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Stokes’ Hypothesis for a Newtonian, Isotropic Fluid
Mohamed Gad-el-Hak'

Is the second coefficient of viscosity equal to the negative
two-third of the dynamic coefficient of viscosity?

The short answer to the above question is no, not in general.
Although the issues involved remain partially open, the pres-
ent brief is an attempt to clarify some of the misconceptions
and misuses embroiled in the subject of bulk viscosity. Con-
sider the genesis of the query.

To close the equations of motion for a continuum fluid, a
relation between surface forces and the flow field is needed.
A Newtonian fluid is that for which the stress tensor is as-
sumed to be linearly related to the rate-of-strain tensor.” The
constant of proportionality between these two second-order
tensors is in general a fourth-rank tensor:

g; = a’f—}n + Cijuen (1)

where gj; is the stress tensor, a'f-l(-)’ is the stress distribution that
can exist in a resting fluid, C;, are the 81 coefficients of pro-
portionality, and e, is the rate-of-strain tensor. The residual
stress term must be retained for fluids, while the corresponding
term is dropped when deformable, compressible solids are
considered (Eringen, 1980). In the theory of linear elasticity,
the displacements are measured, by convention, from a state
in which the body is at rest under zero body forces, and the
residual stress term has no contribution to the equations of mo-
tion. This is justified because any process which reduces the
finite motion at a point to zero would not change perceptibly
the thermodynamic state. For fluids, this is not necessarily the
case. The total stress appears in the equations of motion of
fluids, and it is therefore absolutely necessary to include o).

For fluids, both o’ and Cy, vary with the thermodynamic
state specified by, for example, the density and temperature.
However, the residual stress must be the same regardless of
the fluid state of motion, otherwise the assumed linear relation
between o;; and ey is violated. Since the stress force exerted
across any element of a surface in a resting fluid is indepen-
dent of the orientation of that element (see, for example,
Batchelor, 1967), it follows that:

o) = —p§; ¢3)]

where p is a scalar, called hydrostatic pressure or simply pres-
sure, and &, is the Kronecker delta (the only isotropic second-
rank tensor). The pressure is one more unknown in fluid prob-
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lems,* but the continuity equation, which has no counterpart’
in the theory of elasticity, provides an additional equation to
close the problem.

The lack of microscopic surface moments ensures that the
stress tensor is a symmetric one. If the fluid is further assumed
to have no preferred directions, i.e., isotropic fluid, those 81
linear coefficients reduce to only two independent coefficients
(for a proof, see, for example, Long, 1961; Aris, 1962): u the
dynamic coefficient of viscosity (shear), and A the second
coefficient of viscosity (dilatational). Thus for a Newtonian,
isotropic fluid:

au; U, aU;
Oy = —pdu + p 5‘_ +— )+ Al — b« 3)

X, ox; ox;

where U, is a velocity component in the x,-direction.

Continuum mechanics does not require any fixed relation-
ship between the two coefficients of viscosity, and one must
appeal to statistical mechanics, to macroscopic thermody-
namics or, as a last resort, to experiments. The precise value
of the second coefficient of viscosity is not needed for inviscid
flows (both p and A are assumed zero), for incompressible
flows (V- U = 0), or when the boundary layer approximations
are invoked (normal viscous stresses << shear stresses). On
those special cases, the thrust of the present question is muted
although the conceptual issues are always important.

If we define the mean pressure P as the negative one-third
of the sum of the three normal stresses (a tensor invariant),
Eq. (3) yields:

I

- 1 2 .

