single patch is presented in [13]. The accuracy of
the method is also discussed in the same publication. Here
we present the scaling obtained in solving arterial flow prob-
lems with a very large number of degrees of freedom. Sub-
sequently, we present the results of multiscale simulation of
platelet aggregation at the wall of an aneurysm. We empha-
size that these results have been obtained during a continu-
ous 24-hour simulation on 32 Racks (131,072 processors) of
BG/P. The simulation produced over 5TB of data stored in
thousands of files, organized in sub-directories. Such contin-
uous simulation on a very large number of processors high-
lights the stability of the coupled solver, operating system,
as well as file system and hardware.

3.1 Performance
First, we consider a 3D blood flow problem in a very large

computational domain subdivided into multiple patches Ωi,
i = 1, ..., Np. The solution is computed by coupling multiple
instances of N εκT αr as was described in Section 2.2. Each
Ωi is composed of 17,474 tetrahedral elements, while the one
element-wide overlapping regions contain 1,114 tetrahedral
elements. In each spectral element the solution was approx-
imated with polynomial expansion of order P = 10. The
parallel efficiency of the method is evaluated by solving an
unsteady blood flow problem. The weak scaling obtained on

BG/P (4 cores/node) and Cray XT5 (8 cores/node) is pre-
sented in Table 3 and the strong scaling obtained on BG/P
is presented in Table 4. On both computers, good and simi-
lar scaling is observed. The performance of N εκT αr with
multi-patch domain decomposition was also measured on
up-to 122,880 cores of BG/P using the same computational
domain as in the previous example with spatial resolution
P = 6. In the weak scaling tests performed on 49,152 and
122,880 cores (16 and 40 patches, respectively; 3072 cores
per patch) the code achieved 92.3% parallel efficiency. The
performance of N εκT αr was also benchmarked in simula-
tions with 40 patches on 96,000 cores of the Cray XT5 with
12 cores per node. We used polynomial order P = 12, and
the number of degrees of freedom was about 8.21 billion.
The wall clock time measurements were just as expected,
i.e. approximately 610 seconds per 1000 time steps. This
shows an excellent time per time step cost of such a complex
simulation with multi-billion unknowns. In many large scale
simulations with linear solvers, the parallel speed-up may be
very good but the cost per time step is excessive. This, for
example, indicates the use of simple preconditioners which
may be scalable but ineffective. In our code we use very
effective preconditioners resulting in an excellent CPU-time
per time step.

Np total CPU-time [s] weak
(DOF) # of cores /1000 steps scaling

Blue Gene/P
3 (0.384B) 6,144 650.67 reference
8 (1.038B) 16,384 685.23 95%
16 (2,085B) 32,768 703.4 92%

Cray XT5
3 (0.384B) 6,144 462.3 reference
8 (1.038B) 16,384 477.2 96.9%
16 (2,085B) 32,768 505.1 91.5%

Table 3: NεκT αr: Blue Gene/P (4 cores/node) and

Cray XT5 (8 cores/node): weak scaling in flow simula-

tion with Np = 3, 8 and 16 patches.

Np total CPU-time [s] strong
(DOF) # of cores /1000 steps scaling

3 (0.384B) 3,072 996.98 reference
3 (0.384B) 6,144 650.67 (76.6%)

8 (1.038B) 8,192 1025.33 reference
8 (1.038B) 16,384 685.23 (74.8%)

16 (2,085B) 16,384 1048.75 reference
16 (2,085B) 32,768 703.4 74.5%

Table 4: NεκT αr: Blue Gene/P (4 cores/node): strong

scaling in flow simulation with Np = 3, 8 and 16 patches.

In Figure 9 we present the excellent weak scaling of DPD-
LAMMPS on BG/P and CRAY for blood flow simulations.
The CPU-time is approximately constant as we increase the
number of particles per core with the CPU-time on CRAY
about 2.5 times lower than that of the BG/P.

