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Abstract

Strong stability preserving (SSP) time discretizations were devel-
oped for use with the spatial discretization of partial differential equa-
tions that are strongly stable under forward Euler time integration.
SSP methods preserve convex boundedness and contractivity prop-
erties satisfied by forward Euler, under a modified time-step restric-
tion. We turn to implicit Runge–Kutta methods to alleviate this time
step restriction, and present implicit strong stability preserving (SSP)
Runge–Kutta methods which are optimal in the sense that they pre-
serve convex boundedness properties under the largest timestep pos-
sible among all methods with a given number of stages and order of
accuracy. We consider methods up to order six (the maximal order of
implicit SSP methods) and up to eleven stages. The numerically op-
timal Runge–Kutta methods found are all diagonally implicit, leading
us to conjecture that optimal implicit SSP Runge–Kutta methods are
diagonally implicit. These methods allow a significant increase in SSP
time-step limit, compared to explicit methods of the same order and
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number of stages. Numerical studies verify the order of the methods
and the SSP property for several test cases.

1 Strong Stability Preserving Runge–Kutta

Methods

Strong stability preserving (SSP) Runge–Kutta methods are high-order time
discretization methods that preserve the strong stability properties—in any
norm or semi-norm—satisfied by a spatial discretization of a system of par-
tial differential equations (PDEs) coupled with first-order forward Euler time-
stepping [26, 24, 9, 10]. These methods were originally developed for solution
of hyperbolic PDEs to preserve the total variation diminishing property sat-
isfied by specially designed spatial discretizations coupled with forward Euler
integration.

In this work we are interested in approximating the solution of the ODE

ut = F (u), (1)

arising from the discretization of the spatial derivatives in the PDE

ut + f(u, ux, uxx, ...) = 0,

where the spatial discretization F (u) is chosen so that the solution obtained
using the forward Euler method

un+1 = un + ∆tF (un), (2)

satisfies the monotonicity requirement

||un+1|| ≤ ||un|| (3)

in some norm, semi-norm or convex functional || · ||, for a suitably restricted
time-step

∆t ≤ ∆tFE. (4)
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If we write an explicit Runge–Kutta method in the now-standard Shu–
Osher form [26]

u(0) = un,

u(i) =

i−1
∑

k=0

(

αi,ku
(k) + ∆tβi,kF (u(k))

)

, αi,k ≥ 0, i = 1, . . . , s, (5)

un+1 = u(s).

consistency requires that
∑i−1

k=0 αi,k = 1. Thus, if αi,k ≥ 0 and βi,k ≥ 0, all the
intermediate stages in (5), u(i), are simply convex combinations of forward

Euler operators, each with ∆t replaced by
βi,k

αi,k
∆t. Therefore, any bound on

a norm, semi-norm (or, in fact, any convex functional) of the solution that is
satisfied by the forward Euler method will be preserved by the Runge–Kutta
method, under the time step restriction

βi,k

αi,k
∆t ≤ ∆tFE, or equivalently

∆t ≤ min
αi,k

βi,k

∆tFE , (6)

where the minimum is taken over all k < i and βi,k 6= 0.
These explicit SSP time discretizations can then be safely used with any

spatial discretization which has the required stability properties when cou-
pled with forward Euler.

Definition 1 Strong stability preserving (SSP) For ∆tFE > 0, let
F(∆tFE) denote the set of all pairs (F, ||·||) where the function F : Rm → Rm

and convex functional || · || are such that the numerical solution obtained by
forward Euler integration of (1) satisfies ||un+1|| ≤ ||un|| whenever ∆t ≤
∆tFE. Given a Runge–Kutta method, the SSP coefficient of the method is
the largest constant c ≥ 0 such that the numerical solution obtained with the
Runge–Kutta method satisfies ||un+1|| ≤ ||un|| for all (F, || · ||) ∈ F(∆tFE)
whenever

∆t ≤ c∆tFE. (7)

If c > 0, the method is said to be strong stability preserving.

If the forward Euler solution is contractive, i.e. any two numerical solu-
tions u, v of (1) satisfy

||un+1 − vn+1|| ≤ ||un − vn||, (8)
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then an SSP method will preserve this property as well, under the modified
time step restriction (7) [20]. It is particularly useful to consider v to be
a perturbation of u due to numerical errors or errors in the initial condi-
tions. Then contractivity implies that these errors do not grow unduly as
the solution is integrated.

If a particular spatial discretization coupled with the explicit forward Eu-
ler method satisfies a strong stability property for some time-step restriction,
then the implicit backward Euler method satisfies the same strong stabil-
ity property, for any positive time-step [16]. However, this unconditional
SSP property does not extend to higher order implicit methods. All SSP
Runge–Kutta methods of order greater than one suffer from some time-step
restriction [20, 10]. Much of the research in this field is devoted to finding
methods that are optimal in terms of time-step restriction. For this purpose,
various implicit extensions and generalizations of the Shu–Osher form have
been introduced [10, 8, 6, 16]. The most general of these, and the form we
use in this paper, was introduced independently in [6] and [16]. We will refer
to it as the modified Shu–Osher form.

As discussed in Section 2, the search for new SSP methods is facilitated by
the connection between the SSP condition and the contractivity and absolute
monotonicity conditions for Runge–Kutta methods [28, 20, 14, 16, 4, 6].
For a more detailed description of the Shu–Osher form, its generalization to
implicit methods, and the connection with absolute monotonicity, we refer
the interested reader to [26, 20, 9, 10, 25, 4, 14, 17, 6, 8, 15, 27]. For an
investigation of the effect of the SSP property in practice, see [19].

The structure of this paper is as follows. In Section 2 we use some of the
major results in contractivity theory [20, 3] to determine order barriers and
other limitations on implicit SSP Runge–Kutta methods. In Section 3, we
present new numerically optimal implicit Runge–Kutta methods of order up
to six and up to eleven stages, found using numerical optimization routines.
Some of these numerically optimal methods are also proved to be optimal. We
will see that the best implicit Runge–Kutta methods, as found by numerical
search, are all diagonally implicit, and those of order two and three are singly
diagonally implicit. In Section 4 we present numerical experiments using the
optimal implicit Runge–Kutta methods, with a focus on verifying order of
accuracy and the SSP timestep limit. Finally, in Section 5 we summarize our
results and discuss future directions.
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2 Barriers and Limitations on SSP Methods

The theory of strong stability preserving Runge–Kutta methods is very closely
related to the concepts absolute monotonicity and contractivity. These con-
nections have been extensively explored [14, 16, 4, 6, 17]. In this section we
collect the results on order barriers and other limitations found in contractiv-
ity theory [20], and use these to draw conclusions about the class of implicit
SSP Runge–Kutta methods. To facilitate the discussion, we first present two
important representations of Runge–Kutta methods.

2.1 Representations of Runge–Kutta Methods

An s-stage Runge–Kutta method is usually represented by its Butcher tableau,
consisting of an s × s matrix A and two s × 1 vectors b and c. The Runge–
Kutta method defined by these arrays is

yi = un + ∆t

s
∑

j=1

aijF
(

tn + cj∆t, yj
)

, 1 ≤ i ≤ s, (9a)

un+1 = un + ∆t
s
∑

j=1

bjF
(

tn + cj∆t, yj
)

. (9b)

It is convenient to define the (s + 1) × s matrix

K =

(

A
bT

)

,

and we will also make the standard assumption

ci =
s
∑

j=1

aij .

For the method (9) to be accurate of order p, the coefficients K must satisfy
order conditions (see, e.g. [12]) denoted by

Φp(K) = 0.

A generalization that applies to implicit as well as explicit methods was
introduced in [6, 16] to more easily study the SSP property. We will refer to
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this formulation as the modified Shu–Osher form. Following the notation of
[6], we introduce the coefficient matrices

λ =

[

λ0

λ1

]

, λ0 =







λ11 · · · λ1s

...
...

λs1 · · · λss






, λ1 = (λs+1,1, . . . , λs+1,s), (10a)

µ =

[

µ0

µ1

]

, µ0 =







µ11 · · · µ1s

...
...

µs1 · · · µss






, µ1 = (µs+1,1, . . . , µs+1,s). (10b)

These arrays define the method

yi =

(

1 −
s
∑

j=1

λij

)

un +
s
∑

j=1

λijy
j + ∆tµijF (tn + cj∆t, yj), (1 ≤ i ≤ s),

(11a)

un+1 =

(

1 −
s
∑

j=1

λs+1,j

)

un +

s
∑

j=1

λs+1,jy
j + ∆tµs+1,jF (tn + cj∆t, yj).

(11b)

Any s × s α and β in (5) can be written in the form (11) as

λ =

[

0
α

]

, µ =

[

0
β

]

,

thus the modified Shu–Osher form is more general. It also leads to simpler
expressions in what follows.