P _g(o'u+0'22+0'33)=P—<’\+5#)(V'U) “4)
The factor (A + 2/3p) is often termed the coefficient of bulk
viscosity, although some textbooks mistakenly reserve this ter-
minology for A itself. Physically, this factor is connected with
the dissipation mechanism during a change of volume at a fi-
nite rate. In other words, the bulk viscosity provides a damp-

*For compressible flows, if the density and internal energy, for example, are
taken as the two independent intensive properties, then the intensive state of a
simple thermodynamic system is fully specified. The pressure in that case is
not an independent variable and follows from the appropriate equation of state.
For a strictly incompressible fluid, on the other hand, the pressure does not
influence the thermodynamic state and is formally an unknown mechanical force
per unit area whose gradient, but not absolute value, could be determined from
the equations of motion.

*Of course-mass is conserved whether the material is solid or liquid. The
simplifications of the linear elasticity theory merely eliminate the need to con-
sider explicitly the continuity equation.
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ing of volumetric vibrations such as might occur during sound
absorption. Equation (4) implies that, unless either (A + 2/3y)
or (V-U) is equal to zero, the mean (mechanical) pressure in
a deforming viscous fluid is not equal to the thermodynamic
pressure; more on this point later. The second law of ther-
modynamics requires that both . and (A + 2/3u) be non-neg-
ative.

In 1845, Stokes simply assumed that (A + 2/3u) = 0.° The
resulting negative value of A implies that the tension required
to produce a specified proportional rate of stretching along one
principal axis is reduced if the fluid is locally expanding. This

could easily be seen if Eq. (3) is rewritten for i = k = 1, for
example:
oU, oU, odU, 0dU;
oy=—ptu—+Al—+—+— (&)
X 0x, 0x, 0x3

If A is negative and (V - U) is positive, o, necessary to produce
a given rate of stretching dU,/dx, becomes smaller as the fluid
dilation is intensified and/or as the absolute value of A is in-
creased.

Unfortunately, the above implication can neither be verified
nor refuted with direct measurements. The bulk viscosity can
be measured, albeit not very accurately, by the attenuation and
dispersion of intense ultrasonic waves (in order to generate
measurable effects). In order to satisfy the quasi-equilibrium
approximation that requires the sound frequency to be small
compared to the inverse of the molecular relaxation time, the
high-frequency data are more often than not extrapolated to
zero frequency resulting in considerable scatter. The second
coefficient of viscosity may not even be a thermodynamic
property, since available measurements indicate that A is fre-
quency dependent. Nevertheless, reasonably accurate, high-
frequency acoustic absorption measurements, in conjunction
with the standard low-frequency theory, do indicate that the
Stokes’ hypothesis is correct only for monatomic gases
(Prangsma et al., 1973).

Very recently, Emanuel and Argrow (1994) have proposed
an alternative, still indirect, method for measuring the bulk
viscosity. Their yet-to-be-demonstrated approach is particu-
larly suited for dense polyatomic gases, where the density-based
thickness of a shock wave is typically thousands of mean free
paths. Emanuel and Argrow have shown analytically that the
ratio (A + 2/3u)/u is linear with the aforementioned thick-
ness, which could readily be measured using the optical re-
flectivity method or the electron-beam absorption technique.®

Several controversies exist in the literature regarding the
second coefficient of viscosity. First, does the kinetic theory
of gases prove that the bulk viscosity is zero for a monatomic
gas? Truesdell (1954) argues that this statement is an assump-
tion of the theory and not a proof. On the other hand, the
Chapman-Enskog expansion of the Boltzmann equation does
yield a zero bulk viscosity for dilute gases without internal
molecular structure (Chapman and Cowling, 1970). Further-
more, acoustic attenuation measurements for inert gases sup-
port this conclusion. Second, Karim and Rosenhead (1952) re-
port on several sound-wave-attenuation measurements that yield
a large, positive A for most liquids. Once again, Truesdell (1954)
disputes the validity of these experiments (see also the exten-
sive discussion on the general subject of bulk viscosity pro-
vided under the leadership of Rosenhead, 1954).

Should there be any significant difference between the me-
chanical and thermodynamic pressures? This is an unsettling
question, but the kinetic theory of gases offers some guidance
(Hirschfelder et al., 1954; Vincenti and Kruger, 1965; Chap-

SAn alternative statemeni of Stokes’ hypothesis is that the average normal
viscous stress is zero.

