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In this note we consider the application of the WENO scheme to simulations
of steady-state flow in a converging diverging nozzle. We demonstrate the recov-
ery of design accuracy through Gegenbauer postprocessing, despite the deg-
radation of the order of accuracy for the numerical solution of the Euler
equations to first-order in regions where the characteristics passed through the
shock. We have shown a case in which the Gegenbauer postprocessing can
recover the order of accuracy right up to the shock location. This suggests that
high-order accurate information which crosses through the shock may not be
irretrievably lost, and we can strive to recover it through various types of post-
processing.
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1. INTRODUCTION

It has been shown [3, 15, 17] that approximating discontinuous solutions
by high-order methods yield, in general, only first-order accuracy, because
information passing through the shock along characteristics is degraded to
first-order. Thus, in the region of the solution, which contains information
that traveled through the shock, one can expect only first-order accuracy.
Over the years, this has been an argument against the use of high-order
methods for shock wave calculations. However, Lax [14] argued that, for
a non-linear system, high-order information is retained by a high resolu-
tion scheme and may be extracted by postprocessing. In fact, Lax’s argu-
ment indicates that more high-order information is retained in high-order
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solutions of non-linear systems than of linear ones, since in the non-linear
case the solution operator is contractive.

All high-order methods suffer from loss of accuracy in the presence
of a discontinuity. When applying spectral methods to hyperbolic PDEs
which feature sharp gradients and discontinuities, the accuracy deterio-
rates due to the well known Gibbs phenomenon, in which global approx-
imations of discontinuous functions converge pointwise with at most
first-order accuracy. In this case the approximations are oscillatory and
converge non-uniformly. Recent advances in the theory and application of
spectral methods indicate that high-order information is retained in stable
spectral simulations of discontinuous phenomena and can be recovered by
suitable postprocessing techniques. Shu and Wong [19] used postprocess-
ing to recover spectral accuracy, everywhere in the domain, for the dis-
continuous solution of the one-dimensional Burgers’ equation computed
using the Fourier spectral method. More recently, Gelb and Tadmor [5]
used the spectral viscosity methods to approximate the solution to the
Burgers’ equation and to a hyperbolic system—the Euler equations of gas
dynamics. Postprocessing successfully recovered design order accuracy in
these examples. Although Gegenbauer postprocessing was developed and
applied successfully for the spectral methods and spectral viscosity and su-
perviscosity approximations, it has not yet been applied to finite differ-
ence methods. This is primarily because the Gegenbauer postprocessor was
developed to eliminate the Gibbs phenomenon, which seemingly plays no
role in essentially non-oscillatory finite difference approximations.

In this note, we present experiments in postprocessing numerical solu-
tions of the Euler equations of gas dynamics, obtained by a fifth-order
weighted essentially non-oscillatory (WENO) scheme [13, 16]. In this
steady state computation, the order of accuracy is diminished in a region
downstream of the shock. We demonstrate that the application of the
Gegenbauer postprocessing method [6–10] recovers the design order of
accuracy in the L2 and maximum norms for steady state solutions near
the shock. We note that the results are purely numerical and lack theoret-
ical justification.

We remark that, for certain steady state problems, if the schemes and
the grids are both chosen carefully, high-order accuracy may be retained
up to the shock from both sides without any postprocessing, e.g. the ENO
calculation in [3]. The purpose of this note is not to find the best scheme
and best grids for the specific problem to retain high-order accuracy (this
would be a difficult, if not impossible, task in multi-dimensions), rather
it is to show that when low-order accuracy appears due to shocks, the
high-order information might still reside in the numerical solution and we
might be able to recover it by suitable postprocessing.
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The note is organized as follows. In Sec. 2 we describe the WENO
method used to solve the steady state converging diverging nozzle prob-
lem. In Sec. 3 the Gegenbauer postprocessing is described. In Sec. 4 we
present and discuss the results of the numerical experiments. In Sec. 5
we conclude and discuss future work, which will involve genuinely time-
dependent problems, multi-dimensional applications, different postprocess-
ing techniques, and a search for theoretical justification of the success of
the postprocessor.

2. THE WENO METHOD

To approximate, in a physically correct way, the solution to a conser-
vation law of the form

ut +f (u)x =0,

we use a conservative finite difference scheme

ut =− 1
∆x

(
f̂

j+ 1
2
− f̂

j− 1
2

)
.

The term f̂
j+ 1

2
= f̂ (uj−k, . . . , uj+l ) is the numerical flux, and the points

{xj−k, . . . , xj+l} constitute the stencil. To be a reasonable approximation,
the numerical flux must be (at least) Lipschitz continuous and consistent
with the physical flux f , i.e. f̂ (u, . . . , u)=f (u). The numerical flux deter-
mines the numerical method and its properties. Any differences between
conservative numerical methods are a result of differences in the numer-
ical flux.