In Table 5 we present the strong scaling of our coupled
solver in simulations of platelets aggregation. The number
of DPD particles employed is 823,079,981 which corresponds
to more than 8 billion molecules assuming a coarse-graining
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Figure 9: DPD-LAMMPS: weak scaling of simula-
tions performed with 30,000 particles per core.

factor 10 : 1 in the DPD method. We note that here we
employ non-periodic boundary conditions and update the
neighbor information (function neigh modify of LAMMPS)
every time step. The atomistic solver obtains data from
the Navier-Stokes solver every 200 steps. The CPU-time
presented in Table 5 also includes the output of averaged
velocity and density by DPD-LAMMPS at every 500 time-
steps. In the coupled multiscale simulations we observe a
super-linear scaling, which can be explained in terms of the
BCs in DPD. In general, the cost in DPD is linear, i.e. ∝
C N , where C is a constant and N is the number of local
particles. However, C depends on the particle neighbors
and in our case also on BCs and specifically on how many
faces each core handles. For normal scaling, i.e. without
BCs, N decreases as the number of cores increases, while C
remains constant. Including the BCs, however, causes C to
also decrease, resulting in the superlinear scaling.

Ncore CPU-time [s] efficiency
Blue Gene/P

28,672 3205.58 –
61,440 1399.12 107%
126,976 665.79 102%

Cray XT5
17,280 2193.66 –
25,920 1176.96 124%
34,560 762.99 115%
93,312 225.72 125%

Table 5: Coupled NεκT αr-DPD-LAMMPS solver,

Blue Gene/P (4 cores/node) and Cray XT5 (12

cores/node): strong scaling in coupled blood flow sim-

ulation in the domain of Figure 1. Ncore - number of

cores assigned to the DPD-LAMMPS solver. The num-

ber of cores assigned to NεκT αr-3D was fixed: 4,096

on Blue Gene/P and 4,116 on CRAY XT5. CPU-

time required for 4,000 DPD-LAMMPS time-steps (200

NεκT αr’s time-steps). Total number of DPD particles:

823,079,981. Efficiency is computed as a gain in CPU-

time divided by the expected gain due to increase in

number of cores.

3.2 Coupled continuum-atomistic simulations

Blood is a physiological fluid that consists of RBCs (about
45%), white blood cells (WBCs, less than 1%), platelets (less
than 1%), and plasma with various molecules. In vitro ex-
periments [8, 30, 27] of blood flow in glass tubes with diame-
ters ranging from 3 µm to 1000 µm have shown a dependence
of the apparent blood viscosity on the tube diameter, RBC
volume fraction, cell aggregability, and flow rate. Thus, in
tubes with diameters larger than 400 − 500 µm blood can
be assumed to be nearly Newtonian fluid with a constant
effective viscosity, while in smaller tubes it shows complex
rheological behavior. This supports the application of con-
tinuum type methods within the macrodomain ΩC where a
characteristic vessel size is larger than 500 µm. However,
in the microdomain ΩA accurate blood flow representation
requires explicit modeling of blood cells [24, 10] using DPD.
Moreover, continuum modeling of blood flow is not able to
capture active processes in blood (e.g., RBC aggregation,
platelet aggregation), which can be modeled using DPD.

Specifically, blood flow in a brain aneurysm can be sig-
nificantly reduced resulting in thrombus formation. Blood
clots are formed mostly by platelets and fibrin, and may
appear at sites of endothelial lining damages. Thrombus
formation is a very complex process which involves a num-
ber of biochemical constituents and cells, and strongly de-
pends on flow conditions. Normally, inactive platelets in
blood flow may be triggered after a close encounter with a
thrombus or sites of vessel damages, and become activated
and “sticky”. Activated platelets are able to adhere to the
thrombus and mediate its formation and growth. Recent
modeling of platelet thrombi formation and growth in tube
flow [26] assumed platelets to be spherical particles and in-
troduced effective adhesive interactions between them. The
model was able to capture essential dynamics of thrombus
formation in flow. The mechanism of platelet activation is
plotted in a sketch in figure 10. Passive platelets carry a

recovery time

PASSIVE
non−adhesive

TRIGGERED
non−adhesive

ACTIVATED
adhesive

Interaction with
acivated platelet,

injured vessel wall
Activation delay time,
chosen randomly from
a specified range

If not adhered
within a finite

Figure 10: A schematic of the platelet activation
process. A stochastic model is employed to repre-
sent the state of different platelets.