Comparison of the Butcher representation (9) with the modified Shu–
Osher representation (11) reveals that the two are related by

µ = K − λA. (12)

Hence the Butcher form can be obtained explicitly from the modified Shu–
Osher form:

A = (I − λ0)
−1µ0, (13a)

bT = µ1 + λ1(I − λ0)
−1µ0, (13b)

where λ0, µ0, λ1, µ1 are the submatrices of λ and µ as defined in (10).
Note that the modified Shu–Osher representation is not unique for a given

Runge–Kutta method. One particular choice, λ = 0 yields K = µ; i.e. the
Butcher form is a special case of the modified Shu–Osher form.
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2.2 Strong Stability Preservation

As the modified Shu–Osher form (11) is not unique, any such particular rep-
resentation may give a timestep restriction based on (6) that is not optimal.
The optimal timestep restriction turns out to be related to the radius of
absolute monotonicity R(K), introduced originally by Kraaijevanger [20]. A
more convenient, equivalent definition of R(K) is given in [4, 14]:

Definition 2 Radius of absolute monotonicity The radius of absolute
monotonicity R(K) of the Runge–Kutta method defined by Butcher array K
is the largest value of r such that (I + rA)−1 exists and

K(I + rA)−1 ≥ 0,

rK(I + rA)−1es ≤ es+1. (14)

Here, the inequalities are understood component-wise and es in the second
equation denotes the s × 1 vector of ones.

The following result follows from Propositions 2.2 and 2.7 of [16] or from
Theorem 3.4 of [6]:

Theorem 1 Let a Runge–Kutta method be given with Butcher array K. Let
c denote the SSP coefficient from definition 1. Let R(K) denote the radius
of absolute monotonicity defined by (14). Then

c = R(K). (15)

Furthermore, there exists a modified Shu–Osher representation (λ, µ) such
that (12) holds and

c = min
i,j;i6=j

λi,j

µi,j

, ∀µi,j 6= 0. (16)

In other words, the method preserves strong stability under the maximal
timestep restriction

∆t ≤ R(K)∆tFE. (17)

Although we are interested in strong stability preservation for general
(nonlinear, nonautonomous) systems, it is useful for the purposes of this
section to introduce some concepts related to strong stability preservation
for linear autonomous systems.
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When applied to a linear autonomous system of ODEs

ut = Lu, (18)

any Runge–Kutta method reduces to the iteration

un+1 = φ(∆tL)un, (19)

where φ is a rational function called the stability function of the Runge–Kutta
method [13].

Definition 3 Linear Strong Stability Preservation For ∆tFE > 0, let
L(∆tFE) denote the set of all pairs (L, || · ||) where the matrix L ∈ Rm×m

and convex functional || · || are such that the numerical solution obtained by
forward Euler integration of (18) satisfies ||un+1|| ≤ ||un|| whenever ∆t ≤
∆tFE. Given a Runge–Kutta method, the linear SSP coefficient of the method
is the largest constant clin ≥ 0 such that the numerical solution obtained with
the Runge–Kutta method satisfies ||un+1|| ≤ ||un|| for all (L, ||·||) ∈ L(∆tFE)
whenever

∆t ≤ clin∆tFE. (20)

If clin > 0, the method is said to be linearly strong stability preserving.

When solving (18), the timestep restriction for strong stability preserva-
tion depends on the radius of absolute monotonicity of φ.

Definition 4 Linear radius of absolute monotonicity The linear ra-
dius of absolute monotonicity R(φ) of an Runge–Kutta method with stability
function φ is the largest value of r such that φ(x) and all of its derivatives
are nonnegative for x ∈ (−r, 0].

The following result is originally due to Spijker [28]:

Theorem 2 Let a Runge–Kutta method be given with stability function φ.
Let clin denote the linear SSP coefficient of the method (see definition 3). Let
R(φ) denote the linear radius of absolute monotonicity (definition 4). Then

clin = R(φ). (21)

In other words, the method preserves strong stability under the maximal
timestep restriction

∆t ≤ R(φ)∆tFE. (22)
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Since L(h) ⊂ F(h), clearly clin ≤ c, so R(K) ≤ R(φ). Optimal values
of R(φ) for implicit Runge–Kutta methods with up to two stages and third
order of accuracy were found in [29].

In the following section, we use this equivalence between the radius of
absolute monotonicity and the SSP coefficient to apply results regarding
R(K) to the theory of SSP Runge–Kutta methods.

2.3 Order Barriers for SSP Runge–Kutta Methods

The SSP property is a very strong requirement, and imposes severe restric-
tions on other properties of a Runge–Kutta method. These restrictions have
been carefully studied in [28, 3, 20]. We will review these results and draw
a few additional conclusions. These results will guide our search for optimal
methods in the next section.

Result 1 ([28] Thm. 1.3) Any Runge–Kutta method of order p > 1 has a
finite radius of absolute monotonicity R(K) < ∞.

This is a disappointing result, which shows us that for methods of order
greater than one we cannot avoid strong stability timestep restrictions alto-
gether by using implicit methods (in contrast with linear stability where some
high-order implicit methods (viz., the A-stable methods) have no timestep
restriction). However, this does not indicate how restrictive the step-size
condition is; it may still be worthwhile to consider implicit methods if the
radius of absolute monotonicity is large enough to offset the additional work
involved in an implicit solver.

The following result gives lower bounds on the coefficients that are useful
in numerical searches. It is also useful in proving subsequent results.

Result 2 ([20] Thm. 4.2) Any Runge–Kutta method with positive radius of
absolute monotonicity R(K) > 0, must have all non-negative coefficients
A ≥ 0 and positive weights b > 0.

The following three results deal with the stage order p̃ of Runge–Kutta
methods. The stage order is a lower bound on the order of convergence when
a method is applied to arbitrarily stiff problems [3]. Thus low stage order may
lead to slow convergence (i.e., order reduction) when computing solutions of
stiff ODEs. Although this is also the case for explicit methods, which have
stage order one (see Result 4 below), this does not seem to be problematic
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for semi-discretizations of hyperbolic PDEs, where we observe that explicit
methods do achieve their classical order of accuracy. It is possible that this
may pose a larger problem for implicit methods when large timesteps are
used, but we did not observe this in our numerical experiments in Section 4.

Result 3 ([20] Thm. 8.5 ) A Runge–Kutta method with non-negative coef-
ficients A ≥ 0, must have stage order p̃ ≤ 2. If p̃ = 2, then A must have a
zero row.

When constructing classical high-order implicit Runge–Kutta methods it is
common to consider collocation methods; however since collocation methods
have stage order equal to at least the number of stages [3], the result above
implies that collocation methods with more than two stages cannot be SSP.
This implies that R(K) = 0 for most of the well-known implicit Runge–
Kutta methods, such as the Gauss-Legendre, Radau IIA, and Lobatto IIIA
methods with more than two stages, as well as the Lobatto IIIC methods with
more than three stages. It is not difficult to show, as well, that the Radau
IA methods with more than three stages and the Lobatto IIIB methods with
more than four stages have stage order greater than two and hence R(K) = 0.
Most of the low stage number methods in these classes also have negative
coefficients, so that many of the classical algebraically stable methods have
R(K) = 0. Notable exceptions include the 1-stage Gauss-Legendre, Radau
IA, and Radau IIA methods and the 2-stage Lobatto IIIA and Lobatto IIIB
methods.

When dealing with explicit methods, stage order is limited whether or
not one requires non-negative coefficients:

Result 4 ([2] Thm. 4.4) Explicit Runge–Kutta methods all have stage order
p̃ = 1.

For SSP methods, the stage order restriction leads to restrictions on the
classical order as well:

Result 5 ([11]) For a general Runge–Kutta method, if all the weights b > 0
then the stage order must satisfy p̃ ≥ ⌊p−1

2
⌋.

Result 6 ([20] Lemma 8.6 and Corollary 8.7) Any SSP Runge–Kutta method
with R(K) > 0 has order p ≤ 4 if it is explicit and p ≤ 6 if it is implicit.
Furthermore, if p ≥ 5, then A has a zero row.
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The negative implications in Result 6 stem from the conditions A ≥ 0,
b > 0 in Result 2. Non-negativity of A leads to low stage order (Result 3),
while positivity of b leads to a limit on the classical order (Result 5) relative
to the stage order. The result is a severe restriction on the classical order of
SSP methods.