Numerical methods for hyperbolic problems which feature discontinu-
ities must satisfy non-linear stability requirements to ensure stability of the
solution. Otherwise, when the derivative is approximated using points on
both sides of the shock, oscillations arise. These oscillations at the shock
location propagate to the smooth regions, destroying the stability of the
solution. ENO (essentially non-oscillatory) schemes [11, 12] search for the
locally smoothest stencil and use that stencil to calculate the numerical
fluxes. The idea behind ENO schemes is stencil switching in order to elim-
inate oscillations. The stencil switching assures (asymptotically, at least)
that the shock is not crossed, and thus linear stability is enough to ensure
non-linear stability because to the left and to the right of the shock we
have smooth regions, where linear stability is sufficient.

Weighted essentially non-oscillatory (WENO) schemes [16] use all the
stencils that the ENO scheme considered, but assign a weight to each
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stencil. These weights approach the ENO weights near the discontinu-
ity, but allow higher order differencing in the smooth region. To get an
rth-order ENO scheme, a total of 2r − 1 points are examined to com-
pute f̂

j+ 1
2
. Since the WENO scheme uses all the candidate stencils, a

clever choice of weights [13] results in a WENO scheme which is of order
2r − 1 in smooth regions. Thus, WENO methods are high-order finite-
difference methods with an adaptive-stencil approach: at each point in
space, they approximate the derivative with a high-order difference for-
mula selected to prevent oscillations. WENO methods capture sharp gra-
dients without smearing, and do not allow oscillations to appear and thus
preserve the correct physical behavior by upwinding and stencil choos-
ing. WENO schemes have proven useful in resolving the numerical solu-
tion of conservation laws with shocks [13, 16]. However, these methods are
also needed whenever sharp gradients are present, to prevent non-physi-
cal oscillations from appearing, propagating, and ultimately destroying the
reliability of the numerical method.

We will be using the fifth-order WENO scheme. Since this scheme is
described in detail in [13], we will not repeat the description of the algo-
rithm here. We remark that, in the case of a system, we perform a charac-
teristic decomposition and apply the scalar WENO scheme to each of the
characteristic fields.

3. GEGENBAUER POSTPROCESSING

Given 2N + 1 Fourier coefficients f̂k, −N � k � N , of a continuous
and periodic function f (x), we can approximate the function using the
classical Fourier sum

fN(x)=
N∑

k=−N

f̂ke
ikπx. (1)

This approximation converges exponentially for any point in the domain
if f (x) and its periodic extension are analytic. However, if the function
f (x) is non-periodic or has a discontinuity, fN(x) does not approximate
f (x) well. In particular, away from the discontinuity (or boundary, in the
case of a non-periodic function) the pointwise approximation error decays
very slowly (as O( 1

N
)). Near the discontinuity (or boundary) there is an

overshoot that does not diminish even with increasing N . These two fea-
tures—the slow convergence away from the discontinuity and the overshoot
at the discontinuity—are known as the “Gibbs phenomenon”. Recent work
[6–10] has shown that the Gibbs phenomenon can be completely removed,
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i.e. exponential accuracy recovered up to the discontinuity, by a Gegenbauer
polynomial postprocessing procedure.

The idea of Gegenbauer polynomial postprocessing is that, rather
than reconstruct the function naively by summing as in (1), we sum:

f m
N (x)=

m∑
k=0

ĝλ
k Cλ

k (ξ), (2)

where ĝλ
k for 0 � k � m are called the Gegenbauer coefficients and are

obtained from the Fourier partial sum fN(x), and Cλ
k (x) are the Gegenbauer

polynomials which are orthogonal over x ∈ [−1,1] with the weight function
(1−x2)λ− 1

2 . The Gegenbauer coefficients are defined by

ĝλ
k = 1

hλ
k

∫ 1

−1
(1−x2)λ− 1

2 fN(x)Cλ
k (x)dx, (3)

where

hλ
k =√

π
Γ (k +2λ)

k!Γ (2λ)

Γ (λ+ 1
2 )

Γ (λ) (k +λ)
.

We refer to this procedure as a postprocessing procedure because the Fou-
rier partial sum (1) is used to calculate the Gegenbauer coefficient, which
is then used in the summation.

The technique we use in the numerical examples takes fN(xj ) for
j =0, . . . ,2N , the data from the WENO scheme. This function fN is not
the usual Fourier projection, but rather the trigonometric interpolant. This
data approximates the exact solution f (xj ) for the points xj = −1 + j

N
.