In an unpublished report (not cited by Emanuel and Argrow, 1994), Fred-
erick S. Sharman might have been the first to use shock thickness data to es-
timate e Sécond coefficient of viscosity of nitrogen (NACA TN 3298, 1955).
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The mechanical pressure 18
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lecular attraction d?:d' for liquids and dense gases. OG-
tional on. For dilute monatomic  gases. the tra -
onat energy is the only mode of molecular energy. The me
Chamcal.and thermodynamic pressures are, therefore, the same
state variable anfi the bulk viscosity is zero as indicated carlier.

For polyatomic gases, the mechanical and thermodynamic
pressures are not necessarily the same. The bulk viscosity 18
expected to be important if the relaxation (or adjustment) time
Qf the molecules is not small compared to the characteristic
time F)f the flow. Consider, for example. the passage of a poly-
atomic gas through a shock wave. Vibrational modes of mo-
lecular energy are excited at the cxpense of the translational
modes, and the nonzero bulk viscosity is a measure of the cor-
responding transfer of energy. In this case, the gas within the
shock is not in thermodynamic equilibrium, the bulk viscosity
is proportional to the longer relaxation time for the relevant
internal (nontranslational) modes to come to equilibrium, and
the mechanical pressure is no longer equal to the thermody-
namic pressure.

Classical kinetic theory is, of course, not applicable to lig-
uids and dense gases. The bulk viscosity for those situations
is determined primarily from experiment and is found, despite
the considerable scatter in the data, to have a finite positive
value. The dense gas theory (Chapman and Cowling, 1970)
provides some support for this result.

Emanuel (1990) has recently pointed out that reliance on
Stokes hypothesis may not always be warranted. He cites the
example of hypersonic entry into certain planets where the at-
mosphere consists largely of carbon dioxide.” In such cases,
lack of knowledge of A might be especially detrimental to the
accurate computations of relevant engineering quantities such
as the skin friction or heat transfer rate.

From room temperature acoustic attenuation data, Tisza (1942)
has concluded that the bulk viscosity (A + 2/3u) for CO, is
three orders of magnitude larger than its first viscosity coef-
ficient u. Truesdell (1953) concurs with this result. Acoustic
attenuation and other processes in gases with internal molec-
ular structure can involve thermodynamic nonequilibrium as
indicated earlier, and such effects may be modeled by a finite
bulk viscosity as was done by Emanuel (1990) for a relaxing
polyatomic gas.

By including a nonzero bulk viscosity as a correction term
in a general, nonsimilar formulation of hypersonic laminar
boundary layers, Emanuel (1992) has computed (for the class
of planetary problems cited earlier) a heat transfer rate well in
excess of that based on Stokes’ hypothesis prediction. There
is also an effect on the pressure which changed measurably
across' the wall layer, in contradiction to a key result of clas-
sical boundary layer theory. No significant effect on the skin
friction was reported.

In summary, much confusion still remains in the literature
150 years after Stokes assumed that the bulk viscosity is zero.
In general, it is not. The thermodynamic and mechanical pres-
sures differ when the fluid undergoes nonequilibrium ther-
modynamic processes. Considerable scatter is present in ex-
isting data, and it is hoped that future experiments would provide
more accurate estimates of the bulk viscosity for liquids and
polyatomic gases.

