
A Self�Starting Guide for
the IBM SP�

Roger B� Sidje
�rbs�maths�uq�oz�au�

High Performance Computing Unit
University of Queensland

Australia

January ����

Contents

� INTRODUCTION �

� GETTING STARTED �
��� Coding�Tuning �
��� Compilation�Execution �
��� Interpretation of Results �
��� Further Reading �

� ARCHITECTURE OF THE SP� �
��� Overview �
��� Processors ��
��� Interconnection Network ��
��� Interconnection Protocols �	

� SOFTWARE AVAILABLE ON THE SP� ��

��� Application Development �

��� Scienti�c Libraries ��
��� Commercial Applications ��

� PROGRAMMING EXAMPLES ��
	�� Reduction Operation ��
	�� Polynomial Evaluation ��
	�� Recursive Doubling ��
	�� Sieve of Eratosthenes ��

� USING LOADLEVELER ��

	 TROUBLESHOOTING ��

� CONCLUSION ��

� APPENDIX
 OFFICIAL MANUALS ��

�

� INTRODUCTION

The purpose of this report is to supply those starting using the IBM Scal
able POWERparallel supercomputer with an introductory selfstudy note�
This document is neither intended to replace the o�cial manuals accompa
nying the supercomputer nor the wide assortment of documents on the Web
with their famous hypertext links� on the contrary� it is hoped that it will be
used as a complementary beginning guide� For the ease of the presentation�
we focus on one programming language only� namely Fortran� But clearly�
since we are dealing mainly with high level concepts rather than subtle al
gorithmic details� C or Pascal users may easily �nd their way by using the
appropriate syntax and�or command call�

This guide was written in the aim of supplying you with enough materials
that will enable you to achieve the following goals�

� You are able to use the SP�

� You have understood how it works

� You are well equipped to start reading the o�cial manuals�

If you have constructive remarks that can improve the document� please
don�t hesitate to send them to rbs�maths�uq�oz�au so that they may be
incorporated in later editions�

� GETTING STARTED

Let us consider the typical case of a user �possibly familiar with other
parallel systems� who would like to execute in parallel the program shown
on Page � on several processors of the SP��

We would like to answer the main and engrossing question� What shall
s�he do� We assume that the user knows the basic preliminary steps to log
in �telnet sp��qpsf�edu�au� etc�� The SP� AIX working shell is by default
the Korn Shell �ksh� but the C Shell comes out when typing� csh� Most
of IBM manual examples are related to ksh hence it worth staying with it�
The main steps around the execution of the program are identical to those
in use in any other environment either monoprocessor or multiprocessor as
shown in Figure ��

�

C������ Initiatory example���

integer length� igot� ileft� iproc� iright� nproc� lastproc

integer msgTYPE� msgINFO

double precision tok

integer ISIZE� RSIZE� DSIZE� CSIZE� ZSIZE

parameter� ISIZE��� RSIZE��� DSIZE��� CSIZE��� ZSIZE��	

parameter� NPROCMAX���

integer DONTCARE� ALLMSG� NULLTASK� ALLGRP

integer nbuf��
� nelem� nqtype

C������ Header to pick�up wild card values���

nqtype �

nelem � �

call mp�TASK�QUERY�nbuf� nelem� nqtype

DONTCARE � nbuf��

ALLMSG � nbuf��

NULLTASK � nbuf�

ALLGRP � nbuf��

C������ Program body starts here���

call mp�ENVIRON� nproc�iproc

lastproc � nproc��

iright � iproc � �

ileft � iproc � �

if � iproc�eq�lastproc
 iright � �

if � iproc�eq��
 ileft � lastproc

msgTYPE � �

do igot � ��lastproc

if � igot�eq�iproc
 then

print���I am node��iproc��� I got the token��

if � iproc�ne�lastproc
 then

print���My right neighbour is waiting for it� Press �Enter��

read�

call mp�BSEND� tok�length�DSIZE�iright�msgTYPE

endif

else

if � igot�ne�lastproc
 read�

if � igot�eq�ileft �and� iproc�ne��
 then

call mp�BRECV� tok�length�DSIZE�ileft�msgTYPE�msgINFO

endif

endif

call mp�SYNC� ALLGRP

enddo

END

�

compilation/execution

interpretation of results

coding/tuning

Figure �� Lifecycle of a program�

��� Coding�Tuning

In our actual case� the code �as listed on Page �� being already devised�
it su�ces to type it in� If you are familiar with display editing with vi

or emacs ��opt�emacs�bin�emacs� then you may use them directly on the
SP� otherwise� you can edit the program using your favourite editor on your
workstation and transfer it on the SP� by using ftp sp��qpsf�edu�au� We
assume from now that it is saved as a �le named prog�f� A pack containing
all the source listings appearing in this brochure can be retrieved by anony
mous ftp under the URL� ftp�dingo�cc�uq�oz�aupubsp�guide�tar�Z
and it may also be provided upon request to the author�

��� Compilation�Execution

This is the main stage of interest to us� Compiling is done straightforwardly
by entering the command�

mpxlf prog�f �o prog

�
�

�
�

Then� prior to executing the program� a set of preliminary steps are
required mainly to setup the execution environment� A simple way to pro
ceed for the �rst time is to be satis�ed with default values preset to the
environment variables� In this case you need only to�

�a� supply the number of nodes desired

�b� supply the list of nodes on which the parallel program will run�
�

Point �a� can be done by using an appropriate command line option
when invoking the program� Point �b� is done by creating a �le whose name
is host�list and whose content is for example�

� host�list � available nodes in the environment

s�n�

s�n��

s�n��

s�n�	

s�n��

s�n��

s�n��

s�n��

s�n��

s�n��

s�n�

s�n��

s�n��

s�n�	

s�n��

s�n��

s�n��

s�n��

s�n��

s�n��

The host�list can contain more nodes than you plan to use� In this
way you can keep the same host�list for subsequent programs� The nodes
e�ectively used will be those appearing at �rst in host�list�

Remark This technique of allocation is known as speci�c node allocation� The dual
technique to this one is referred to as non�speci�c node allocation where
instead of specifying explicitly the set of nodes desired� you just indicate
pools in which the amount of nodes required will be automatically picked by
the parallel operating system�

The execution is done by entering the command�

prog �procs �

�
�

�
�

or

poe prog �procs �

�
�

�
�

	

POE stands for Parallel Operating Environment� it is an interface with
the parallel system� Further details regarding command line options ap
plicable when invoking a parallel program are available on poe man pages
�there are some thirty options��� The whole Parallel Environment �PE� in
cludes other X Windows oriented tools such as the Program Maker Array
�pmarray�� Parallel Debugger �pdbx� xpdbx�� Vizualization Tool �vt��
InfoExplorer �info��

��� Interpretation of Results

For completeness we will just say what the above program does� it simulates
a revolution of a token around a ring�

��� Further Reading

O�cial manuals are available in postscript �les across several directories
starting from� optdoc�

You can transfer them to your local site and consult them using a
postscript browser such as ghostview �not available on the SP��� Of course
due to their required space� the transfer is the last solution to be adopted�
Please check if someone else in your group has done it previously�

Hardcopy can also be obtained on request to Wilfred Brimblecombe
whose email is� wilfred�cc�uq�oz�au�

A listserver for QPSF IBM SP� users has been set up for discussions
related to the supercomputer� It represents an open forum where QPSF SP�
community users share ideas �and problems��� If you have not subscribed as
yet� please send a mail to Wilfred Brimblecombe for more details� The QPSF
Home Page on World Wide Web �URL� http���www�qpsf�edu�au� leads to a
great deal of useful information and links� as well as to o�cial tutorials set
up by IBM�

A critical problem with selfstudying results from the myriad of o�cial
documents which when accumulated together yield thousands of pages� The
�gure displayed hereafter suggests a reading path� We have deliberately re
stricted our choice according to our prespeci�ed objectives� A more detailed
list of manuals is supplied in the appendix of the present note�

�

LoadLeveler User’s Guide

Optimization and Tuning Guide

Installation, Administration, and Diagnosis

Fortran Compiler User’s Guide

Parallel Subroutine Ref.

Operation and Use

Programming Primer

prof/gprof xdbx pmarray vt

Fortran Language Reference ESSL

PVMe

Figure �� Suggested path for further reading�

Major documents represent hundreds of pages and obviously� it is unwise
to attempt reading them with one stroke� Instead� crossconsultation is suit
able and e�cient� Plain boxes indicate books containing chapters necessary
or strongly recommended while dash boxes enclose books whose reading is
not a prerequisite for further continuation� However this is just a matter of
the amount of time you would like to invest since some of these books deal
with relevant topics �see below�� The vertical stacking shows a preferred
precedence whereas the horizontal juxtaposition exhibits books which can
be read in any order�

AIX Parallel Environment Programming Primer ���
This is a pleasant document� In any case� it should be read at �rst� It supplies an
interesting initiation to message passing functions and illustrates how to parallelise
programs�

AIX Parallel Environment Operation and Use
The �rst chapter is the one of main interest at a start� it contains detailed description
of parallel environment variables� Appendix A�pp��	
���� and B�pp������� will be
useful for cross�consultation�

AIX XL FORTRAN Compiler�
��� Language Reference
The inevitable reminder book�

AIX XL FORTRAN Compiler�
��� User�s Guide
Describes how the compiler works and its various options� A good developer needs
to know what the compiler does and �nd out how to use it e�ciently�

AIX Parallel Environment Parallel Programming Reference
Describes the calling syntax of Message Passing Library �MPL� functions�

AIX PVMe User�s Guide and Subroutine Reference
Describes how to work with PVMe�

AIX Optimization and Tuning Guide
The material presented in this book is excellent�

AIX Parallel Environment Installation� Administration and Diagnosis
This book contains literal explanations associated to error codes� Errors are un�
avoidable� Sometimes� you may �nd insights here� Sometimes� not�

AIX LoadLeveler User�s Guide
How to submit a batch job using a graphical interface� Also touched lightly in AIX
Parallel Environment Operation and Use�

prof�gprof� xdbx� pmarray� vt
The materials dealing with these tools are spread out across the other books� If you
have walked along the above documents� you can pick out what you want without
di�culty� The reliable technique is to �Do It Yourself��

� ARCHITECTURE OF THE SP�

��� Overview

The IBM SP� is a distributedmemory multicomputer� i�e�� it consists of a
collection of nodes which can execute distinct instruction streams in parallel�
each node is a computer in its own right and thus possesses a private local
memory and related caches� a private local disk space� a copy of the oper
ating system� etc� Nothing is shared �except interconnection channels and
crossmounted �les��� The operating system is AIX����� which respects the
standard de�nition of UNIX and other open software environment standards
�OSF� IEEE� ISO� POSIX� X�Open� etc��

Basically� a program to be executed is �rst copied to the local memory
of each individual node and a �ringsquad signal is set o� to start simulta
neously the computations which then a�ect the local variables within each
node� This is know as SPMD �Single Program Multiple Data� model� It is
however possible to operate under the MPMD �Multiple Program Multiple
Data� model which means that di�erent programs are loaded in each indi
vidual node at the beginning� Practically� this is achieved by just using an
appropriate command line option�

�

poe �procs � �pgmmodel mpmd �cmd�le mpmd�list

�
�

�
�

where mpmd�list is a �le containing the programs that will be loaded in each
single node appearing in the host�list with respect to the same order�

Interconnection Network

Disk

Memory Memory Memory

Disk Disk

PPP

Figure �� Distributedmemory environment

Parallel processing involves cooperation of separate nodes to complete
a common global task� Therefore a mechanism to exchange data between
processors must be embedded in the parallel environment� This is known
as interprocessor communication� On the IBM SP�� the model of interpro
cessor communication used is message�passing which means that data are
transferred explicitly thanks to function calls within the application� The
art of distributed parallel programming resides in a proper manipulation of
interprocessor communication� A variety of functions are supplied for this
purpose and they are linked together into a highlevel library referred to as
MPL �Message Passing Library� which is automatically available when de
signing a parallel application� Examples of such functions include mp�BSEND�
mp�BRECV used earlier� MPL functions can be either synchronous or asyn�

chronous�
A communication is said to be synchronous or blocking if the process

issuing the call is blocked until completion of its request� However this is
just a local point of view� Indeed� saying that a blocking send �mp�BSEND�
is completed in the sender node simply means that all the data to send
have departed and it certainly doesn�t imply that they have arrived at their
destination� It doesn�t ensure that they will arrive �especially if the user
has speci�ed a bad destination node or if a subsequent hardware failure
emerges��

�

A communication is said to be asynchronous or non�blocking if the pro
cess issuing the call returns immediately while the communication mecha
nism takes place in the background� Asynchronous functions require more
careful attention but a proper use of them can sometimes o�er signi�cant
improvements to an application�

To relieve computational processors of message handling� message co�

processors are usually attached� On the IBM SP�� the extra work generated
by communication is entrusted to a High Performance Switch �HPS� which
in fact is a complex fabric playing several roles �routing� temporary bu�ering�
error detection�correction� etc��

Remark It is more reliable and comprehensive to relate synchronous and asynchro
nous functions to the state of the message bu�er �i�e�� the variable in your
code which is actually the argument of the communication function�� In a
program� the next statement following a call to a synchronous function can
interact immediately on the message bu�er �without risk of reading�writing
corrupted data� whereas with an asynchronous call� it cannot� additional
inspections must be carried out to check whether the message bu�er is safely
manipulable or not�

Roughly speaking� one can classify MPL functions into the following
categories�

� messagepassing� two processes are implied �e�g�� mp�BSEND� mp�BRECV�

� collective communication� more than two processes are implied �e�g��
mp�SYNC� mp�BCAST�

� process management� functions to examine�manipulate a group of
processes �e�g�� mp�TASK�QUERY� mp�ENVIRON�

� utilities� functions to format messages �e�g�� mp�PACK� mp�UNPACK�

Remark Other communication libraries are also available� For instance� PVMe� the
IBM SP� version of the wellknown package PVM �Parallel Virtual Ma
chine�� The distinctive feature is that the underlying implementation relies
upon the optimised messagepassing functions exploiting the High Perfor
mance Switch � discussed later� Hence PVMe can be used as an e�cient and
reliable platform for the development of a standard PVM program which will
be installed later on a cluster of possible mixed type machines�

��

The physical microprocessor chips present in each node are not neces
sarily identical� in fact they are actually heterogeneous and can be of any
type within the following POWER �Performance Optimized With Enhanced
Risc� superscalar family� thin POWER processors� �� MHz� thin POWER�
processors� �� MHz� POWER� processors� �� MHz� The thin�wide designa
tion� so to say� comes mainly from their external appearance� the required
space for a wide processor is twice the one of a thin node� Nevertheless�
wide nodes achieve better performances than thin nodes� Their technical
attributes are depicted below�

Thin
� MHz Thin

 MHz Wide

 MHz
Microprocessor POWER POWER� POWER�
Frequency
���

��

��
Peak performance ��� M�ops �

 M�ops �

 M�ops
Instruction cache �� Kb �� Kb �� Kb
Data cache �� Kb
� Kb �� or ��
 Kb
Memory
� � ��� Mb
� � ��� Mb
� Mb � � Gb
Memory bus
� bits
� bits �� or ��
 bits
Memory bandwidth ��� Mb�s ��� Gb�s
Internal disk � � � Gb � � 	 Gb � � � Gb

Table �� Technical features of existing processors�

Thin

 MHz Wide

 MHz Wide

 MHz
� nodes� ��� nodes� �� login nodes�

Microprocessor POWER� POWER� �
Data cache
� Kb ��
 Kb �
Memory �� Mb �� Mb �
Memory bus
� bits ��
 bits �
Internal disk � Gb � Gb
 Gb

Table �� Con�guration for the QPSF SP� installed at Gri�th University�

The ��node of the QPSF IBM SP� are subdivided into two clusters�

�i� the thin cluster �� nodes� and

�ii� the wide cluster ��� nodes��

The remaining � wide nodes are used by the Operating System as entry
points to the supercomputer� i�e�� when you log in� you are welcomed by one
between these two nodes� The actual con�guration causes the service node
to be allocated on a weekly �or monthly� or randomly�� rotation�

��

It is possible to run more concurrent processes than the actual number of
physical processors� this is referred to as task overlapping and it is completely
transparent to the user� Practically� to accomplish overlap on a given node�
it su�ces to duplicate this node in the host�list �le� Even with task
overlapping� the distributedmemory paradigm is not violated� Whether
they run on the same physical node or not� parallel processes exchange their
data through messagepassing�

��� Processors

DevicesCPU
Registers &
I/O interface

(128 Mb)
Main Memory

Instruction Cache Unit
(32 Kb)

Data Cache Unit
(64 or 256 Kb)

Branch Processing Unit
(BPU)

Floating-Point Unit Fixed-Point Unit

(FPU) (FXU)

Figure �� Block Diagram of a POWER� Processor�

The understanding of the structure of processors can help in organis
ing and tuning computations to use them e�ciently� The design and the
technology of the POWER� processor yield a valuable processing element
for numerically intensive applications arising in scienti�c computing and
engineering as well as in multiuser applications coming from commercial
contexts� It consists of three functional units� the branch processing unit

�BPU�� the �xed�point unit �FXU� and the �oating�point unit �FPU�� The
BPU acts as a scheduler� it scans the instruction stream from the instruc
tion cache� then depending on the nature of the actual instruction� it is
dispatched to the appropriate unit� For instance nonbranching instructions
are forwarded to the FXU or the FPU whereas branching instructions are
performed by the BPU itself� The FPU handles �oatingpoint operations

��

involving data loaded in �oatingpoint registers� The FXU handles inte
ger arithmetic� string manipulations� I�O� and functions that involves data
loaded in �xedpoint registers� Besides� it performs register load�store for
both the FPU and itself� Along with its task of dispatcher� the BPU exe
cutes all operations that generate jumps to other locations within the code
and those dealing with condition logic�

The superscalar feature of the POWER� processor makes the BPU ca
pable of scheduling the simultaneous execution of up to six instructions per
clock cycle� one branch instruction� one condition register logic instruction�
two �xedpoint instructions� and two �oatingpoint instructions� In addi
tion� the FPU can perform in one cycle the dual operations consisting of a
�oating�point multiply�add which merely stands for two operations� These
functionalities are fully exploited if

�i� the compiler is well designed �to organise instructions adequately��

�ii� both the instruction stream and the data stream �ow out in a contin
uous way �to keep the functional units busy��

The point �i� is usually took for granted but unfortunately for the later
point� di�culties are frequent� One has to su�er the socalled �data or
instruction� cachemisses and their related cascading interferences� Memory

hierarchy and set associative caches are hardware techniques that have been
implemented to reduce their damaging e�ects�

Regarding the programmer� to minimise the number of interruptions�de
lays in the execution stream� it is of primary importance to adopt program
ming practices that help the compiler generating the most suitable code�
These include� among others� the use of vendor supplied libraries� careful
manipulation of arrays� careful organisation of loops� Software tools referred
to as pro�lers are supplied to help the developer detecting hot spots�

When the code have been design with proper guidelines in mind� the
use of the optimising preprocessor VAST �or KAP� and the correct use of
appropriate compiler optimising �ags may contribute signi�cantly in achiev
ing better performances� The way of doing so is usually preferred over hand
tuning because it is safe� updating and maintenance are easy� and beside all
it renders a performance�e�ort ratio superior to fastidious and error prone
hand tuning�

Let us end this section by mentioning that� among many other features
of the POWER� processor� the square root instruction is performed in hard
ware�

��

POWER Pentium Super PA Alpha POWER POWER�
PC
�� Sparc ����
IBM Intel Sun HP DEC IBM IBM

MHz

 ���
� ��� ���
���
���
MFLOPS

 ��� ��� ��� ��� �

int	�
��
 ��� �	 ��
 ��
�� ���� ����

fp	� ���� ��
 ���� ��� ����� ����� ��	��

Table �� Comparisons with a few other processors�

��� Interconnection Network

The key element to the interconnection network is the High Performance
Switch �HPS� which is in charge of handling message passing among proces
sors during runtime of parallel applications and which can also be used for
fast data �le transfers� The HPS includes the hardware boards �switch mod
ules� adapters� DMA support� as well as the software control mechanisms� It
provides an alltoall internode connection �each node is connected to all the
others�� It contains redundant physical switchboard elements �to tolerate
hardware failures� and it supplies multiple paths between nodes �to tolerate
congestion and faulty components� this is also known as adaptive routing��

The HPS design and functionalities yield an interconnection network
which is multi�stage� omega� packet�switch� bu�ered�wormhole�

The multistage feature is intended to keep the amount of bandwidth
available per processor constant as the system expands� The actual design of
the HPS guarantees that the alltoall interconnection still remains in case of
any further extension� The SP� is technically scalable because its bisectional
bandwidth scales linearly with the number of nodes in the system� The
bisectional bandwidth is a common measure to characterise the scalability
of a network topology� it represents the �average� total possible bandwidth
between two equal halves of the system� The bisectional bandwidth of the
HPS scales linearly as most multistage networks� crossbars and hypercubes
do� On the other hand for a grid� the bisectional bandwidth scales with the
square root of the number of nodes whereas for a ring� it remains constant�

The SP� network topology is classi�ed as an omega network because
its interstage connection is regular� i�e�� the lattice of wires is identical
across switch modules� An omega network allows a broadcast using one
pass through the switch�

The packetswitch is a data �ow transfer mechanism opposite to circuit
switch� The circuitswitch method requires to reserve a path in the network

��

which is used solely by one message for the duration of its transfer� The
path is unreserved at the end of the transmission by a control code attached
to the tail of the message� It follows that long messages can monopolise the
network to the detriment of short and possibly crucial messages� In contrast�
the packetswitch method split the message into selfrouting packets� each
packet competing for its own transfer� Packets of di�erent messages can
interlace on a path�

The wormhole routing strategy is opposite to storeandforward� It con
sists in breaking up each packet into �its ��ow control digits� which are
hardwarerouted in a pipelined fashion� This yields a latency almost in
dependent of the distance between the sender and the receiver� The store
andforward strategy requires to assemble the packet hopbyhop completely�
Thus its latency is proportional to the number of hops along the path� Its
was mainly used in the earlier ages of multicomputers� Now saying that a
wormhole routing is bu�ered means that the component �its of a packet can
be temporary bu�ered in switch elements depending on the actual network
tra�cload� It is worth noting that the interlacement of packets resulting
from the packetswitch transfer method entangles entire packets not �its�

��� Interconnection Protocols

Telnet NFS MPL PVMeother clients

Sockets
User

Kernel

UDP

IP

IP driver
Diagnosis

Initialisation
Recovery

HPS

TCP

IP driver

Adaptor

LAN

Adaptor

US

Figure 	� Network supports for protocols�

�	

There exists two main types of communication protocol that can be used
by a parallel application� IP �Internet Protocol� or US �User Space Proto
col�� The message passing library �MPL� exists in two implementations�
each corresponding to a protocol� Their interfaces �synopsis of function
calls� are identical and as a result� to work with a particular protocol� it suf
�ces to specify the e�ective implementation to be bound with� The choice
can be decided explicitly by the user with a poe command line option�

poe prog �eulib us

�
�

�
�

Also� the desired library can be statically linked to the program at the
compilation stage by using the compiler �ags �ip or �us� When the user ig
nores these speci�cations �while compiling and while invoking the program��
the IP library is dynamically linked by the operating system to the program
at its invocation�

The US library is a specialised library designed to exploit the features of
the HPS intensely� It o�ers the lowest latency and the maximum bandwidth�
Its use is strongly recommended for applications demanding extensive com
munications� However� it does not permit task overlapping�

The IP library is a general purpose library which may not interact with
the HPS� It is the default library for SP� systems not equipped with a
native HPS� Besides� it can allows us to run a parallel application across
two separate SP� systems�

hardware US �measured� IP �measured�
latency ���ns�switch stage ��	��s
��s

bidirectional
bandwidth
�Mb�s ��	�Mb�s ��	�Mb�s

Table �� Performance of protocols�

� SOFTWARE AVAILABLE ON THE SP�

Becoming drawn into programming a multicomputer depends heavily on
its parallel environment and vendors of multicomputers have devoted consid
erable e�orts to provide userfriendly operating environments� There exists

��

several software packages on the IBM SP� intended either for the system
administrator� the application developer� or the lastend user� We will fo
cus mainly on the laters but let us mention that for system administration�
a package referred to as AIX PSSP �AIX Parallel System Support Pro
grams� contains a suite of tools allowing the system administrator to pilot
the environment in an uni�ed way using a unique control point� a RS�����
control workstation which is mandatory for any SP� environment� System
management includes among others� hardware maintenance� con�guration�
user accounts� system accountings� error detection and diagnosis� batch job
management� etc�

��� Application Development

The application developer will usually log in� do some editing� compilation�
debugging� execution� Editing can be done away from the QPSF SP�� the
program being transferred later� Unfortunately the cross�environment de
velopment is not available� A crossenvironment allows a developer to do all
the preliminary steps away from the target machine and access the super
computer just for the de�nitive execution stage�

Compilers are provided to support the following programming languages�
Fortran �xlf�mpxlf�� C �xlc�mpcc� and Pascal �xlp�� extended with distribu
tedmemory messagepassing functions and some extra features of IBM�
Also� a compiler for the objectoriented language C�� �xlC�mpCC� is sup
plied and the fortran compiler supports the entire speci�cation of Fortran
��� For performance analysis� pro�lers are supplied �prof�gprof� and some
XInterface software packages have been installed�

Program Maker Array �pmarray�
This is a tool to visualise thanks to a graphical array� the active evolution
of a parallel program� Special �marker� should be add in the source code
to activate�light entries of the graphical array�

LoadLeveler �xloadl�
This is a job manager tool� It supplies a graphical interface over the
commands necessary to submit and manage batch jobs� Its use is highly
recommended for it will avoid you from su�ering current unsteadiness
in the system �see x � and x
 hereafter��

Visualization Tool �vt�
This tool is for postmortem performance analysis of parallel programs�

�

It supplies graphical displays �histograms� diagrams� etc� for quantifying
and interpreting intercommunication tra�c� I�O� CPU utilisation� etc�

An optimising preprocessor �VAST� and a parallel symbolic debugger
�pdbx�xpdbx� are available� Additional information on software as well as
on other subjects not discussed in this notice are retrievable online through
standard Unix man pages or thanks to an ergonomic hypertext document
browser known as InfoExplorer �see the �le �opt�doc�README�� To date�
some documents may not be accessible since their corresponding InfoEx
plorer format have not been installed as yet� Provided that the DISPLAY

environment variable is set adequately� the command�

info �l pe

�
�

�
�

pops out pretty graphical window menus with hypertext links to SP� Parallel
Environment documents�

��� Scienti�c Libraries

For the development of numerically intensive applications� IBM provides
a large amount of routines that have been optimised for its RS����� ar
chitecture� These �nonparallel� routines are grouped together into high
performance �netuned scienti�c libraries� These include�

� The wellknown Basic Linear Algebra Subprograms �BLAS� compiler
�ag� lblas� which deal with vectorvector operations �BLAS��� matrix
vector operations �BLAS�� and matrixmatrix operations �BLAS���
The BLAS set is automatically provided by IBM upon purchase of its
supercomputer� But this is not the case for ESSL�

� The Engineering and Scienti�c Subroutine Library �ESSL� compiler
�ag� lessl� supplies mathematical routines for linear algebra� eigensys
tem analysis� FFT� sorting and searching� interpolation� quadrature�
etc� BLAS is implicitly embedded into ESSL� In addition� the opti
mising preprocessors can automatically recognise code sections that
can be replaced by appropriate ESSL library calls� A subset of ESSL
matches routines available in the public domain library LAPACK �Lin
ear Algebra PACKage��

��

��� Commercial Applications

Other software packages exist or are about to be ported� These include
software for data analysis� decision support� database management and other
multiuser applications intended for commercial environments�

There are other software such as NAG Fortran� Linda� Forge� OSL� etc�
These presentations are for the sake of the information� In addition not all
the programs running on the SP� have been purchased�

� PROGRAMMING EXAMPLES

��� Reduction Operation

This example illustrates how to perform a binary reduction� More speci�
cally� given a vector v � �v�� ���� vn and an associative operation �� we would
like to compute r � v� � v� � � � � � vn in s � dlog��n�e steps� The serial algo
rithm r � v�� r � r � vj � j � �� �� ���� n� is worthless in our parallel context�
A more promising organisation of calculations is portrayed by the compu
tational tree in Figure �� The problem is to monitor processors interplay
when n is an exact power of � or not� In the �rst proposed code� we require
n to be an exact power of �� but this constraint vanishes in the second im
plementation� We set � to � and v is a real nvector whose components are
randomly generated� This is merely a sketch of how an associative pairby
pair manipulation may be carried out over a set of arbitrary objects in a
logarithmic number of steps� It is also worth mentioning that if the actual
number of processes is less than n� contiguous blocks can be evaluated prior
to the reduction�

1 2 3 4 5 6 7

Figure �� Binary reduction tree�

Remark Compiling with 	D �debugging� enables the execution of Dstatements� This
will allow you to review that the number of send coincides with the number
of receive and also that they can be grouped into pairs involving suitable
nodes� The reduction operation is also called the fan�in or tree operation