We calculate the Fourier coefficients f̂k where k = −N, . . . ,N . Although
the Fourier coefficients are obtained from the entire domain x ∈ (−1,1),
we are interested in reconstructing the function in a subdomain of ana-
lyticity, x ∈ (a, b). Thus,we define x = εξ + δ where ε = b−a

2 and δ = a+b
2 .

The Gegenbauer polynomials Cλ
l (ξ) are computed, and then the first m+1

Gegenbauer coefficients can be calculated:

gλ
l = 1

hλ
l

∫ 1

−1
(1− ξ2)λ− 1

2 fN(x(ξ))Cλ
l (ξ)dξ

= 1

hλ
l

∫ 1

−1
(1− ξ2)λ− 1

2 fN(εξ + δ)Cλ
l (ξ)dξ

= 1

hλ
l

∫ 1

−1
(1− ξ2)λ− 1

2

N∑
k=−N

f̂ke
iπkεξ eiπkδCλ

l (ξ)dξ
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=
N∑

k=−N

f̂ke
iπkδ 1

hλ
l

∫ 1

−1
(1− ξ2)λ− 1

2 eiπkεξCλ
l (ξ)dξ

=
N∑

k=−N

f̂ke
iπkδΓ (λ)

(
2

πεk

)λ

il(l +λ)Jl+λ(πεk).

This last equality appears in [2] where Γ is the Gamma function and Jp

is the order p Bessel function.
While the error |f −fN | does not converge uniformly, the error from

the postprocessed function |f − f m
N | does converge uniformly in every

region where f is smooth. The postprocessed error has been shown to
decay exponentially with N , when λ and m are proportional to N [6–
10]. In our numerical experiments, where the underlying method is the
fifth-order WENO scheme, we cannot hope for exponential convergence.
However, we can hope to recover up to fifth-order accuracy away from
the shock, or third-order near the shock (because the WENO scheme has
third-order building blocks, which in smooth regions are combined in a
way that gives fifth order), which was lost due to the discontinuity. As we
show in Sec. 4, we do indeed recover design accuracy in smooth regions.

4. NUMERICAL EXPERIMENTS

For all our numerical experiments, we use results of a fifth-order
point value WENO code with Roe building blocks, and third-order strong
stability preserving Runge–Kutta time-stepping [18], for the quasi-one-
dimensional converging–diverging nozzle flow. The governing equations
are the usual Euler system plus a source term:




ρ

ρu

E




t

+



ρu

P +ρu2

u(P +E)




x

=−Ax

A




ρu

ρu2

u(P +E)


 ,

where ρ,u,P, and E are the density, velocity, pressure, and total energy
respectively, A=A(x) is the cross area function of the nozzle and Ax = dA

dx
.

The shape of the nozzle is calculated by the requirement of linear distri-
bution of Mach number from M = 0.8 at the inlet to M = 1.8 at the exit
assuming the flow is isentropic and fully expanded. The equation of state is

P = (γ −1)

(
E − 1

2
ρu2

)
.

We compute the solution at steady-state by integrating in time until
the residuals go down to machine zero. The exact solution is obtained,
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for the purpose of computing the errors, by a Newton iteration. The
steady-state solution has a shock halfway across the domain. Although the
shock location was known to us in this case, we used the edge detection
method of Archibald, Gelb and Yoon [1] to locate it, and the results were
identical. In general, if the shock location is unknown, it can be found
using such an edge detection method. However, the important information
is not, in fact, the shock location, but the intervals of smoothness. Thus, if
the shock location is unclear, we can exclude a small portion of the inter-
val to ensure that we are postprocessing over an interval of smoothness.

We separate the domain into two regions in space, the left of the
shock and the right of the shock. In each of these regions the solution is
analytic. The region to the right of the shock contains information that
traveled through the shock, the left does not. As expected, the region to
the left maintains high-order accuracy away from the shock, while in the
region to the right of the shock, the error is only first-order accurate away
from the shock and zeroth order accurate near the shock. For this particu-
lar example, design accuracy can be obtained even before postprocessing if
we place the shock exactly in the middle between two gridpoints, but this
is not always possible for general problems with unknown shock locations.

Table I shows the maximum norm errors for the density in the entire
region to the right of the shock before and after postprocessing. We
exclude only one gridpoint near the shock since, by conservation, the
shock will corrupt the solution at that point. Thus, the domain in which
we are measuring the error is actually getting closer and closer to the
shock as N increases, thus emulating uniform convergence. The maximum
norm errors of the numerical solution before postprocessing do not decay
when the grid is refined. After postprocessing the region to the right of