2.4 Barriers for Singly Implicit and Singly Diagonally

Implicit Methods

An s-stage Runge–Kutta method applied to a system of m ODEs typically
requires the solution of a system of sm equations. When the system results
from the semi-discretization of a system of PDEs, m is typically very large
and the system is generally nonlinear, making the solution of this system
very expensive. Using a transformation involving the Jordan form of A, the
amount of work can be reduced [1]. This is especially efficient for singly
implicit (SIRK) methods (those methods for which A has only one distinct
eigenvalue), because the necessary matrix factorizations can be reused. On
the other hand, diagonally implicit (DIRK) methods, for which A is lower tri-
angular, can be implemented efficiently without transforming to the Jordan
form of A. The class of singly diagonally implicit (SDIRK) methods, which
are both singly implicit and diagonally implicit (i.e., A is lower triangular
with all diagonal entries identical), incorporate both of these advantages.
Note that in the literature the term diagonally implicit has sometimes been
used to mean singly diagonally implicit. For details on efficient implementa-
tion of implicit Runge–Kutta methods see, e.g., [3].

Lemma 1 (also appears in [7]) An SDIRK method with positive radius of
absolute monotonicity R(K) > 0 must have order p ≤ 4.

Proof: Assume K represents an SDIRK method with R(K) > 0 and order
p > 4. Result 6 means that A has a zero row. Since this is an SDIRK
method all the diagonal entries are equal, so a zero row implies that all
diagonal entries of A are zero, i.e., the method is explicit. However, Result 6
states that an explicit method cannot have order p > 4.

Result 7 ([29] Cor. 3.4) If a Runge–Kutta method has a positive radius of
absolute monotonicity R(φ) > 0 then its stability function φ has a real pole.
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Result 8 ([3] Thm. 3.5.11) If the stability function φ of a Runge–Kutta
method has only real poles and numerator of degree s, then the order of the
method p ≤ s + 1.

Because the degree of the numerator of φ is at most the number of stages
of the Runge–Kutta method [13], a consequence of these two results is

Corollary 1 For SIRK and DIRK methods, if R(φ) > 0, p ≤ s + 1.

Proof: For SIRK methods, φ has a unique pole which by Result 7 must be
real. For DIRK methods, the poles of φ are the diagonal entries of A, which
must be real. Hence Corollary 1 follows from Result 8.

Corollary 2 If an s-stage SIRK method has positive radius of absolute mono-
tonicity R(K) > 0 and order p ≥ 5, then its radius of absolute monotonicity
is no larger than that of the optimal linearly SSP s-stage explicit method:

R(K) ≤ sup
φ∈Pp

R(φ) (23)

where the supremum is taken over all polynomials φ of degree less than or
equal to m that approximate the exponential function to order p near x = 0.
Hence also the order is at most equal to the number of stages: p ≤ s.

Proof: By Result 6, such methods have a zero row, so all eigenvalues of A
must be zero. Then the stability function φ is a polynomial, and the result
follows from the definition of R(φ).

Corollary 2 implies that R(K) must be small for SIRK methods with
p > 4.

3 Optimal Implicit Methods for Nonlinear Sys-

tems

In this section we present numerically optimal implicit methods for nonlinear
systems of ODEs. These methods were found via numerical search, and in
general we have no analytic proof of their optimality. In a few cases, we
have employed BARON, an optimization software package that provides a
numerical certificate of global optimality [23, 21, 22]. However, this process
is computationally expensive and was not practical in most cases.
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Most of the methods were found using Matlab’s optimization toolbox.
We applied the same computational approach to finding optimal explicit
and diagonally implicit SSP Runge–Kutta methods, and successfully found
a solution at least as good as the best known solution in every case. Because
our approach was able to find these previously known methods, we expect
that some of new methods—particularly those of lower order or stages—may
well be globally optimal.

The optimization problem for general Runge–Kutta methods involves ap-
proximately twice as many decision variables (dimensions) as the explicit or
singly diagonally implicit cases, which have previously been investigated [7].
However, we have been able to find good methods even for large numbers
of stages. We attribute this success to the reformulation of the optimization
problem in terms of the Butcher coefficients rather than the Shu–Osher co-
efficients, as suggested in [5]. Specifically, we solve the optimization problem

max
K

r, (24a)

K(I + rA)−1 ≥ 0, (24b)

rK(I + rA)−1es ≤ es+1, (24c)

Φp(K) = 0, (24d)

where the inequalities are understood component-wise and recall that Φp(K)
represent the order conditions up to order p. This formulation, implemented
in Matlab using a sequential quadratic programming approach (fmincon in
the optimization toolbox), was used to find the methods given below. In a
concurrent effort, we are using this formulation to search for optimal explicit
SSP methods [18].

The above problem can be reformulated (using a standard approach for
converting rational constraints to polynomial constraints) as

max
K,µ

r, (25a)

µ ≥ 0, (25b)

rµes ≤ es+1, (25c)

K = µ(I + rA), (25d)

Φp(K) = 0. (25e)

This optimization problem has only polynomial constraints and thus is ap-
propriate for the BARON optimization software which requires such con-
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straints to be able to guarantee global optimality [23]. Note that µ in (25)
corresponds to µ in one possible modified Shu–Osher form with λ = rµ.

In comparing methods with different numbers of stages, one is usually in-
terested in the relative time advancement per computational cost. For diag-
onally implicit methods, the computational cost per timestep is proportional
to the number of stages. We therefore define the effective SSP coefficient
of a method as R(K)

s
; this normalization enables us to compare the cost per

stage of DIRK schemes of order p > 1. However, for non-DIRK methods of
various s, it is much less obvious how to compare computation cost.

In the following, we give modified Shu–Osher arrays for the optimal meth-
ods. To simplify implementation, we present modified Shu–Osher arrays in
which the diagonal elements of λ are zero. This form is a simple rearrange-
ment and involves no loss of generality.

3.1 Second- and Third-order Methods

Optimizing over the class of all s ≤ 11-stage implicit Runge–Kutta methods
of second- or third-order, we have found that the optimal methods are iden-
tical to the optimal SDIRK methods found in [5, 7]. These methods are most
advantageously implemented in a certain modified Shu–Osher form. This is
because these arrays (if chosen carefully) are more sparse. In fact, for these
methods there exist modified Shu–Osher arrays that are bidiagonal. We give
the general formulae here.

The optimal second-order method with s stages has R(K) = 2s and
coefficients

λ =















0
1 0

1
. . .
. . . 0

1















, µ =

















1
s
1
s

1
s

1
s

. . .

. . . 1
s
1
s

















. (26)

The one- and two-stage methods in this family are proven optimal because
they achieve the maximum linear radius of absolute monotonicity in their
respective classes [29, 17]. In addition to these duplicating these results,
BARON was used to prove that the s = 3 scheme is globally optimal. The
s = 1 and s = 2 cases required only several seconds but the s = 3 case took
much longer, requiring approximately 14 hours of CPU time.
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We conjecture that these methods are optimal for all values of s, which
would imply that the effective SSP coefficient of any SSP Runge–Kutta
method of order greater than one is at most equal to two. In fact, van de Griend
and Kraaijevanger [29] showed that the optimal R(φ) ≥ 2s for second-order
methods with s stages, and conjectured that R(φ) = 2s. They proved the
conjecture only in the one- and two-stage cases (which implies the optimality
of the one- and two-stage methods of the form (26)). In fact the conjecture
is false for the three-stage case, as we demonstrate with the following coun-
terexample:

φ =
1 + 7969150767159903

18014398509481984
x + 4716995547632067

72057594037927936
x2 + 1867769670100979

576460752303423488
x3

1 − 313913991947565
562949953421312

x + 8869189497956419
72057594037927936

x2 − 1762527965732417
144115188075855872

x3
.

Because the numerator and denominator have degree three and approximates
the exponential to second-order near x = 0, this corresponds to the stability
function of a second-order implicit Runge–Kutta method with s = 3 stages.
This function was found by numerical search; using the algorithm in [29] we
have verified that R(φ) ≥ 6.77 > 2s. Thus our conjecture cannot be proved
by analyzing R(φ).

Finally, we note that the one-stage method of this class is the implicit mid-
point rule, while the s-stage method is essentially s successive applications
of the implicit midpoint rule (as was observed in [5]). Thus these methods
inherit the desirable properties of the implicit midpoint rule such as both al-
gebraic stability and A-stability [13]. Of course, since they all have the same
effective SSP coefficient R(K)/s = 2, they are all essentially equivalent.

For p = 3 the optimal methods have R(K) = s − 1 +
√

s2 − 1 and coeffi-
cients

µ =















µ11

µ21
. . .
. . . µ11

µ21 µ11

µs+1,s















, λ =















0

1
. . .
. . . 0

1 0
λs+1,s















, (27)
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where

11 =
1

2

(

1 −
√

s − 1

s + 1

)

, µ21 =
1

2

(

√

s + 1

s − 1
− 1

)

,

µs+1,s =
s + 1

s(s + 1 +
√

s2 − 1)
, λs+1,s =

(s + 1)(s − 1 +
√

s2 − 1)

s(s + 1 +
√

s2 − 1)
.