The author would like to acknowledge the fruitful discussion
with Professor George Emanuel, the University of Oklahoma,
who has pointed out to me several valuable references, and to
thank the three anonymous reviewers who gently showed me

"In a boundary-layer formulation, the bulk viscosity has a third-order effect.
In order to demonstrate a r able effect, E 1 chose the extreme. ex-
ample of hypersonic flow of a gas with a very large bulk viscosity. ~—=-==—-
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how little I knew about this rich subject. My colleague at Notre
Dame, Professor Joseph M. Powers, has read the manuscript
at several stages of its development. The comments made by
all five contributed significantly to the present version of my
unanswered question in fluid mechanics.
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Comments on the Policy Statement on Numerical Accuracy

Journal of Fluids Engineering, Vol. 115, 1993, pp. 339-340
B. P. Leonard'

The Journal of Fluids Engineering Editorial Policy on nu-
merical accuracy has sparked some lively debate, both in and
out of print. This, in itself, is a positive development, as an-
ticipated by the editors (Freitas, 1994). One of the more con-
troversial aspects of the Policy is the effective “banning” of
largely first-order-based methods. Since I was involved in the
latter stages of the drafting of the Policy, and have been ad-
vocating a halt to the use of first-order methods for about twenty
years, I would like to make a few comments in support of this
aspect of the Policy. In an ideal world, I would agree with
Professor Ferziger (1994) that we should not mandate the ex-
clusion of any particular technique; referees should be able to
filter out the “foolishness.” But first-order methods are cur-
rently so wide-spread that “drastic” measures seem to be called
for. (In an ideal world, one might expect automobile drivers
to act wisely; in reality, rules of the road are needed to deter
foolishness.)

Twenty-odd years ago, first-order methods could be of use
in giving semi-quantitative results that enhanced understanding
of fluid processes. My first encounter with CFD involved a
simulation of a magnetic shock tube (Schneider et al., 1971).
As an initial attempt at understanding this problem, we pur-
posely made use of the inherent artificial viscosity of a first-
order convection scheme to replace the rather complex trans-
port processes within the shock and magnetic piston. The results
were good enough for the experimentalists to be able to iden-
tify what they were measuring. [We jokingly referred to this
as the “good-enough” method, not realizing the close rela-
tionship to an earlier (and subsequently very well-known) first-
order “shock-capturing” method of a similar sounding name
(Godunov, 1959).] Today, this paper would not be acceptable
for publication in the Journal of Fluids Engineering. But a
modern simulation would use a higher-order nonoscillatory
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method together with some simple (e.g., constant) effective
viscosity (diffusivity) model. The results might be almost
identical, but the philosophy is significantly different: we (rather
than the grid-dependent differencing scheme) are controlling
the transport model.

The problem with first-order-based methods is not just that
they are somewhat less accurate than higher-order methods
(actually, they are incredibly less accurate). More significant
is the fact that they are not simulating the correct physical
problem. The inherent artificial viscosity (diffusivity) of first-
order upwinding (proportional to the local velocity and the mesh
size) is well known and well documented. Why do people con-
tinue to use first-order-based methods? Apparently because of
the philosophy that “any solution is better than none.” As has
been pointed out (Ferziger, 1993), this is a potentially “dan-
gerous” attitude—one that needs to be countered with some
common sense “rules of the road.” First-order-based methods
are typically used in high-convection flow regimes—involving
very high grid Reynolds (Péclet) numbers—for which “clas-
sical” central-difference (or equivalent finite-element or finite-
volume) schemes often blow up! The first-order simulation is
equivalent to a central-difference simulation of a nonphysical
problem in which the component grid Reynolds (Péclet) num-
bers are artificially manipulated and never allowed to exceed
2.0. This, of course, is (fairly) well known for schemes using
first-order upwinding for convection together with central
methods for diffusion. It also applies, however, to the popular
Hybrid schéme (Spalding, 1972), the even more popular power-
law scheme (Patankar, 1980), and the exponential-differencing
scheme on which they are based (Allen and Southwell, 1955),
when these methods are used out of the rather restrictive con-
text for which they are valid (steady, quasi-one-dimensional,
source-free flow, closely aligned with a grid coordinate). The
most common misapplication of exponential-based schemes is
to multidimensional flows oblique or skew to the grid. This
introduces massive artificial “cross-wind” diffusion. Typi-
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