Table I. The Maximum Norm Errors from the Steady-State Compu-
tation, before and after Postprocessing. The Errors are Calculated in
the Entire Region to the Right of the Shock, Up to One Gridpoint

away from the Shock

n Before error λ m After error Order

600 1.37×10−3 3 3 8.16×10−4

800 1.09×10−3 3 4 3.33×10−4 3.11
1000 1.27×10−3 4 5 1.66×10−4 3.13
1200 1.19×10−3 5 6 8.19×10−5 3.8
1400 1.27×10−3 6 7 4.09×10−5 4.5
1600 1.19×10−3 6 8 1.72×10−5 6.46
1800 1.19×10−3 7 9 8.95×10−6 5.54



314 Gottlieb, Gottlieb, and Shu

Table II. The l2 Norm Errors from the Steady-State Computation,
before and after Postprocessing. The Errors are Calculated in the
Entire Region to the Right of the Shock, Up to One Gridpoint away

from the Shock

n Before error Order λ m After error Order

800 6.99×10−5 3 4 5.823×10−5

1000 6.55×10−5 0.29 4 5 2.605×10−5 3.6
1200 5.84×10−5 0.63 5 6 1.313×10−5 3.75
1400 5.54×10−5 0.34 6 7 6.169×10−6 4.9
1600 5.08×10−5 0.65 6 8 3.968×10−6 3.30
1800 4.79×10−5 0.50 7 9 2.528×10−6 3.83

the shock, high-order accuracy is recovered. Table II repeats this analy-
sis for l2 errors. The errors before postprocessing are half-order accurate.
After postprocessing, the design order of accuracy (third-order near the
shock) is recovered. Fig. 1 shows the exact density profile in the entire
nozzle. Fig. 2 shows a close-up of the numerical density (before postpro-
cessing) for 600, 1000, and 1600 points, to the right of the shock. This fig-
ure shows that the errors near the shock do not improve when the grid
is refined. Fig. 3 shows the numerical density near the shock, before and
after postprocessing which demonstrates how the oscillations are removed
by postprocessing. Finally, Fig. 4 shows the logarithm of the errors before
and after postprocessing in a region near the shock, and Fig. 5 shows the
decay of the errors before and after postprocessing, as the grid is refined.

These numerical results demonstrate that the design order of accuracy
was recovered right up to the shock after postprocessing. In this study,
the dramatic improvements were most clear in the region closest to the
shock. It is also important to note that we let λ and m vary linearly with
N (where 2N+1 is the number of Fourier coefficients), so that λ≈ 2N

250 and
m= 2N

200 . The truncation and regularization errors in the Gegenbauer post-
processing vary with m and λ. Increasing these parameters with N pre-
vents the postprocessing error from overwhelming the discretization error
in the postprocessed WENO solution.

5. CONCLUDING REMARKS AND FUTURE WORK

We have demonstrated through a numerical example the possibility
of recovering the design high-order accuracy information up to the shock
from WENO scheme solutions for one-dimensional non-linear hyperbolic
systems, through the Gegenbauer postprocessor. More numerical tests and
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Fig. 1. Density profile over the entire region.

0 5 10

x 10
-3

0.72

0.73

0.74

Fig. 2. Density profile close to the shock. The solid line is the exact solution, the dash-dot
line (2N =600), dashed line (2N =1000) and dotted line (2N =1600) are the numerical solu-
tions before postprocessing.
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Fig. 3. Density profile close to the shock. The solid line is the exact solution, the dotted
lines are the numerical solutions (for 2N = 1800) before postprocessing (on left) and after
postprocessing (right).
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Fig. 4. Logarithm of the density errors, in a focused region to the right of the shock, before
(left) and after (right) postprocessing for 2Nn=600, 800, 1000, 1200, 1400, and 1600 points.
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Fig. 5. Decay of the errors as the grid is refined. Left: logarithm of the l2 errors before
(dashed line) and after (solid line) postprocessing. Right: logarithm of the l∞ errors before
(dashed line) and after (solid line) postprocessing.
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theoretical justifications beyond our preliminary numerical work are nec-
essary to clearly address this issue. Further work is needed to generate
robust Gegenbauer postprocessors which will improve the magnitude of
the errors as they recover the order of accuracy. Clearly, the optimal
choice of the parameters m and λ will also play a significant role in the
implementation of the Gegenbauer postprocessor (see [4]). However, the
most important future aspect will be the generalization to multiple dimen-
sions and to cases in which the location of the discontinuity is unknown.
This research will follow along the lines that the postprocessing for spec-
tral and the spectral viscosity and superviscosity methods for multiple
dimensions has been studied, and will utilize some of the cutting edge
methods for detecting a discontinuity, such as the edge detection methods
of Archibald et al. [1] and Gelb and Tadmor [5]. The effect of this study
has been to show that WENO—and perhaps other finite difference—com-
putations may be considered part of the family of methods that can be
postprocessed to recover accuracy. Future work will also attempt to seek
theoretical justification to these results, perhaps for specific cases at the
beginning.
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