
We consider an example of a 3 × 3 system:

x′ = Ax

where

A =




3 0 1
−1 3.5 2.5
1. −0.5 2.5




• Whichever of the three approaches we take to understanding the solution, we will need to
compute eigenvalues, eigenvectors, and generalized eigenvectors. So let’s get it out of the way
first!

1. Find the eigenvalue(s) by computing det(A − rI) = 0:

det(A − rI) =




3 − r 0 1
−1 3.5− r 2.5
1. −0.5 2.5− r


 = 0

So we have

det(A − rI) = (3 − r) ((3.5− r)(2.5− r) + (0.5)(2.5)) + (0.5− (3.5− r))

= (3 − r)
(

(
7
2
− r)(

5
2
− r) +

5
4

)
+ (r − 3)

= (3 − r)
(

(
7
2
− r)(

5
2
− r) +

5
4
− 1

)

= (3 − r)
(

(
7
2
− r)(

5
2
− r) +

5
4
− 1

)

= (3 − r)
(

35
4

− 6r + r2 +
1
4

)

= (3 − r)
(

36
4

− 6r + r2 +
1
4

)

= (3 − r)3

So my eigenvalue (of multiplicity 3) is r = 3.
2. Find the eigenvector v such that (A − rI)v = 0:




0 0 1
−1 0.5 2.5
1. −0.5 −0.5







v1

v2

v3


 =




0
0
0




So that v3 = 0, and v1 − 1
2v2 = 0. This gives us an eigenvector of the form

v =




1
2
0




3. Compute the first generalized eigenvector w such that (A − rI)w = v:



0 0 1
−1 0.5 2.5
1. −0.5 −0.5







w1

w2

w3


 =




1
2
0


 .

This gives us w3 = 1, w1 − 0.5w2 − 0.5 = 0 which is w1 − 0.5w2 = 0.5. It is easy to chose

w =




1
1
1



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4. Compute the second generalized eigenvector z such that (A − rI)z = w:



0 0 1
−1 0.5 2.5
1. −0.5 −0.5







z1

z2

z3


 =




1
1
1


 ,

which gives z3 = 1, z1 − 0.5z2 − 0.5 = 1 which gives a generalized eigenvector

z =




1
−1
1


 .

So we have obtained an eigenvalue r = 3 and its eigenvector, first generalized eigenvector, and
second generalized eigenvector:

v =




1
2
0


 , w =




1
1
1


 , z =




1
−1
1


 .

• Now let’s get the solution. As usual, there are 3 approaches:

1. Guess: To find the first solution x(1) we guess that it has the form x(1) = vert and then
plug into the equation to get: (x(1))′ = rvert so that we need

rvert = Avert

which, since the exponential is a common term which is nonzero, requires

Av = rv.

It is well-known that a pair r, v which satisfy this relation is called an eigenvalue-eignevector
pair, and we computed it above. Unfortunately, in this case only one eigenvalue and one
eigenvector are found, so we can only get one solution this way.
To find the second solution, we guess x(2) = vtert + wert and when we differentiate and
plug into the equation this gives us

vert + vrtert + wrert = Avtert + Awert

canceling the ert term and rearranging this we get

v = (Av − rv)t + (Aw − rw)

since r and v are an eigen-pair, this gives us

(A − rI)w) = v

which we solved above.
To find the third solution, we guess1 x(3) = 1

2vt2ert + wtert + zert. Plugging this into the
equation (yuck!) we get:

vtert +
1
2
vt2rert + rwtert + wert + rzert =

1
2
Avt2ert + Awtert + Azert

and canceling and rearranging we get:

((Aw − rw) − v) t +
1
2
(Av − rv)t2 + ((A − rI)z − w) = 0

1obviously!
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the first two terms vanish because of the definitions of v and w, and we have the require-
ment

(A − rI)z = w.

We have computed this above, so now we need only piece this together:

x(1) =




1
2
0


 e3t,

x(2) =




1
2
0


 te3t +




1
1
1


 e3t,

and

x(3) =




1
2
0


 1

2
t2e3t +




1
1
1


 te3t +




1
−1
1


 e3t.

Of course, to have any kind of intuition as to why we would choose these crazy guesses,
we need to consider the other 2 approaches!

2. Compute the matrix exponential solution:
Here we know the solution is of the form x = eAtc because we define the matrix expo-
nential

eAt = I + At +
1
2
A2t2 +

1
3!

A3t3 +
1
4!

A4t4 +
1
5!