and it is performed by the builtin function mp�REDUCE�

��

Binary Reduction for n exact power of ��

C��� This program implements the fan�in algorithm �tree operation
 for the

C��� global sum of n values� n � number of processors� must be a power of ��

C��� rbs�maths�uq�oz�au � High Performance Computing Unit � January� ����

C��� University of Queensland � Australia�

implicit double precision� a�h� o�z

integer iproc� nproc� msgTYPE� msgINFO

integer ISIZE� RSIZE� DSIZE� CSIZE� ZSIZE

parameter� ISIZE��� RSIZE��� DSIZE��� CSIZE��� ZSIZE��	

parameter� NPROCMAX���

C��� Program body starts here���

call mp�ENVIRON� nproc�iproc

C��� Check if the number of processors is an exact power of ����

nstep � int� dlog�dble�nproc

�dlog����d�

if � ���nstep�ne�nproc
 then

print���Error� The number of nodes is not a power of ���

call mp�STOPALL� ��

endif

D if � iproc�eq��
 print���Number of steps���nstep

C��� Get a random value in each processor���

seed � iproc��

call srand� seed

val � rand�
 � or �iproc to check for correctness

print���Proc���iproc�� value ���val

C��� Global sum in log� steps���

idle � �

igap � �

gsum � val

msgTYPE � �

do istep � ��nstep

if � mod�iproc���igap
�ne��
 then

D print���Proc���iproc�� send to���iproc�igap

call mp�BSEND� gsum�DSIZE� iproc�igap� msgTYPE

idle � �

else

D print���Proc���iproc�� recv from���iproc�igap

call mp�BRECV� val�DSIZE� iproc�igap� msgTYPE�msgINFO

gsum � gsum � val

endif

if � idle�ne��
 goto ���

igap � ��igap

enddo

��� continue

if � iproc�eq��
 print���Global sum���gsum

D print���Proc���iproc�� ended�

END

��

Binary Reduction for n arbitrary�

C��� This program implements the fan�in algorithm �tree operation
 for the

C��� global sum of n values� n � number of processors� is arbitrary�

C��� rbs�maths�uq�oz�au � High Performance Computing Unit � January� ����

C��� University of Queensland � Australia�

implicit double precision� a�h� o�z

integer iproc� nproc� lastproc� msgTYPE� msgINFO

integer ISIZE� RSIZE� DSIZE� CSIZE� ZSIZE

parameter� ISIZE��� RSIZE��� DSIZE��� CSIZE��� ZSIZE��	

parameter� NPROCMAX���

C��� Program body starts here���

call mp�ENVIRON� nproc�iproc

lastproc � nproc��

C��� Get the number of steps���

nstep � int� dlog�dble�nproc

�dlog����d�

if � ���nstep�lt�nproc
 nstep � nstep � �

D if � iproc�eq��
 print���Number of steps���nstep

C��� Get a random value in each processor���

seed � iproc��

call srand� seed

val � rand�
 � or �iproc to check for correctness

D print���Proc���iproc�� value ���val

C��� Global sum in log� steps���

idle � �

igap � �

gsum � val

msgTYPE � �

do istep � ��nstep

if � mod�iproc���igap
�ne��
 then

D print���Proc���iproc�� send to���iproc�igap

call mp�BSEND� gsum�DSIZE� iproc�igap� msgTYPE

idle � �

else if � iproc�igap�le�lastproc
 then

D print���Proc���iproc�� recv from���iproc�igap

call mp�BRECV� val�DSIZE� iproc�igap� msgTYPE�msgINFO

gsum � gsum � val

endif

if � idle�ne��
 exit

igap � ��igap

enddo

if � iproc�eq��
 print���Global sum���gsum

D print���Proc���iproc�� ended�

END

��

��� Polynomial Evaluation

Let a polynomial of degree n

s�x� � a� � a�x � a�x
� � � � �� anx

n

where the degree is assumed for clarity to be a multiple of the number of
processors p� i�e�� n � pq� This example illustrates how to compute s�x� in
parallel by breaking up the above series into p partial components as follows

s�x� � a� �
p��X

k��

xqksk�x�

with

sk�x� �
qX

i��

aqk�ix
i�

A substantial parallelism is then introduced as indicated in the following
steps�

�� compute in parallel
s��x� s��x� s��x� � � � sp���x�

�� compute in parallel

xs��x� x�s��x� � � � x�p���qsp���x�

�� compute by reduction

a� � s��x� � xs��x� � x�s��x� � � � �� x�p���qsp���x��

In the proposed code� the coe�cients are set to a� � a� � � � � � an � �
so that

s�x� � � � x � x� � � � �� xn �
xn�� � �

x� �
�

This simple formula can be used to check for correctness�

��

Parallel Polynomial Evaluation�

C��� Program to evaluate a polynomial of degree n � pq� p � number of procs�

C��� rbs�maths�uq�oz�au � High Performance Computing Unit � January� ����

C��� University of Queensland � Australia�

integer iproc�nproc�nbuf	
��msgTYPE�msgINFO�ALLGRP�ISIZE�DSIZE

parameter	 ISIZE�
� DSIZE�� �

integer i� n� k� p� q� qmax

parameter	 qmax�� �

double precision a	�qmax�� x� sk� sx

external D�VADD � vector�addition� supplied function�

C��� Header to pick�up wild card values���

call mp�TASK�QUERY	 nbuf�
�� �

ALLGRP � nbuf	
�

C��� Program body starts here���

call mp�ENVIRON	 p�k �

C��� Get the degree of the polynomial and the value of the variable���

if 	 k�eq� � then

read��n

read��x

print �	�degree� n � ��I����n

print �	�variable� x � ��E��
���x

endif

C��� Node broadcasts now these values to all the others����

call mp�BCAST	 n�ISIZE� � ALLGRP �

call mp�BCAST	 x�DSIZE� � ALLGRP �

C��� Check input values���

q � n � p

if 	 mod	n�p��ne� � then

print���Error� n is not a multiple of the number of nodes��

call mp�STOPALL	 �� �

endif

if 	 q�gt�qmax � then

print���Error� not enough room for coefficients��

call mp�STOPALL	 �� �

endif

C��� What are the coefficients of each partial polynomial���

a	� � �d

do i � ��q

a	i� � ��d

enddo

if 	 k�eq� � a	� � ��d

C��� Horner rule to evaluate each partial polynomial���

sk � a	q�

do i � q������

sk � a	i� � x�sk

enddo

C��� Global sum using the built�in reduction operation���

sk � x��	q�k� � sk

call mp�REDUCE	 sk� sx� DSIZE� � D�VADD� ALLGRP �

if 	 k�eq� � print �	�value� s	x� � ��E��
��� sx

END

��

��� Recursive Doubling

The recursive doubling is an extension of the reduction operation� discussed
previously� where in addition to obtaining a global result� one computes also
partial contributions� More speci�cally� one is interested in

r� � v� � rj � v� � � � � � vj � rj�� � vj � for j � �� ���� n�

This operation is also known as parallel pre�x or scan and is available through
the builtin function called mp�PREFIX� We would like to address its emula
tion� A quick look on Figure � reveals that a reduction treebased method
produces only some of the desired values� Therefore another organisation
must be worked out� Let us de�ne

rj�j � vj � ri�j � vi � � � � � vj � � � i � j � n�

and thus� the wanted values are

r��j � j � �� �� ���� n�

A suitable computational plan is displayed in Table 	 below�

v� � r��� � r��� � r��� � r���
v� v� r��� � r��� � r��� � r���
v� v� r��� r��� r��� � r��� � r���
v	 v� r��	 r��� r��	 � r��	 � r��	
v
 v	 r	�
 r��� r��
 r��� r��
 � r��

v� v
 r
�� r��	 r��� r��� r��� � r���
v� v� r��� r	�
 r	�� r��� r��� � r���
v v� r�� r
�� r
� r��	 r��	 � r��
v� v r�� r��� r��� r��
 r��� r��� r���

Table 	� Evolution of recursive doubling�

At the kth step� k � �� �� ���� there are �k results known� Therefrom a
suitable combination involving known values as well as other intermediate
values is e�ected� this doubles the number of results to ���k � �k�� and
generates other intermediate values useful for the continuation�

��

Recursive Doubling�

C��� This program emulates the recursive doubling over a length�n vector�

C��� rbs�maths�uq�oz�au � High Performance Computing Unit � January� ����

C��� University of Queensland � Australia�

implicit double precision� a�h� o�z

integer iproc� nproc� lastproc

integer msgTYPE� msgINFO

integer ISIZE� DSIZE� NPROCMAX

parameter� ISIZE��� DSIZE��� NPROCMAX���

C��� Program body starts here���

call mp�ENVIRON� nproc�iproc

lastproc � nproc��

C��� Get the number of steps���

nstep � int� dlog�dble�nproc

�dlog����d�

if � ���nstep�lt�nproc
 nstep � nstep � �

D if � iproc�eq��
 print���Number of steps���nstep

C��� Get a random value in each processor���

seed � iproc��

call srand� seed

val � rand�
 � or �iproc to check for correctness

D print���Proc���iproc�� value ���val

C��� Prefix in log� steps���

igap � �

prefix � val

msgTYPE � �

do istep � ��nstep

if � iproc�igap�le�lastproc
 then

D print���Proc���iproc�� send to���iproc�igap

call mp�BSEND� prefix�DSIZE� iproc�igap� msgTYPE

endif

if � iproc�igap�ge��
 then

D print���Proc���iproc�� recv from���iproc�igap

call mp�BRECV� val�DSIZE� iproc�igap� msgTYPE�msgINFO

prefix � prefix � val

endif

igap � ��igap

enddo

��� continue

print���Prefix���iproc��� ��prefix

END

�	

��� Sieve of Eratosthenes

This last example addresses the parallel version of the sieve of Eratosthenes
which is a very old algorithm for �nding prime numbers �by the way� do you
know another algorithm� I will be interested in hearing from you�� This
example display a glimmering of how the master�workers interaction can be
monitored�

The serial version of the algorithm starts by laying down numbers within
the range of interest� �� �� �� �� 	� ��
� ����N and proceeds onward by striking
all multiples of consecutive primes found� �� �� 	�
� ��� and so forth� The
speed of the algorithm doubles when scanning only the restricted list of odd
numbers� �� �� 	�
� ��� Also the striking course attached to a prime number�
say a� might starts from a��

Denoting p the number of processors� a �rst approach to parallelise this
algorithm is to divide the search list into p contiguous blocks and assign
each block to an individual processor�

P� � � � � � 	 �� �� ��

P� � �� �	 �� �� �� �� �	 ��

P� � �� �� �� �	 �� �� �� ��

P� � �	 �� �� �� �� �	
�
�

Therefrom� P� is elected to be the master� he scans his portion and once
a prime is found� let us called this prime the actor� it is broadcast to the
workers� Upon reception of the actor� the striking process is carried out
independently in parallel by all the processors� When there is no more
prime in the master� he retired and the next active neighbour becomes the
new master� However although this strategy is simple to formulate� its
distributed programming is cumbersome because it involves unsteady groups
with changing leaders� Anyway� if you have some time to spare� go ahead���
Hint� don�t stick on the tatics that keep idle processors in the group� Make
sure to free them�

P� � � � � � �� �	
�
�

P� � 	 �� �� �� �	 �� �� ��

P� � �� �	 �� �� �� �� �� ��

P� � �� �� �	 �� �� �� �� �	

The second approach will avoid adjusting the group by adopting another
data distribution� Assume the search list is divided into �p blocks� the �rst
p blocks are assigned as previously whereas the last p ones are distributed in
reverse� Therefore� the algorithm proceeds as before with the strike carried
on the two subblocks� except that actors are retrieved only in the �rst
subblock and a previous master needs not retired because he might have
to strike other composite numbers �i�e�� non prime numbers� in his second
subblock� An implementation of this scheme follows�

��

Sieve of Eratosthenes�

C��� This program implements the sieve of Eratosthenes for a range N�

C��� Load balancing requires N not less than
p� p � number of procs�

C��� rbs�maths�uq�oz�au � High Performance Computing Unit � January� ����

C��� University of Queensland � Australia�

integer k� p� lastp� nbuf	
�

integer msgTYPE� msgINFO� ISIZE� ALLGRP� BBMAX

parameter	 ISIZE�
� BBMAX���� �

integer N�N��M�BB�B��B��L��L��master�actor�index�counter�istart�i

integer prime	BBMAX�

external I�VADD � vector�addition� supplied function�

C��� Header to pick�up wild card values���

call mp�TASK�QUERY	 nbuf�
�� �

ALLGRP � nbuf	
�

C��� Program body starts here���

call mp�ENVIRON	 p�k �

lastp � p��

master �

if 	 k�eq� � then

read��N

print �	�range� N ���I����N

endif

call mp�BCAST	 N�ISIZE� � ALLGRP �

if 	 N�lt�
�p � then

print���Too many processors� N needs not be less than
�p��

call mp�STOPALL	 �� �

endif

M � int	 sqrt	dble	N�� �

C��� Organisation of blocks���

N� � N��

if 	 N����ne�N � N� � N� � �

BB � mod	 N����p �

B� � 	N��BB��	��p�

B� � B�

if 	 k�lt�BB � then

B� � B���

L� � B��k

else

L� � B��k � BB

endif

if 	 ��p�k���lt�BB � then

B� � B���

L� � B��	��p�k���

else

L� � B��	��p�k��� � BB

endif

BB � B� � B�

if 	 BB�gt�BBMAX � then

print���Insufficient space for prime numbers��

call mp�STOPALL	 �� �

endif

do i � ��BB

prime	i� � �

enddo

if 	 k�eq� � prime	�� � � � is not a prime number

index � � shall contain the relative index of actor in the master

�

C��� Countdown starts now���

DO

if 	 k�eq�master � then � look for the next prime� i�e�� actor

actor �

index � index � �

do while 	 index�le�B� �and� ��	L��index����le�M �

if 	 prime	index��ne� � then

actor � ��	L��index���

print���actor ���actor

exit

endif

index � index � �

enddo

C��� If no more prime� change master if necessary���

if 	 actor�eq� �and� ��	L��index����le�M � then

if 	 master�ne�lastp � actor � �	master���

endif

endif

C��� The current master broadcasts the current actor to all���

call mp�BCAST	 actor�ISIZE� master� ALLGRP �

C��� Check if the countdown is finished���

if 	 actor�eq� � exit

C��� Check if it is time to change the master���

if 	 actor�lt� � then

master � �actor

else

C��� Look for the first multiple beyond actor�� in the first half���

istart � 	actor�actor����� � L�

if 	 istart�le� � then � actor�� is behind� adjust forward

i � �istart�actor � �

istart � istart � i�actor

endif

C��� Strike in the first half���

do i � istart�B��actor

prime	i� �

enddo

C��� Look for the first multiple beyond actor�� in the second half���

istart � 	actor�actor����� � L�

if 	 istart�le� � then � actor�� is behind� adjust forward

i � �istart�actor � �

istart � istart � i�actor

endif

C��� Strike in the second half���

do i � B��istart�BB�actor

prime	i� �

enddo

endif

ENDDO

C��� Collect the existing primes���

counter �

do i � ��BB

if 	 prime	i��ne� � then

counter � counter � �

D if 	 i�le�B� � print����	L��i���

D if 	 i�gt�B� � print����	L��i�B����

endif

enddo

print���counter ���counter

call mp�REDUCE	 counter� i� ISIZE� � I�VADD� ALLGRP �

if 	 k�eq� � print ���Number of primes��� i�� � Do not forget �

END ��

� USING LOADLEVELER

This utility is worth of consideration right from the beginning for the
system su�ers from instabilities when operating interactively whereas ev
erything seems to go smoothly under LoadLeveler� So its use may avoid
you to be in trouble� As it was announced before� it is a utility package
enabling the submission of batch jobs� It can be used in raw text mode from
a standard Unix shell window �see the next coming remark� or through a
graphical Xbased interface in which case� a simple click replaces a command
that would have been typed in the shell window� Under ksh �Korn Shell��
you may proceed as follows to invoke LoadLeveler�

export DISPLAY
algebra�maths�uq�oz�au��
xloadl �

�
�

�
�

Obviously the DISPLAY variable should be yours not mine� And if you
know your IP address� you should better use it� Subsequently to these
commands� a window is popped out and it contains information related to
the current status of the batch queue� You need to specify your particular
job command �le�

�� Press �File�� this yields another window menu

�� Press �File Submit Job�

�� Press �Edit�� this will allow you to make up your own command �le
with vi� see the template below� Once the �le is saved�

�� Press �Filter� to update the list of job command �les

	� Select your own job from the list available

�� Press �Submit��

For illustration� here follows the job command �le poly�cmd that have
been successfully used for the parallel polynomial evaluation example� It
represents a template� for the other examples� you just have to modify the
string poly convenably �four occurrences� as well as the email address in
notify user� Also� set your number of processors where it deems necessary�

��

Upon completion of the submission� result �les are generated� Once you
will be familiar� feel free to customise the command �le according to your
preferences�

���bin�ksh

� MPL job for parallel polynomial evaluation

� � job�type � PARALLEL

� � input � poly�in

� � output � poly��	Cluster��out

� � error � poly��	Cluster��err

� � initialdir � �

� � requirements � 	Arch �� �R��� �� 	OpSys �� �AIX����

� � notification � never

� � notify�user � your�email

� � class � half�hour�dedicated

� � checkpoint � no

� � environment � MP�PROCS�
�MP�LABELIO�yes�MP�STDOUTMODE�ordered�MP�INFOLEVEL���

� � min�processors �

� � max�processors �

� � queue

poe poly

Table �� poly�cmd� job command �le for the polynomial example�

The input data �le poly�in consists� in this case� in two lines �the degree
n and the variable x�� When your job don�t need input data simply set
input
 �dev�null�

�	

���

Table
� poly�in� input data �le for the polynomial example�

Remark If you have not succeeded in using xloadl or you wish to use LoadLeveler
from the shell window� you may proceed as indicated here� Make up your
job command �le �according to the template presented above and using the
same means � text editor� etc � that you utilised to build your programs�
then type�

llsubmit poly�cmd

�
�

�
�

Your job will be sent to the queue and you can retrieve information on
the job queue with the command llq� Other commands include llstatus�
llcancel� llprio� llhold� Refer to their man pages for details�

��

� TROUBLESHOOTING

The price paid when using a new generation computer is the emergence
of a few itchings� You will certainly undergo some oddly behaviours while
running your programs� Please report them to enrich this section� The
followings are the principal ones that I have encountered�

read�write mishmash
Although in your code� the write �or print� statement is after the read statement� it
may come that their actions are inverted on the screen� If you are not aware of this
fact� you may think that your code has a bug or even that the system is going wrong�
Don�t panic� it results from I�O bu�ering� Bear this behaviour in mind�

prompt is not gave back
When running a program interactively� it may happen that the prompt is not gave
back although� undoubtedly� the program is already terminated� These problems
disappear when using LoadLeveler �i�e�� in batch mode��

� CONCLUSION

The IBM SP� is one of the latest massively parallel computer in the
market� As a result it was designed using latest sophistications in technol
ogy� But high technology evolves rapidly and in addition massively parallel
architecture and their use are not yet mature�

As time passes� we are gaining more expertise� Computer architects will
provide us with more powerful computers and the greatest challenge is to
program them e�ciently� This note was governed by this primary concern�
i�e�� enable you to start using the SP�� Along with this� our intent was also
to display glimpses of its documentation and its programming environment�
We have supplied an illustrative sample of practical instances mindful of how
case studies can help in clarifying certain points� This was in fact a weighted
way to present a few specimens of builtin message passing functions� Our
expectation now is that you are well equipped for a further deepending�

Acknowledgements� The author would like to thank the members of Queensland

Parallel Supercomputing Facility �QPSF� in Gri�th University and University of Queens�

land for their support and for their valuable comments�

��

	 APPENDIX
 OFFICIAL MANUALS

IBM AIX Parallel Environment Programming Primer Rel ���

IBM AIX Parallel Environment Operation and Use Rel ���

IBM AIX Parallel Environment� Parallel Programming Subroutine Reference Rel ���

IBM AIX Parallel Environment Installation� Administration� and Diagnosis Rel ���

IBM LoadLeveler User�s Guide

IBM AIX PVMe User�s Guide and Subroutine Reference Rel ��

AIX Version �� System User�s Guide� Operating System and Devices

AIX Version �� System User�s Guide� Communications and Network

AIX Version �� for RISC System�	���� Optimization and Tuning Guide for Fortran� C and C��

AIX Version �� Commands Reference� Vol �� ac through dumpfs

AIX Version �� Commands Reference� Vol �� e through lvlstmajor

AIX Version �� Commands Reference� Vol � sa through ypxfr

AIX Version �� Commands Reference� Vol �� m� through rwhod

Optimization Subroutine Library� Guide and Reference Rel �

Engineering and Scientific Subroutine Library� Guide and Reference� Vol � Ver ���

Engineering and Scientific Subroutine Library� Guide and Reference� Vol � Ver ���

Engineering and Scientific Subroutine Library� Guide and Reference� Vol Ver ���

AIX XL Pascal�	��� User�s Guide Ver ���

AIX XL Pascal�	��� Language Reference Ver ���

AIX XL Fortran Compiler� What�s New Technical Newsletter Ver ����

XL Fortran Compiler�	���� Specifications Ver ����

AIX XL Fortran Compiler�	���� User�s Guide Ver ����

AIX XL Fortran Compiler�	���� Language Reference Ver ����

C Set �� for AIX�	���� User�s Guide Ver ���

C Set �� for AIX�	���� C�� Language Reference Ver ���

C Set �� for AIX�	���� C Language Reference Ver ���

C Set �� for AIX�	���� Reference Summary Ver ���

C Set �� for AIX�	���� Application Support Class Library Reference

C Set �� for AIX�	���� Source Code Browser User�s Guide Ver ���

C Set �� for AIX�	���� Collection Class Library Reference

C Set �� for AIX�	���� HeapView Debuggers User�s Guide Ver ���

IBM Visualization Data Explorer User�s Guide �th Ed

IBM Visualization Data Explorer Programmer�s Reference �th Ed

See �opt�doc�� Release and version may have changed�

��

