Differential-Algebraic Equations (DAEs) and numerical methods

by Sirui Tan
Definition of DAEs

\[F(t, y, y') = 0, \]

where \(y: \mathbb{R} \to \mathbb{R}^m \) is the solution, \(F: \mathbb{R} \times \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m \) is a given function.

\(\frac{\partial F}{\partial y'} \) nonsingular \(\Rightarrow \) explicit ODE

\[y' = f(t, y). \]

semi-explicit DAE (or ODE with constraints)

\[x' = f(t, x, z), \text{(differential equation)} \]
\[0 = g(t, x, z). \text{(algebraic equation)} \]
Example 1. simple pendulum

\[
\begin{align*}
\dot{x}_1 &= x_3, \\
\dot{x}_2 &= x_4, \\
\dot{x}_3 &= -z x_1, \\
\dot{x}_4 &= -z x_2 - g,
\end{align*}
\]

\[x_1^2 + x_2^2 = 1.\]

Figure 1. simple pendulum

\(z(t)\) Lagrange multiplier

\[
\begin{align*}
x_1'' &= -z x_1, \\
x_2'' &= -z x_2 - g, \\
x_1^2 + x_2^2 &= 1.
\end{align*}
\]
Index

Minimum number of differentiations of the system which would be required to solve for y' uniquely in terms of y and t (i.e., to obtain an explicit ODE). It measures the distance from a DAE to its related ODE. It reveals the mathematical structure and potential complications in the analysis and the numerical solution of the DAE.

The higher the index of a DAE, the more difficulties for its numerical solution. Example:

- **index-1 DAE**

 \[y = q(t). \]

 since $y' = q'(t)$ explicit ODE.

- **index-2 DAE**

 \[
 y_1 = q(t), \\
 y_2 = y'_1.
 \]

 since $y_2' = y_1'' = q''(t)$.

Special DAE forms

• Hessenberg Index-1 system (or semi-explicit index-1 system)

\[x' = f(t, x, z), \]
\[0 = g(t, x, z). \]

Jacobian matrix \(g_z \) nonsingular.

\(x(t) \) differential variables, \(z(t) \) index-1 algebraic variables.

• Hessenberg Index-2 system

\[x' = f(t, x, z), \]
\[0 = g(t, x). \]

\(g_x f_z \) is nonsingular.

\(z(t) \) index-2 variables. Pure index-2 DAE.
Example 2. Navier-Stokes equations

\[
\begin{align*}
 u_t + uu_x + vu_y + p_x - \nu(u_{xx} + u_{yy}) &= 0, \\
 v_t + uv_x + vv_y + p_y - \nu(v_{xx} + v_{yy}) &= 0, \\
 u_x + v_y &= 0.
\end{align*}
\]

after spatial discretization (FD, FV, FE)

\[
M \mathbf{u}' + (K + N(\mathbf{u})) \mathbf{u} + C \mathbf{p} = \mathbf{f},
\]

\[
C^T \mathbf{u} = 0.
\]

\(C^T M^{-1} C\) is a nonsingular matrix with a bounded inverse \(\Rightarrow\) Hessenberg Index-2 system.
Consistent initial values

Index-2 system

\[x(t) = \sin(t) \]
\[x'(t) + y(t) = 0. \]

consistent \iff satisfying the algebraic constraint

\[x(t) = \sin(t) \]

and hidden constraints

\[y(t) = -x'(t) = -\cos(t). \]

Consistent initial values

\[x(0) = \sin(0), \]
\[y(0) = -\cos(0). \]
Applications

- constrained mechanical systems (e.g. simple pendulum, N-S equations)
- electrical circuits
 large but sparse DAE of the form
 \[M(y) y' + f(y) = q(t). \]
- chemical reaction kinetics
Numerical methods

Semi-explicit index-1 or index-2 DAE

\[x' = f(t, x, z), \]
\[0 = g(t, x, z). \]

limiting case of the singularly perturbed ODE

\[x' = f(t, x, z), \]
\[\varepsilon z' = g(t, x, z), \]

where \(0 \leq \varepsilon \ll 1. \)

Observations: consider methods for stiff ODEs.
Crank-Nicolson method

Explicit ODE

\[y' = f(t, y). \]

C-N method

\[\frac{y_n - y_{n-1}}{h} = \frac{1}{2} \left(f(t_n, y_n) + f(t_{n-1}, y_{n-1}) \right). \]

Index-2 DAE

\[\begin{align*}
 x(t) &= \sin(t) \\
 x'(t) + y(t) &= 0
\end{align*} \]

exact solution

\[\begin{align*}
 x(t) &= \sin(t), \\
 y(t) &= -\cos(t).
\end{align*} \]

C-N method

\[\begin{align*}
 \frac{1}{2} (x_n + x_{n-1}) &= \frac{1}{2} \left(\sin(t_n) + \sin(t_{n-1}) \right) \\
 \frac{x_n - x_{n-1}}{h} + \frac{1}{2} (y_n + y_{n-1}) &= 0.
\end{align*} \]
Exact initial values

\[x_0 = \sin(0), \]
\[y_0 = -\cos(0). \]