A5t5 + ...

which, when differentiated satisfies the differential equation x′ = Ax.
The problem is, then, how to compute the matrix exponential. To do so, we take ad-
vantage of the fact that we can ”Jordanize” the matrix A, such that A = SJS−1. The
matrix J will look like:

J =




3 1 0
0 3 1
0 0 3




and the matrix

S =




1 1 1
2 1 −1
0 1 1




Let’s check this! I did this on Matlab:

>> J= [ 3 1 0; 0 3 1 ; 0 0 3]

J =

3 1 0
0 3 1
0 0 3

>> S= [ 1 1 1 ; 2 1 -1 ; 0 1 1]

S =

1 1 1
2 1 -1
0 1 1
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>> iS=inv(S)

iS =

1.0000 0 -1.0000
-1.0000 0.5000 1.5000
1.0000 -0.5000 -0.5000

>> S*J*iS

ans =

3.0000 0 1.0000
-1.0000 3.5000 2.5000
1.0000 -0.5000 2.5000

Now we use the fact that eAt = SeJtS−1 and that

eJt =




e3t te3t 1
2t2e3t

0 e3t te3t

0 0 e3t




or, in Matlab

>> syms t
>> expm(J*t)

ans =

[ exp(3*t), t*exp(3*t), 1/2*t^2*exp(3*t)]
[ 0, exp(3*t), t*exp(3*t)]
[ 0, 0, exp(3*t)]

to give us the fundamental matrix of solutions

Φ(t) = eAt =




1 1 1
2 1 −1
0 1 1







e3t te3t 1
2
t2e3t

0 e3t te3t

0 0 e3t







1 0 −1
−1 0.5 1.5
1 −0.5 −0.5


 .

In Matlab I could get this by:

>> S*expm(J*t)*iS

ans =

[ exp(3*t)+1/2*t^2*exp(3*t), -1/4*t^2*exp(3*t), t*exp(3*t)-1/4*t^2*exp(3*t)]
[ -t*exp(3*t)+t^2*exp(3*t), 1/2*t*exp(3*t)+exp(3*t)-1/2*t^2*exp(3*t),5/2*t*exp(3*t)-1/2*t^2*exp
[ t*exp(3*t), -1/2*t*exp(3*t), exp(3*t)-1/2*t*exp(3*t)]

Or, of course, just by:

>> A= S*J*iS

A =
4



3.0000 0 1.0000
-1.0000 3.5000 2.5000
1.0000 -0.5000 2.5000

>> expm(A*t)

ans =

[ exp(3*t)+1/2*t^2*exp(3*t), -1/4*t^2*exp(3*t), t*exp(3*t)-1/4*t^2*exp(3*t)]
[ -t*exp(3*t)+t^2*exp(3*t),1/2*t*exp(3*t)+exp(3*t)-1/2*t^2*exp(3*t),5/2*t*exp(3*t)-1/2*t^2*exp(
[ t*exp(3*t), -1/2*t*exp(3*t), exp(3*t)-1/2*t*exp(3*t)]

Now, recall that our solution is x = eAtc so that we have x = SeJtS−1c. Since S−1c is
just a bunch of constants, a good fundamental matrix of solutions is Ψ(t) = SeJt or

>> S*expm(J*t)

ans =

[ exp(3*t), t*exp(3*t)+exp(3*t), 1/2*t^2*exp(3*t)+t*exp(3*t)+exp(3*t)]
[2*exp(3*t), 2*t*exp(3*t)+exp(3*t), t^2*exp(3*t)+t*exp(3*t)-exp(3*t)]
[0, exp(3*t), t*exp(3*t)+exp(3*t)]

3. Partially decouple the system and solve it:
In this approach we also use the matrices found above to give us the information that
A = SJS−1 . However, we do not yet require the exact form of the matrix S, just the
knowledge that this matrix can be transformed using S into a Jordan block matrix. So
now we use this transformation:

x = Sy

this means that
x′ = Sy ′

which (plugging back into the ODE) gives us

Sy ′ = ASy.

Left-multiply both sides by S−1 and use the fact that J = S−1AS to give the ODE

y′ = Jy.

Now let’s write out this ODE and solve2:

y′1 = 3y1 + y2

y′2 = 3y2 + y3

y′3 = 3y3

The last equation is easy to solve: y3 = k3e
3t. Now we can plug this into the second

equation, which becomes:

y′2 = 3y2 + k3e
3t

y′2 − 3y2 = k3e
3t

2Note that at this point we could solve this ODE using eJt and the fact that we know to compute it, and then
x = SeJtk and we’d be done, but that would not be as much fun.
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e−3ty′2 − 3e−3ty2 = k3(
e−3ty2

)′ = k3(
e−3ty2

)
= k3t + k2

y2 = k3te
3t + k2e

3t.

We now plug this solution into the first equation to obtain:

y′1 = 3y1 + k3te
3t + k2e

3t

y′1e
−3t − 3e−3ty1+ = k3t + k2(

e−3ty1

)′
= k3t + k2

(
e−3ty1

)′
=

1
2
k3t

2 + k2t + k1

y1 =
1
2
k3t

2e3t + k2te
3t + k1e

3t.

So our solution is:

y =




1
2k3t

2e3t + k2te
3t + k1e

3t

k3te
3t + k2e

3t

k3e
3t


 =




e3t te3t 1
2t2e3t

0 e3t te3t

0 0 e3t







k1

k2

k3




which should look familiar!
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