spherical activation-distance corona and may become trig-
gered if they are close enough to other activated platelets
or the injured vessel wall. Triggered platelets remain non-
adhesive during an activation time chosen randomly from
the time interval between 0 and 0.2 s. After the activa-
tion delay time platelets become adhesive and interact with
other activated platelets or the injured vessel wall through
the Morse potential given by

UM (r) = De

h

e2β(r0−r) − 2eβ(r0−r)
i

, (2)

where r is the separation distance between two activated
platelets, r0 is the zero force distance, De is the strength of
interactions, and β characterizes the interaction range. The



Figure 11: Brain vasculature, coupled continuum-
atomistic simulation: contours of pressure and ve-
locity at y− direction at sub-domain interfaces.
Streamlines and vectors depict instantaneous flow
direction. Re = 394, Ws = 3.75.

Morse interactions consist of a short-range repulsive force for
r < r0, which mimics a finite distance of the fibrinogen link-
ing within a thrombus, and of a long-range attractive force
for r > r0, which mediates platelet adhesion. An activated
platelet may return to its passive state if it is not adhered
within the finite recovery time of 5 s [31]. The blood clotting
model allows us to study the thrombus formation process in
the aneurysm under realistic blood flow conditions simulated
in the large portion of cerebrovascular network.

In the coupled continuum-atomistic simulation we employ
the domain of CoW and its branches and we insert an ad-
ditional sub-domain ΩA inside the aneurysm as depicted in
Figure 1. The blood clot formation typically starts close to
the bottom of an aneurysm, hence the location of ΩA. We
employ physiological flow characteristics: Reynolds number
Re = 394 and Womersley number Ws = 3.7. We also em-
ploy patient-specific flow boundary conditions at the four
inlets and patient-specific boundary conditions at all outlets
of ΩC . The volume of ΩA is 3.93mm3; it interfaces the con-
tinuum domain at five planar surfaces ΓIk

, k = 1, ..., 5 and
its sixth surface Γwall overlaps with the aneurysm’s wall.
The size and velocities in ΩA are scaled according to equa-
tion (2) in order to keep the same Re and Ws numbers in the
DPD domain. Inactive platelets are inserted at the inflow
with a constant and uniform density. To initiate thrombus
formation we place randomly a number of activated platelets
within an elliptical region of the wall, which mimics the in-
jured section of the aneurysm wall. The strength of platelet
adhesion De is set to be large enough to ensure platelet firm
adhesion. Other parameters are chosen to be β = 0.5 µm−1

and r0 = 0.75 µm.
In Figure 11 we show the continuity of the velocity field at

continuum-continuum and continuum-atomistic interfaces.
In Figure 12 we present the clot formation process.

Figure 12: Brain vasculature, coupled continuum-
atomistic simulation: Platelets aggregation on the
wall of aneurysm. Yellow particles - active platelets,
red particles - inactive platelets. Streamlines depict
instantaneous velocity field. (A) Onset of clot for-
mation; (B) Clot formation progresses in time and
space, detachment of small platelet clusters due to
shear-flow is observed. Re = 394, Ws = 3.75.

4. CONCLUSIONS
Stochastic multiscale modeling of materials, fluids, plas-

mas, and biological systems requires the use of multiple
codes and corresponding mathematical models that can de-
scribe different scale regimes. Coupling properly such het-
erogeneous descriptions and their implementations is one
of the most difficult problems in computational mathemat-
ics and scientific computing at the present time. Here we
presented several advances on the mathematical, computa-
tional, and visualization fronts that enabled us to perform
what we believe is the first truly multiscale simulation and
visualization of a realistic biological system. Our approach
is general and can be used in other fields, e.g. in simulat-
ing crack propagation in materials, and hence it shifts the
computational paradigm in large-scale simulation from one
based on a monolithing single code to a more flexible ap-
proach, where multiple heterogeneous codes are integrated
seamlessly. This opens up the possibilities for exploring mul-
tiscale phenomena and investigate long–range interactions in
an effective way, hence avoiding over-simplified assumptions
such as the often-used “closure” models for the unresolved
spatiotemporal dynamics.
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