In this form these methods can easily be implemented with very modest
storage requirements.

The two-stage method in this family is proven optimal because it achieves
the maximum linear radius of absolute monotonicity for two-stage, third-
order methods [29, 17]. BARON was used to prove global optimality for the
third-order s = 3 case, requiring about 11 hours of CPU time.

3.2 Fourth-order Methods

Based on the above results, one might suspect that all optimal implicit SSP
methods are singly diagonally implicit. In fact, this cannot hold for p ≥ 5
since in that case A must have a zero row (cf. Result 6 above). The nu-
merically optimal methods of fourth-order are not singly diagonally implicit
either; however, all numerically optimal fourth-order methods we have found
are diagonally implicit.

The coefficient arrays of the numerically optimal fourth-order methods
have only a few non-zero entries below the first subdiagonal, leading to very
modest storage requirements even for methods with many stages.

The unique two-stage fourth-order Runge–Kutta method has a negative
coefficient and so is not SSP. Thus we begin our search with three-stage
methods. We list the SSP coefficients and effective SSP coefficients of the
optimal methods in Table 1. For comparison, the table also lists the effective
SSP coefficients of the optimal SDIRK methods found in [7]. Our optimal
DIRK methods have larger SSP coefficients in every case. Furthermore, these
methods have representations that allow for very efficient implementation in
terms of storage. The non-zero coefficients in these representations are given
in Tables 5–13.
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s R(K) Effective SSP coefficient
DIRK DIRK SDIRK

3 2.05 0.66 0.59
4 4.42 1.11 1.05
5 6.04 1.21 1.15
6 7.80 1.30 1.26
7 9.19 1.31 1.24
8 10.67 1.33 1.28
9 12.04 1.34 -
10 13.64 1.36 -
11 15.18 1.38 -

Table 1: SSP coefficients and effective SSP coefficients of optimal fourth-
order DIRK methods. For comparison we also list the effective SSP coeffi-
cients of the optimal fourth-order SDIRK methods of [7].

3.3 Fifth- and Sixth-order Methods

We have found fifth- and sixth-order SSP methods with up to eleven stages.
Two sets of numerical searches were conducted, corresponding to optimiza-
tion over the full class of implicit Runge–Kutta methods and optimization
over the subclass of diagonally implicit Runge–Kutta methods. More CPU
time was devoted to the first set of searches; however, in most cases the
best methods we were able to find resulted from the searches restricted to
DIRK methods. Furthermore, when searching over fully implicit methods,
in every case for which the optimization algorithm was able to converge to a
local optimum, the optimal method was diagonally implicit. The inability of
the algorithm to converge to these DIRK methods (or perhaps to even more
optimal methods) when searching over the class of fully implicit methods rep-
resents a failure of the optimization software. This is not surprising because
the optimization problems involved are highly nonlinear with many variables
and many constraints. The application of more sophisticated software to this
problem is an area of future research. Nevertheless, the observation that all
observed local optima correspond to DIRK methods leads us to believe that
the globally optimal methods are likely to be DIRK methods.

Any optimization algorithm may be expected to fail for sufficiently large
problems (in our case, sufficiently large values of s). However, we found that
the cases of relatively small s and large p (i.e., p = 5 and s < 6 or p = 6
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and s < 9) also posed great difficulty. This may be because the feasible set
in these cases is extremely small. The methods found in these cases are due
to searches for methods with more stages that resulted in convergence to a
reducible or nearly-reducible method. Due to the high nonlinearity of the
problem for p ≥ 5, we found it helpful to explicitly limit the step sizes used
by fmincon in the final steps of optimization.

3.3.1 Fifth-order Methods

Three stages Using the W transformation [3] we find the one parameter
family of three-stage, fifth-order methods

A =





5
36

+ 2
9
γ 5

36
+ 1

24

√
15 − 5

18
γ 5

36
+ 1

30

√
15 + 2

9
γ

2
9
− 1

15

√
15 − 4

9
γ 2

9
+ 5

9
γ 2

9
+ 1

15

√
15 − 4

9
γ

5
36

− 1
30

√
15 + 2

9
γ 5

36
− 1

24

√
15 − 5

18
γ 5

36
+ 2

9
γ



 .

It is impossible to choose γ so that a12 and a13 are simultaneously nonnega-
tive, so there are no SSP methods in this class.

Four to Eleven stages We list the timestep coefficients and effective SSP
coefficients of the optimal DIRK methods for 4 ≤ s ≤ 9 in Table 2. All of
these methods are diagonally implicit.

For comparison, we also list the upper bounds on effective SSP coefficients
of SIRK methods in these classes implied by Corollary 2. Our optimal DIRK
methods have larger effective SSP coefficients in every case. The non-zero
coefficients of these methods are given in Tables 14–18.

3.3.2 Sixth-order Methods

Kraaijevanger [20] proved the bound p ≤ 6 for contractive methods (cf. Re-
sult 6 above) and presented a single fifth-order contractive method, leaving
the existence of sixth-order contractive methods as an open problem. The
sixth-order methods we have found settle this problem, demonstrating that
the order barrier p ≤ 6 for implicit SSP methods is sharp.

The non-existence of three-stage SSP Runge–Kutta methods of fifth-
order, proved above, implies that sixth-order SSP Runge–Kutta methods
must have at least four-stages. Corollary 1 implies that sixth-order SSP
DIRK methods must have at least five stages, and Corollary 2 shows that
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s R(K) Effective SSP coefficient
DIRK5 DIRK5 SIRK5 (bound)

4 1.07 0.27 0
5 1.07 0.21 0.20
6 4.97 0.83 0.40
7 6.21 0.89 0.38
8 7.56 0.94 0.42
9 8.90 0.99 0.46
10 10.13 1.01 0.48
11 11.33 1.03 0.50

Table 2: Comparison of effective SSP coefficients of optimal fifth-order DIRK
methods with upper bounds on effective SSP coefficients of fifth-order SIRK
methods from Result 6. No 5-stage method was found with SSP coefficient
larger than the optimal 4-stage method.

sixth-order SSP SIRK methods require at least six stages. We were unable
to find sixth-order SSP Runge–Kutta methods with fewer than six stages.

The SSP coefficients and effective SSP coefficients of the optimal methods
for 6 ≤ s ≤ 11 are listed in Tables 3–4. All of these methods are diagonally
implicit. The non-zero coefficients of these methods are given in Tables 21–
24. We were unable to find a seven-stage method with larger SSP coefficient
than that of the six-stage method, or an eleven-stage method with larger
effective SSP coefficient than that of the ten-stage method (although we did
find methods with larger values of R(K) in the latter case).

s R(K) Effective SSP coeff.
6 0.18 0.03
7 0.18 0.026
8 2.25 0.28
9 5.80 0.63
10 8.10 0.81
11 8.85 0.80

Table 3: Radius of absolute monotonicity for optimal sixth-order methods.
No 7-stage method was found with SSP coefficient larger than the optimal
6-stage method.
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Implicit Methods Explicit Methods
s \ p 2 3 4 5 6 2 3 4

2 2 1.37 - - - 0.5 - -
3 2 1.61 0.66 - - 0.67 0.33 -
4 2 1.72 1.11 0.27 0.75 0.5 -
5 2 1.78 1.21 0.21* 0.8 0.53 0.30
6 2 1.82 1.30 0.83 0.03 0.83 0.59 0.38
7 2 1.85 1.31 0.89 0.026* 0.86 0.61 0.47
8 2 1.87 1.33 0.94 0.28 0.88 0.64 0.52
9 2 1.89 1.34 0.99 0.63 0.89 0.67 0.54
10 2 1.90 1.36 1.01 0.81 0.9 0.68 0.60
11 2 1.91 1.38 1.03 0.80* 0.91 0.69 0.59

Table 4: Effective SSP coefficients of best known methods. A dash indicates
that SSP methods of this type cannot exist. A blank space indicates that
no SSP methods of this type were found. An asterisk indicates that no s-
stage method was found with effective SSP coefficient greater than that of
the (s − 1)-stage method.

Table 4 summarizes the effective SSP coefficients of the optimal diagonally
implicit methods for 2 ≤ p ≤ 6 and 2 ≤ s ≤ 11. For comparison, Table 4
also includes the effective SSP coefficients of the best known explicit methods,
including results from the forthcoming paper [18].

4 Numerical Experiments

We focus our numerical experiments on linear and nonlinear hyperbolic prob-
lems in Sections 4.1 and 4.2. The computations in Section 4.1 were performed
with Matlab version 7.1 on a Mac G5; those in Section 4.2 were performed
with Matlab version 7.3 on x86-64 architecture. All calculations were per-
formed in double precision. For the implicit solution of linear problems we
used Matlab’s backslash operator, while for the nonlinear implicit solves we
used the fsolve function with very small tolerances.