Figure 2. C-N method, exact initial values, \(h = 0.04 \).
Perturbed initial values

\[x_0 = \sin(0) + h^3, \]
\[y_0 = -\cos(0). \]

Figure 3. C-N method, perturbed initial values, \(h = 0.04 \).
Conclusion: A-stability is not enough.

\[x' = f(t, x, z), \]
\[\varepsilon z' = g(t, x, z), \]

where \(0 \leq \varepsilon \ll 1. \)

Set \(\varepsilon = 0 \Rightarrow \) the limit DAE.
Methods with stiff decay

test equation

\[y' = \lambda (y - g(t)), \]

or

\[\varepsilon y' = \hat{\lambda} (y - g(t)), \]

where \(\varepsilon = \frac{1}{|\text{Re}(\lambda)|} \), \(\hat{\lambda} = \varepsilon \lambda \). \(|\hat{\lambda}| = 1. \)

Set \(\varepsilon = 0 \Rightarrow y(t) = g(t). \)

The method has stiff decay if \(t_n > 0 \) fixed

\[y_n \to g(t_n) \text{ as } \varepsilon \to 0^+. \]

C-N method does not have stiff decay.
Backward Euler method

Index-2 DAE

\[
x(t) = \sin(t),
\]
\[
x'(t) + y(t) = 0.
\]

BE method

\[
x_n = \sin(t_n),
\]
\[
\frac{x_n - x_{n-1}}{h} + y_n = 0.
\]
Exact initial values

\[x_0 = \sin(0), \]
\[y_0 = -\cos(0). \]

Figure 4. BE method, exact initial values, \(h = 0.04 \).
Perturbed initial values

\[x_0 = \sin(0) + h, \]
\[y_0 = -\cos(0). \]

Figure 5. BE method, perturbed initial values, \(h = 0.04 \).
Multistep methods

The only method with stiff decay is the BDF method.

Semi-explicit index-1 or index-2 DAE

\[
x' = f(t, x, z),
0 = g(t, x, z).
\]

BDF method

\[
\frac{1}{\beta_0 h} \sum_{j=0}^{k} \alpha_j x_{n-j} = f(t_n, x_n, z_n),
0 = g(t_n, x_n, z_n).
\]
Convergence of BDF

Theorem: the k-step BDF method is convergent of order $p = k$ for $k \leq 6$, i.e.,

$$x_n - x(t_n) = O(h^p), z_n - z(t_n) = O(h^p),$$

whenever the initial values satisfy

- if $k \leq 2$
 $$x_j - x(t_j) = O(h^{p+1}) \text{ for } j = 0, ..., k - 1.$$

- if $k \geq 3$
 $$x_j - x(t_j) = O(h^p) \text{ for } j = 0, ..., k - 1.$$
Multistage methods

If we consider collocation methods, the only method with stiff decay is the Radau method.

Semi-explicit index-1 or index-2 DAE

\[
\begin{align*}
x' &= f(t, x, z), \\
0 &= g(t, x, z).
\end{align*}
\]

Radau method

\[
\begin{align*}
t_i &= t_{n-1} + c_i h, \quad i = 1, \ldots, s, \\
K_i &= f(t_i, X_i, Z_i), \\
X_i &= x_{n-1} + h \sum_{j=1}^{s} a_{ij} K_j, \\
0 &= g(t_i, X_i, Z_i).
\end{align*}
\]

and (since \(a_{sj} = b_j, \quad j = 1, \ldots, s\))

\[
x_n = X_s, \quad z_n = Z_s.
\]
Convergence of the Radau method

Theorem: the s-stage Radau method is convergent of order $2s - 1$ for x_n and of order s for z_n. (No order reduction for x_n.)
Practical difficulties

- obtaining a consistent set of initial conditions
 Given x_0, solve for z_0 from $0 = g(0, x_0, z_0)$. What’s the initial guess?

- ill-conditioning of iteration matrix
 e.g. backward Euler method, iteration matrix

$$
\begin{pmatrix}
 h_n^{-1} I - f_x & -f_z \\
 -g_x & -g_z
\end{pmatrix}
$$

condition number $O(h_n^{-1})$. If h_n small, Newton iteration fails?

- Error estimation for index-2 DAEs
Available codes

<table>
<thead>
<tr>
<th>code</th>
<th>method</th>
<th>authors</th>
<th>DAE index</th>
</tr>
</thead>
<tbody>
<tr>
<td>DASSL/DASPK</td>
<td>BDF</td>
<td>Petzold</td>
<td>≤ 1</td>
</tr>
<tr>
<td>RADAU5</td>
<td>IRK</td>
<td>Hairer, Wanner</td>
<td>≤ 3</td>
</tr>
<tr>
<td>MEBDF</td>
<td>MEBDF</td>
<td>Abdulla, Cash</td>
<td>≤ 3</td>
</tr>
</tbody>
</table>

Table 1. a list of available codes for DAEs
Summary

• DAEs are generalizations of ODEs. The index indicates the distance from its underlying ODE and thus the difficulty. We should be careful when imposing initial conditions.

• Methods with stiff decay perform well for solving DAEs, e.g, BDF method and the Radau collocation method.
References

- Series of lectures on DAEs, URL: http://www.win.tue.nl/casa/meetings/seminar/previous/