We refer to the numerically optimal methods as SSPsp where s, p are the
number of stages and order, respectively. For instance, the optimal 8-stage
method of order 5 is SSP85.
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4.1 Linear Advection

The prototypical hyperbolic PDE is the linear wave equation,

ut + aux = 0, 0 ≤ x ≤ 2π. (28)

We consider (28) with a = −2π, periodic boundary conditions and vari-
ous initial conditions. We use a method-of-lines approach, discretizing the
interval (0, 2π] into m points xj = j∆x, j = 1, . . . , m, and then discretiz-
ing −aux with first-order upwind finite differences. We solve the resulting
system (1) using our time-stepping schemes. To isolate the effect of the
time-discretization error, we exclude the effect of the error associated with
the spatial discretization by comparing the numerical solution to the exact
solution of the ODE system (1), rather than to the exact solution of the
underlying PDE. In lieu of the exact solution we use a very accurate numer-
ical solution obtained using Matlab’s ode45 solver with minimal tolerances
(AbsTol = 1 × 10−14, RelTol = 1 × 10−13).

Figure 1 shows a convergence study for various optimal schemes for the
problem (28) with a fixed ∆x and smooth initial data

u(0, x) = sin(x),

advected until final time tf = 1. Here σ indicates the size of the time-step:
∆t = σ∆tFE. The results show that all the methods achieve their design
order.

Now consider the same advection equation but with discontinuous data

u(x, 0) =

{

1 if π
2
≤ x ≤ 3π

2
,

0 otherwise.
(29)

Figure 2 shows a convergence study for the third-order methods with s = 3
to s = 8 stages, for tf = 1 using m = 64 points and the first-order upwinding
spatial discretization. Again, the results show that all the methods achieve
their design order. Finally, we note that the higher-stage methods give a
smaller error for the same time-step; that is as s increases, the error constant
of the method decreases.

Figure 3 shows typical results on the discontinuous advection example
using the third-order methods after a single time-step. In this case, we have
s = 2 stages for the third-order scheme. We see that as the time-step is
increased, the line steepens, forms a small step, which becomes an oscillation
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Figure 1: Convergence study for the third-order s-stage methods (left) and
various optimal methods of orders four to six (right) for linear advection of a
sine wave. The problem is solved to tf = 1 using time-steps of length σ∆tFE

for a range of values of σ. The spatial discretization uses m = 120 points
and first-order upwinding.
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Figure 2: Convergence study for the third-order s-stage methods for linear
advection of a square wave to tf = 1 using N time-steps, m = 64 points and
the first-order upwinding spatial discretization. Here σ measures the size of
the step relative to ∆tFE.
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Figure 3: Solution of the linear advection problem after one time step with
the third-order two-stage method in time. The spatial discretization is an
upwind spatial differencing with 200 points in space. No oscillations form
when the stability limit R(K) = 2.7320 is respected (e.g., σ = 2.7) but
oscillations immediately form when it is exceeded (e.g., σ = 2.8) and become
worse as σ is increased further.

as the stability limit is exceeded, and worsens as the time-step is raised
further. Figure 4 shows how the oscillations worsen as the size of the time-
step increases (corresponding to σ = 8, 10, 16, 24) in the numerical results for
the linear advection problem when using s = 5 stages with the third-order
scheme.

4.2 Burgers’ Equation

In this section we consider the inviscid Burgers’ equation

ut = −f(u)x = −
(

1

2
u2

)

x

,
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Figure 4: Solution of the linear advection problem after one time step with
the third-order five-stage method in time (R(K) ≈ 8.899). The spatial dis-
cretization is first-order upwind spatial differencing with 200 points in space.
No oscillations form when the stability limit is respected σ = 8 (top left) but
minor oscillations begin to form when the stability limit is exceeded σ = 10
(top right), and become worse with increasing time-step corresponding to
σ = 16 (bottom left), σ = 24 (bottom right).
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Figure 5: Solution of Burgers’ equation using a conservative first-order up-
wind spatial discretization with m = 256 points in space, and the third-order,
five-stage SSP time stepping method, with final time tf = 2.

with initial condition u(0, x) = 1
2
−1

4
sin(πx) on the periodic domain x ∈ [0, 2).

The solution is a right-travelling, steepening shock. We discretize −f(u)x

using a conservative simple upwind approximation

−f(u)x ≈ − 1

∆x
(f(ui) − f(ui−1)) .

The convergence study in Figure 6 shows that the fourth-, fifth- and sixth-
order s-stage methods achieve their respective orders of convergence when
compared to a temporally very refined solution of the discretized system.
Figure 5 shows that when the time step is below the stability limit no os-
cillations appear, but when the stability limit is violated, oscillations are
observed.

5 Conclusions and Future Work

Using numerical optimization, we have found numerically optimal implicit
strong stability preserving Runge–Kutta methods of order up to the maxi-
mum possible of p = 6 and stages up to s = 11. Methods with up to three
stages and third order of accuracy have been proven optimal by analysis or
using BARON global optimization software. Remarkably, the numerically
optimal methods are all diagonally implicit. Furthermore, all of the local op-
tima found in our searches correspond to diagonally implicit methods. Based
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Figure 6: Convergence study for the optimal fourth-, fifth- and sixth-order
schemes on Burgers’ equation using a conservative first-order upwind spatial
discretization with m = 256 points in space with final time tf = 2.
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on these results, we conjecture that the optimal implicit SSP Runge–Kutta
methods of any number of stages are diagonally implicit. Also of note, the
second- and third-order numerically optimal methods are singly diagonally
implicit. Future work will involve numerical experiments with more pow-
erful numerical optimization software, which will allow us to search more
thoroughly and among methods with more stages to support this conjecture.

Numerical experiments demonstrate that these methods converge at the
expected order, do not seem to suffer from order reduction despite having
lower stage order, and violate the SSP property precisely when the theoretical
time-step restriction is exceeded. The implicit SSP Runge–Kutta methods we
found have SSP coefficients significantly larger than those of optimal explicit
methods for a given number of stages and order of accuracy. However, these
advantages in accuracy and time-step restriction must be weighed against the
cost of solving the implicit set of equations. In the future we plan to compare
in practice the relative efficiency of these methods with explicit methods.
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A Coefficients of Optimal Methods

A.1 Fourth-order Methods

µ11 = 0.157330905682085

µ21 = 0.342491639470766

µ22 = 0.047573123554705

µ32 = 0.338136048168635

µ33 = 0.157021682372699

µ41 = 0.081822264233578

µ42 = 0.079106848361263

µ43 = 0.267698531248384

λ21 = 0.703541497995214

λ32 = 0.694594303739345

λ41 = 0.168078141811591

λ42 = 0.162500172803529

λ43 = 0.549902549377947

Table 5: Non-zero coefficients of the optimal 3-stage method of order 4.

µ11 = 0.119309657880174

µ21 = 0.226141632153728

µ22 = 0.070605579799433

µ32 = 0.180764254304414

µ33 = 0.070606483961727

µ43 = 0.212545672537219

µ44 = 0.119309875536981

µ51 = 0.010888081702583

µ52 = 0.034154109552284

µ54 = 0.181099440898861

λ21 = 1

λ32 = 0.799340893504885

λ43 = 0.939878564212065

λ51 = 0.048147179264990

λ52 = 0.151029729585865

λ54 = 0.800823091149145

Table 6: Non-zero coefficients of the optimal 4-stage method of order 4.

µ11 = 0.072154507748981

µ21 = 0.165562779595956

µ22 = 0.071232036614272

µ32 = 0.130035287184462

µ33 = 0.063186062090477

µ43 = 0.154799860761964

µ44 = 0.077017601068238

µ54 = 0.158089969701175

µ55 = 0.106426690493882

µ65 = 0.148091381629243

µ52 = 0.007472809894781

µ62 = 0.017471397966712

λ21 = 1

λ32 = 0.785413771753555

λ43 = 0.934991917505507

λ54 = 0.954864191619538

λ65 = 0.894472670673021

λ52 = 0.045135808380468

λ62 = 0.105527329326976

Table 7: Non-zero coefficients of the optimal 5-stage method of order 4.
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µ11 = 0.077219435861458

µ21 = 0.128204308556198

µ22 = 0.063842903854499

µ32 = 0.128204308556197

µ33 = 0.058359965096908

µ41 = 0.008458154338733

µ43 = 0.103230521234296

µ44 = 0.058105933032597

µ54 = 0.128204308556197

µ55 = 0.064105484788524

µ63 = 0.008043763906343

µ65 = 0.120160544649854

µ66 = 0.077016336936138

µ73 = 0.013804194371285

µ76 = 0.114400114184912

λ21 = 1

λ32 = 1

λ41 = 0.065974025631326

λ43 = 0.805203213502341

λ54 = 1

λ63 = 0.062741759593964

λ65 = 0.937258240406037

λ73 = 0.107673404480272

λ76 = 0.892326595519728

Table 8: Non-zero coefficients of the optimal 6-stage method of order 4.

µ11 = 0.081324471088377

µ21 = 0.108801609187400

µ22 = 0.051065224656204

µ32 = 0.108801609187400

µ33 = 0.036491713577701

µ43 = 0.094185417979586

µ44 = 0.037028821732794

µ54 = 0.108801609187400

µ55 = 0.040474271914787

µ65 = 0.108801609187400

µ66 = 0.061352000212100

µ73 = 0.020631403945188

µ76 = 0.088170205242212

µ77 = 0.080145231879588

µ83 = 0.001561606596621

µ87 = 0.107240002590779

λ21 = 1

λ32 = 1

λ43 = 0.865661994183934

λ54 = 1

λ65 = 1

λ73 = 0.189624069894518

λ76 = 0.810375930105481

λ83 = 0.014352789524754

λ87 = 0.985647210475246

Table 9: Non-zero coefficients of the optimal 7-stage method of order 4.

µ11 = 0.080355939553359

µ21 = 0.093742212796061

µ22 = 0.054617345411549

µ32 = 0.093742212796061

µ33 = 0.039438131644116

µ43 = 0.093742212796061

µ44 = 0.032427875074076

µ51 = 0.004426522032754

µ54 = 0.083174746150582

µ55 = 0.030116385482588

µ65 = 0.093742212796061

µ66 = 0.038334326442344

µ76 = 0.093742212796061

µ77 = 0.058861620081910

µ84 = 0.021977226754808

µ87 = 0.071764986041253

µ88 = 0.055606577879005

µ98 = 0.093742212796061

λ21 = 1

λ32 = 1

λ43 = 1

λ51 = 0.047220157287989

λ54 = 0.887270992114641

λ65 = 1

λ76 = 1

λ84 = 0.234443225728203

λ87 = 0.765556774271797

λ98 = 1

Table 10: Non-zero coefficients of the optimal 8-stage method of order 4.

µ11 = 0.068605696784244

µ21 = 0.082269487560004

µ22 = 0.048685583036902

µ32 = 0.077774790319743

µ33 = 0.039925150083662

µ43 = 0.083046524401968

µ44 = 0.031928917146492

µ54 = 0.083046524401968

µ55 = 0.029618614941264

µ61 = 0.008747971137402

µ62 = 0.001326570052113

µ65 = 0.072971983212453

µ66 = 0.029699905991308

µ76 = 0.083046524401968

µ77 = 0.035642110881905

µ87 = 0.083046524401969

µ88 = 0.050978240433952

µ95 = 0.017775897980583

µ98 = 0.065270626421385

µ99 = 0.057552171403649

µ10,9 = 0.083046524401968

λ21 = 0.990643355064403

λ32 = 0.936520713898770

λ43 = 1

λ54 = 1

λ61 = 0.105338196876962

λ62 = 0.015973817828813

λ65 = 0.878687985294225

λ76 = 1

λ87 = 1

λ95 = 0.214047464461523

λ98 = 0.785952535538477

λ10,9 = 1

Table 11: Non-zero coefficients of the optimal 9-stage method of order 4.

µ11 = 0.053637857412307

µ21 = 0.073302847899924

µ22 = 0.042472343576273

µ32 = 0.063734820131903

µ33 = 0.039816143518898

µ43 = 0.072590353622503

µ44 = 0.034233821696022

µ54 = 0.073302847899924

µ55 = 0.030626774272464

µ65 = 0.073302847899924

µ66 = 0.029485772863308

µ72 = 0.008896701400356

µ76 = 0.064406146499568

µ77 = 0.033369849008191

µ87 = 0.073302847899924

µ88 = 0.037227578299133

µ98 = 0.073302847899924

µ99 = 0.046126339053885

µ10,6 = 0.012892211367605

µ10,9 = 0.060410636532319

µ10,10 = 0.053275700719583

µ11,10 = 0.073302847899924

λ21 = 1

λ32 = 0.869472632481021

λ43 = 0.990280128291965

λ54 = 1

λ65 = 1

λ72 = 0.121369109867354

λ76 = 0.878630890132646

λ87 = 1

λ98 = 1

λ10,6 = 0.175875995775857

λ10,9 = 0.824124004224143

λ11,10 = 1

Table 12: Non-zero coefficients of the optimal 10-stage method of order 4.
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µ11 = 0.056977945207836

µ21 = 0.065880156369595

µ22 = 0.043484869703481

µ32 = 0.065880156369595

µ33 = 0.035790792116714

µ41 = 0.000026595081404

µ43 = 0.061212831485396

µ44 = 0.029306212740362

µ54 = 0.065880156369595

µ55 = 0.028274789742965

µ65 = 0.065880156369595

µ66 = 0.025442782369057

µ76 = 0.065880156369595

µ77 = 0.029602951078198

µ83 = 0.009935800759662

µ87 = 0.055944355609932

µ88 = 0.027887296332663

µ98 = 0.065880156369595

µ99 = 0.033340440672342

µ10,9 = 0.065880156369595

µ10,10 = 0.042024506703707

µ11,7 = 0.012021727578515

µ11,10 = 0.053858428791080

µ11,11 = 0.045164424313434

µ12,11 = 0.065880156369595

λ21 = 1

λ32 = 1

λ41 = 0.000403688802047

λ43 = 0.929154313811668

λ54 = 1

λ65 = 1

λ76 = 1

λ83 = 0.150816289869158

λ87 = 0.849183710130842

λ98 = 1

λ10,9 = 1

λ11,7 = 0.182478734735714

λ11,10 = 0.817521265264286

λ12,11 = 1

Table 13: Non-zero coefficients of the optimal 11-stage method of order 4.
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A.2 Fifth-order Methods

µ21 = 0.123278811294077

µ22 = 0.123278811294077

µ32 = 0.355043587270334

µ33 = 0.058564865652410

µ41 = 0.097221481840379

µ42 = 0.016398194363903

µ43 = 0.401279315201748

µ44 = 0.130922344408366

µ51 = 0.025096216568591

µ52 = 0.142231289220490

µ53 = 0.171171917240332

µ54 = 0.274285274330639

λ21 = 0.132472176321996

λ32 = 0.381520524096177

λ41 = 0.104471653720944

λ42 = 0.017621069446845

λ43 = 0.431204224308822

λ51 = 0.026967735910097

λ52 = 0.152838011871931

λ53 = 0.183936851467070

λ54 = 0.294739759754655

Table 14: Non-zero coefficients of the optimal 4-stage method of order 5.

µ21 = 0.086178504812481

µ22 = 0.086178504230788

µ32 = 0.150240097189194

µ33 = 0.062153125773256

µ43 = 0.175903357484878

µ44 = 0.056168662884210

µ51 = 0.023494457517988

µ54 = 0.174378360369685

µ55 = 0.061419240496304

µ62 = 0.016112966258044

µ63 = 0.026099581270141

µ65 = 0.158854219767892

µ66 = 0.080304315695241

µ73 = 0.004676843322988

µ74 = 0.041213090387125

µ76 = 0.146947097961295

λ21 = 0.428553060148464

λ32 = 0.747121959791843

λ43 = 0.874741587876977

λ51 = 0.116834490082770

λ54 = 0.867158000973773

λ62 = 0.080127417074354

λ63 = 0.129789388273218

λ65 = 0.789958727494273

λ73 = 0.023257255649335

λ74 = 0.204946651627447

λ76 = 0.730746357786987

Table 15: Non-zero coefficients of the optimal 6-stage method of order 5.

µ21 = 0.077756487471956

µ22 = 0.077756487471823

µ32 = 0.126469010941083

µ33 = 0.058945597921853

µ43 = 0.143639250502198

µ44 = 0.044443238891736

µ51 = 0.011999093244164

µ54 = 0.145046006148787

µ55 = 0.047108760907057

µ62 = 0.011454172434127

µ63 = 0.027138257330487

µ65 = 0.122441492758580

µ66 = 0.037306165750735

µ73 = 0.020177924440034

µ76 = 0.140855998083160

µ77 = 0.077972159279168

µ84 = 0.009653207936821

µ85 = 0.025430639631870

µ86 = 0.000177781270869

µ87 = 0.124996366168017

λ21 = 0.482857811904546

λ32 = 0.785356333370487

λ43 = 0.891981318293413

λ51 = 0.074512829695468

λ54 = 0.900717090387559

λ62 = 0.071128941372444

λ63 = 0.168525096484428

λ65 = 0.760345962143127

λ73 = 0.125302322168346

λ76 = 0.874697677831654

λ84 = 0.059945182887979

λ85 = 0.157921009644458

λ86 = 0.001103998884730

λ87 = 0.776211398253764

Table 16: Non-zero coefficients of the optimal 7-stage method of order 5.
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µ21 = 0.068228425119547

µ22 = 0.068228425081188

µ32 = 0.105785458668142

µ33 = 0.049168429086829

µ43 = 0.119135238085849

µ44 = 0.040919294063196

µ51 = 0.009164078944895

µ54 = 0.120257079939301

µ55 = 0.039406904101415

µ62 = 0.007428674198294

µ63 = 0.019703233696280

µ65 = 0.105180973170163

µ66 = 0.045239659320409

µ73 = 0.015335646668415

µ76 = 0.116977452926909

µ77 = 0.050447703819928

µ84 = 0.011255581082016

µ85 = 0.006541409424671

µ87 = 0.114515518273119

µ88 = 0.060382824328534

µ95 = 0.002607774587593

µ96 = 0.024666705635997

µ98 = 0.104666894951906

λ21 = 0.515658560550227

λ32 = 0.799508082567950

λ43 = 0.900403391614526

λ51 = 0.069260513476804

λ54 = 0.908882077064212

λ62 = 0.056144626483417

λ63 = 0.148913610539984

λ65 = 0.794939486396848

λ73 = 0.115904148048060

λ76 = 0.884095226988328

λ84 = 0.085067722561958

λ85 = 0.049438833770315

λ87 = 0.865488353423280

λ95 = 0.019709106398420

λ96 = 0.186426667470161

λ98 = 0.791054172708715

Table 17: Non-zero coefficients of the optimal 8-stage method of order 5.

µ21 = 0.057541273792734

µ22 = 0.057541282875429

µ32 = 0.089687860942851

µ33 = 0.041684970395150

µ43 = 0.101622955619526

µ44 = 0.040743690263377

µ51 = 0.009276188714858

µ54 = 0.101958242208571

µ55 = 0.040815264589441

µ62 = 0.011272987717036

µ65 = 0.101125244372555

µ66 = 0.040395338505384

µ73 = 0.003606182878823

µ74 = 0.018205434656765

µ76 = 0.090586614534056

µ77 = 0.042925976445877

µ84 = 0.011070977346914

µ87 = 0.101327254746568

µ88 = 0.046669302312152

µ95 = 0.010281040119047

µ98 = 0.102117191974435

µ99 = 0.050500143250113

µ10,6 = 0.000157554758807

µ10,7 = 0.023607648002010

µ10,9 = 0.088454624345414

λ21 = 0.511941093031398

λ32 = 0.797947256574797

λ43 = 0.904133043080300

λ51 = 0.082529667434119

λ54 = 0.907116066770269

λ62 = 0.100295062538531

λ65 = 0.899704937426848

λ73 = 0.032083982209117

λ74 = 0.161972606843345

λ76 = 0.805943410735452

λ84 = 0.098497788983963

λ87 = 0.901502211016037

λ95 = 0.091469767162319

λ98 = 0.908530232837680

λ10,6 = 0.001401754777391

λ10,7 = 0.210035759124536

λ10,9 = 0.786975228149903

Table 18: Non-zero coefficients of the optimal 9-stage method of order 5.

µ21 = 0.052445615058994

µ22 = 0.052445635165954

µ32 = 0.079936220395519

µ33 = 0.038724845476313

µ43 = 0.089893189589075

µ44 = 0.037676214671832

µ51 = 0.007606429497294

µ54 = 0.090180506502554

µ55 = 0.035536573874530

µ62 = 0.009295158915663

µ65 = 0.089447242753894

µ66 = 0.036490114423762

µ73 = 0.003271387942850

µ74 = 0.015255382390056

µ76 = 0.080215515252923

µ77 = 0.035768398609662

µ84 = 0.009638972523544

µ87 = 0.089103469454345

µ88 = 0.040785658461768

µ95 = 0.009201462517982

µ98 = 0.089540979697808

µ99 = 0.042414168555682

µ10,6 = 0.005634796609556

µ10,7 = 0.006560464576444

µ10,9 = 0.086547180546464

µ10,10 = 0.043749770437420

µ11,7 = 0.001872759401284

µ11,8 = 0.017616881402665

µ11,10 = 0.079160150775900

λ21 = 0.531135486241871

λ32 = 0.809542670828687

λ43 = 0.910380456183399

λ51 = 0.077033029836054

λ54 = 0.913290217244921

λ62 = 0.094135396158718

λ65 = 0.905864193215084

λ73 = 0.033130514796271

λ74 = 0.154496709294644

λ76 = 0.812371189661489

λ84 = 0.097617319434729

λ87 = 0.902382678155958

λ95 = 0.093186499255038

λ98 = 0.906813500744962

λ10,6 = 0.057065598977612

λ10,7 = 0.066440169285130

λ10,9 = 0.876494226842443

λ11,7 = 0.018966103726616

λ11,8 = 0.178412453726484

λ11,10 = 0.801683136446066

Table 19: Non-zero coefficients of the optimal 10-stage method of order 5.

µ21 = 0.048856948431570

µ22 = 0.048856861697775

µ32 = 0.072383163641108

µ33 = 0.035920513887793

µ43 = 0.080721632683704

µ44 = 0.034009594943671

µ51 = 0.006438090160799

µ54 = 0.081035022899306

µ55 = 0.032672027896742

µ62 = 0.007591099341932

µ63 = 0.000719846382100

µ65 = 0.079926841108108

µ66 = 0.033437798720082

µ73 = 0.003028997848550

µ74 = 0.012192534706212

µ76 = 0.073016254277378

µ77 = 0.033377699686911

µ84 = 0.008251011235053

µ87 = 0.079986775597087

µ88 = 0.035640440183022

µ95 = 0.008095394925904

µ98 = 0.080142391870059

µ99 = 0.036372965664654

µ10,6 = 0.005907318148947

µ10,7 = 0.005394911565057

µ10,9 = 0.076935557118137

µ10,10 = 0.032282094274356

µ11,7 = 0.003571080721480

µ11,8 = 0.008920593887617

µ11,10 = 0.075746112223043

µ11,11 = 0.042478561828713

µ12,8 = 0.004170617993886

µ12,9 = 0.011637432775226

µ12,11 = 0.072377330912325

λ21 = 0.553696439876870

λ32 = 0.820319346617409

λ43 = 0.914819326070196

λ51 = 0.072962960562995

λ54 = 0.918370981510030

λ62 = 0.086030028794504

λ63 = 0.008158028526592

λ65 = 0.905811942678904

λ73 = 0.034327672500586

λ74 = 0.138178156365216

λ76 = 0.827494171134198

λ84 = 0.093508818968334

λ87 = 0.906491181031666

λ95 = 0.091745217287743

λ98 = 0.908254782302260

λ10,6 = 0.066947714363965

λ10,7 = 0.061140603801867

λ10,9 = 0.871911681834169

λ11,7 = 0.040471104837131

λ11,8 = 0.101097207986272

λ11,10 = 0.858431687176596

λ12,8 = 0.047265668639449

λ12,9 = 0.131887178872293

λ12,11 = 0.820253244225314

Table 20: Non-zero coefficients of the optimal 11-stage method of order 5.
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A.3 Sixth-order Methods

µ21 = 0.306709397198437

µ22 = 0.306709397198281

µ31 = 0.100402778173265

µ32 = 0.000000014622272

µ33 = 0.100402700098726

µ41 = 0.000015431349319

µ42 = 0.000708584139276

µ43 = 0.383195003696784

µ44 = 0.028228318307509

µ51 = 0.101933808745384

µ52 = 0.000026687930165

µ53 = 0.136711477475771

µ54 = 0.331296656179688

µ55 = 0.107322255666019

µ61 = 0.000033015066992

µ62 = 0.000000017576816

µ63 = 0.395057247524893

µ64 = 0.014536993458566

µ65 = 0.421912313467517

µ66 = 0.049194928995335

µ71 = 0.054129307323559

µ72 = 0.002083586568620

µ73 = 0.233976271277479

µ74 = 0.184897163424393

µ75 = 0.303060566272042

µ76 = 0.135975816243004

λ21 = 0.055928810359256

λ31 = 0.018308561756789

λ32 = 0.000000002666388

λ41 = 0.000002813924247

λ42 = 0.000129211130507

λ43 = 0.069876048429340

λ51 = 0.018587746937629

λ52 = 0.000004866574675

λ53 = 0.024929494718837

λ54 = 0.060412325234826

λ61 = 0.000006020335333

λ62 = 0.000000003205153

λ63 = 0.072039142196788

λ64 = 0.002650837430364

λ65 = 0.076936194272824

λ71 = 0.009870541274021

λ72 = 0.000379944400556

λ73 = 0.042665841426363

λ74 = 0.033716209818106

λ75 = 0.055263441854804

λ76 = 0.024795346049276

Table 21: Non-zero coefficients of the optimal 6-stage method of order 6.

µ21 = 0.078064586430339

µ22 = 0.078064586430334

µ31 = 0.000000000128683

µ32 = 0.207887720440412

µ33 = 0.051491724905522

µ41 = 0.039407945831803

µ43 = 0.256652317630585

µ44 = 0.062490509654886

µ51 = 0.009678931461971

µ52 = 0.113739188386853

µ54 = 0.227795405648863

µ55 = 0.076375614721986

µ62 = 0.010220279377975

µ63 = 0.135083590682973

µ65 = 0.235156310567507

µ66 = 0.033370798931382

µ72 = 0.000000009428737

µ73 = 0.112827524882246

µ74 = 0.001997541632150

µ75 = 0.177750742549303

µ76 = 0.099344022703332

µ77 = 0.025183595544641

µ81 = 0.122181071065616

µ82 = 0.000859535946343

µ83 = 0.008253954430873

µ84 = 0.230190271515289

µ85 = 0.046429529676480

µ86 = 0.017457063072040

µ87 = 0.017932893410781

µ88 = 0.322331010725841

µ91 = 0.011069087473717

µ92 = 0.010971589676607

µ93 = 0.068827453812950

µ94 = 0.048864283062331

µ95 = 0.137398274895655

µ96 = 0.090347431612516

µ97 = 0.029504401738350

µ98 = 0.000167109498102

λ21 = 0.175964293749273

λ31 = 0.000000000290062

λ32 = 0.468596806556916

λ41 = 0.088828900190110

λ43 = 0.578516403866171

λ51 = 0.021817144198582

λ52 = 0.256377915663045

λ54 = 0.513470441684846

λ62 = 0.023037388973687

λ63 = 0.304490034708070

λ65 = 0.530062554633790

λ72 = 0.000000021253185

λ73 = 0.254322947692795

λ74 = 0.004502630688369

λ75 = 0.400665465691124

λ76 = 0.223929973789109

λ81 = 0.275406645480353

λ82 = 0.001937467969363

λ83 = 0.018605123379003

λ84 = 0.518868675379274

λ85 = 0.104656154246370

λ86 = 0.039349722004217

λ87 = 0.040422284523661

λ91 = 0.024950675444873

λ92 = 0.024730907022402

λ93 = 0.155143002154553

λ94 = 0.110144297841125

λ95 = 0.309707532056893

λ96 = 0.203650883489192

λ97 = 0.066505459796630

λ98 = 0.000376679185235

Table 22: Non-zero coefficients of the optimal 8-stage method of order 6.
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µ21 = 0.060383920365295

µ22 = 0.060383920365140

µ31 = 0.000000016362287

µ32 = 0.119393671070984

µ33 = 0.047601859039825

µ42 = 0.000000124502898

µ43 = 0.144150297305350

µ44 = 0.016490678866732

µ51 = 0.014942049029658

µ52 = 0.033143125204828

µ53 = 0.020040368468312

µ54 = 0.095855615754989

µ55 = 0.053193337903908

µ61 = 0.000006536159050

µ62 = 0.000805531139166

µ63 = 0.015191136635430

µ64 = 0.054834245267704

µ65 = 0.089706774214904

µ71 = 0.000006097150226

µ72 = 0.018675155382709

µ73 = 0.025989306353490

µ74 = 0.000224116890218

µ75 = 0.000125522781582

µ76 = 0.125570620920810

µ77 = 0.019840674620006

µ81 = 0.000000149127775

µ82 = 0.000000015972341

µ83 = 0.034242827620807

µ84 = 0.017165973521939

µ85 = 0.000000000381532

µ86 = 0.001237807078917

µ87 = 0.119875131948576

µ88 = 0.056749019092783

µ91 = 0.000000072610411

µ92 = 0.000000387168511

µ93 = 0.000400376164405

µ94 = 0.000109472445726

µ95 = 0.012817181286633

µ96 = 0.011531979169562

µ97 = 0.000028859233948

µ98 = 0.143963789161172

µ99 = 0.060174596046625

µ10,1 = 0.001577092080021

µ10,2 = 0.000008909587678

µ10,3 = 0.000003226074427

µ10,4 = 0.000000062166910

µ10,5 = 0.009112668630420

µ10,6 = 0.008694079174358

µ10,7 = 0.017872872156132

µ10,8 = 0.027432316305282

µ10,9 = 0.107685980331284

λ21 = 0.350007201986739

λ31 = 0.000000094841777

λ32 = 0.692049215977999

λ42 = 0.000000721664155

λ43 = 0.835547641163090

λ51 = 0.086609559981880

λ52 = 0.192109628653810

λ53 = 0.116161276908552

λ54 = 0.555614071795216

λ61 = 0.000037885959162

λ62 = 0.004669151960107

λ63 = 0.088053362494510

λ64 = 0.317839263219390

λ65 = 0.519973146034093

λ71 = 0.000035341304071

λ72 = 0.108248004479122

λ73 = 0.150643488255346

λ74 = 0.001299063147749

λ75 = 0.000727575773504

λ76 = 0.727853067743022

λ81 = 0.000000864398917

λ82 = 0.000000092581509

λ83 = 0.198483904509141

λ84 = 0.099500236576982

λ85 = 0.000000002211499

λ86 = 0.007174780797111

λ87 = 0.694839938634174

λ91 = 0.000000420876394

λ92 = 0.000002244169749

λ93 = 0.002320726117116

λ94 = 0.000634542179300

λ95 = 0.074293052394615

λ96 = 0.066843552689032

λ97 = 0.000167278634186

λ98 = 0.834466572009306

λ10,1 = 0.009141400274516

λ10,2 = 0.000051643216195

λ10,3 = 0.000018699502726

λ10,4 = 0.000000360342058

λ10,5 = 0.052820347381733

λ10,6 = 0.050394050390558

λ10,7 = 0.103597678603687

λ10,8 = 0.159007699664781

λ10,9 = 0.624187175011814

Table 23: Non-zero coefficients of the optimal 9-stage method of order 6.

µ21 = 0.054638144097621

µ22 = 0.054638144097609

µ32 = 0.094708145223810

µ33 = 0.044846931722606

µ43 = 0.108958403164940

µ44 = 0.031071352647397

µ51 = 0.004498251069701

µ52 = 0.005530448043688

µ54 = 0.107851443619437

µ55 = 0.018486380725450

µ62 = 0.015328210231111

µ63 = 0.014873940010974

µ64 = 0.000000013999299

µ65 = 0.093285690103096

µ66 = 0.031019852663844

µ73 = 0.023345108682580

µ74 = 0.000000462051194

µ76 = 0.100142283610706

µ77 = 0.037191650574052

µ84 = 0.020931607249912

µ85 = 0.007491225374492

µ86 = 0.000000004705702

µ87 = 0.094887152674486

µ88 = 0.041052752299292

µ94 = 0.000000000437894

µ95 = 0.013484714992727

µ96 = 0.012301077330264

µ98 = 0.097178530400423

µ99 = 0.039273658398104

µ10,1 = 0.000987065715240

µ10,2 = 0.000000347467847

µ10,6 = 0.004337021151393

µ10,7 = 0.011460261685365

µ10,8 = 0.002121689510807

µ10,9 = 0.104338127248348

µ10,10 = 0.042268075457472

µ11,3 = 0.000656941338471

µ11,7 = 0.015039465910057

µ11,8 = 0.004816543620956

µ11,9 = 0.031302441038151

µ11,10 = 0.071672462436845

λ21 = 0.442457635916190

λ32 = 0.766942997969774

λ43 = 0.882341050812911

λ51 = 0.036426667979449

λ52 = 0.044785360253007

λ54 = 0.873376934047102

λ62 = 0.124127269944714

λ63 = 0.120448606787528

λ64 = 0.000000113365798

λ65 = 0.755424009901960

λ73 = 0.189047812082446

λ74 = 0.000003741673193

λ76 = 0.810948446244362

λ84 = 0.169503368254511

λ85 = 0.060663661331375

λ86 = 0.000000038106595

λ87 = 0.768392593572726

λ94 = 0.000000003546047

λ95 = 0.109198714839684

λ96 = 0.099613661566658

λ98 = 0.786948084216732

λ10,1 = 0.007993221037648

λ10,2 = 0.000002813781560

λ10,6 = 0.035121034164983

λ10,7 = 0.092804768098049

λ10,8 = 0.017181361859997

λ10,9 = 0.844926230212794

λ11,3 = 0.005319886250823

λ11,7 = 0.121789029292733

λ11,8 = 0.039004189088262

λ11,9 = 0.253485990215933

λ11,10 = 0.580400905152248

Table 24: Non-zero coefficients of the optimal 10-stage method of order 6.


