1. Problem 11, p. 248

Let $A \in \mathbb{R}^{n \times n}$ with $A^T = A$ and $x^T A x > 0 \iff x \neq 0$. Suppose we have vectors $(v_i)_{i=1}^n \subset \mathbb{R}^n \setminus \{0\}$ such that $v_i^T A v_j = 0$ if $i \neq j$.

We need to show that in this situation, if we are given a bunch of $(c_i)_{i=1}^n \subset \mathbb{R}$ and they happen to fulfill

$$
\sum_{i=1}^n c_i v_i = 0,
$$

then necessarily $c_i = 0$ for $i = 1, \ldots, n$. (This the same as saying “the v_i are linearly independent” or “the v_i form a basis of \mathbb{R}^n”.)

Proof. Suppose we are given c_i and v_i that satisfy the above. Then necessarily

$$
0 = \left(\sum_{i=1}^n c_i v_i \right)^T A \left(\sum_{j=1}^n c_j v_j \right) = 0 \quad \text{by assumption}
$$

$$
= \sum_{i,j=1}^n c_i c_j v_i^T A v_j
$$

$$
= \sum_{i=1}^n c_i v_i^T A v_i
$$

$$
= \sum_{i=1}^n c_i^2 v_i^T A v_i.
$$

If you assume that even one $c_i \neq 0$ in the last expression, then necessarily the whole expression is greater than zero, contradicting our assumption. Thus all the $c_i = 0$, which shows our claim. \qed

2. Problem 12, p. 249

Code:

```matlab
function p2
A = [... 7,-3,0,0,0; -3,9,1,0,0; 0,1,3,-1,0; 0,0,-1,10,4; 0,0,0,4,6];
b = [4;-6;3;7;2];
disp('Problem 7.')
disp('------------------------------------')
run_comparison('p7', A, b, 1.0923)
disp('')
disp('Problem 8.')
disp('------------------------------------')
A = [... 4,-1,0,-1,0,0; -1,4,-1,0,-1,0; 0,0,0,4,6];
```


run_comparison('p8', A, b, 1.1128)
end

function run_comparison(id, A, b, sor_optimal_omega)

A
b
tol = 5e-7;
[x_steepest, itcount_steepest, hist_steepest] = it_steepest(A, b, tol);
[x_cg, itcount_cg, hist_cg] = it_cg(A, b, tol);
[x_jacobi, itcount_jacobi, hist_jacobi] = it_jacobi(A, b, tol);
[x_gs, itcount_gs, hist_gs] = it_gauss_seidel(A, b, tol);
[x_sor, itcount_sor, hist_sor] = it_sor(A, b, tol, sor_optimal_omega);

% make sure we got roughly the same answer using every method
x = A;
assert(abs(x-x_steepest)<1e-5)
assert(abs(x-x_cg)<1e-5)
assert(abs(x-x_jacobi)<1e-5)
assert(abs(x-x_gs)<1e-5)
assert(abs(x-x_sor)<1e-5)

fprintf('Steepest descent took %3d iterations.
', itcount_steepest);
fprintf('CG took %3d iterations.
', itcount_cg);
fprintf('SOR took %3d iterations.
', itcount_sor);
fprintf('Gauss-Seidel took %3d iterations.
', itcount_gs);
fprintf('Jacobi took %3d iterations.
', itcount_jacobi);

if (isempty('OCTAVE_VERSION'))
clf;
hold on;
semilogy(1:numel(hist_steepest), hist_steepest, 'r-;steepest;')
semilogy(1:numel(hist_cg), hist_cg, 'g--;cg;')
semilogy(1:numel(hist_sor), hist_sor, 'b--;sor;')
semilogy(1:numel(hist_gs), hist_gs, 'm--;gs;')
semilogy(1:numel(hist_jacobi), hist_jacobi, 'c--;jacobi;')
print([id '.eps'], '-color');
end
end

function assert(p)
not_p = ~p;
if (sum(abs(not_p)) ~= 0)
 error('Assertion violated.')
end
end

function [x, itcount, resid_hist] = it_steepest(A, b, tol)
[n,dummy] = size(A);
x = zeros(n,1);

r = A*x - b;

itcount = 0;
resid_hist = [];

while 1
 d = -r;
 u = A*d; % this is where we spend most of our processing time
 itcount = itcount + 1; % that’s why we increment the iteration count here
 lambda = -d'*r/(d'*u);
 x = x + lambda*d;
 r = r + lambda*u;

 resid_norm = norm(r, 2);
 resid_hist(end+1) = resid_norm;
 if (resid_norm<tol)
 return
 end
end

function [x, itcount, resid_hist] = it_cg(A, b, tol)
 [n,dummy] = size(A);
 x = zeros(n,1);

 r = A*x - b;
 d = -r;
 delta = r'*r;
 itcount = 0;
 resid_hist = [];

 while 1
 u = A*d; % this is where we spend most of our processing time
 itcount = itcount + 1; % that’s why we increment the iteration count here
 lambda = delta/(d'*u);
 x = x + lambda*d;
 r = r + lambda*u;
 next_delta = r'*r;

 resid_hist(end+1) = sqrt(next_delta);
 if (sqrt(next_delta)<tol)
 return
 end
 alpha = next_delta/delta;
 delta = next_delta;
 d = -r + alpha*d;
 end
end

% --
% function [x, itcount, resid_hist] = it_jacobi(A, b, tol)
% [n,dummy] = size(A);
% x = zeros(n,1);

% this is where we spend most of our processing time
% that’s why we increment the iteration count here
lambda = delta/(d'*u);

x = x + lambda*d;

r = r + lambda*u;

next_delta = r'*r;

resid_hist(end+1) = sqrt(next_delta);
if (sqrt(next_delta)<tol)
 return
end

alpha = next_delta/delta;

delta = next_delta;

d = -r + alpha*d;

end
[dummy, n] = size(A);

L = -tril(A, -1);
U = -triu(A, 1);
D = diag(diag(A));

T = D\(L+U);
c = D\b;

[x, itcount, resid_hist] = run_iteration(A, b, T, c, zeros(n,1), tol);
end

% *---
function [x, itcount, resid_hist] = it_gauss_seidel(A, b, tol)
[dummy, n] = size(A);

L = -tril(A, -1);
U = -triu(A, 1);
D = diag(diag(A));

T = (D-L)\U;
c = (D-L)\b;

[x, itcount, resid_hist] = run_iteration(A, b, T, c, zeros(n,1), tol);
end

% *---
function [x, itcount, resid_hist] = it_sor(A, b, tol, omega)
[dummy, n] = size(A);

L = -tril(A, -1);
U = -triu(A, 1);
D = diag(diag(A));

T = (1/omega*D-L)\((1/omega-1)*D+U);
c = (1/omega*D-L)\b;

[x, itcount, resid_hist] = run_iteration(A, b, T, c, zeros(n,1), tol);
end

% *---
function [x, itcount, resid_hist] = run_iteration(A, b, T, c, xstart, tol)
x = xstart;
last_stepsize = 2*tol;
itcount = 0;
resid_hist = [];

while last_stepsize > tol
 last_x = x;
x = T*x + c;
last_stepsize = norm(x-last_x, 2);
itcount = itcount + 1;

 resid_norm = norm(A*x-b);
 resid_hist(end+1) = resid_norm;
end
Results:

Problem 7.

A =

\[
\begin{pmatrix}
7 & -3 & 0 & 0 & 0 \\
-3 & 9 & 1 & 0 & 0 \\
0 & 1 & 3 & -1 & 0 \\
0 & 0 & -1 & 10 & 4 \\
0 & 0 & 0 & 4 & 6 \\
\end{pmatrix}
\]

b =

\[
\begin{pmatrix}
4 \\
-6 \\
3 \\
7 \\
2 \\
\end{pmatrix}
\]

Steepest descent took 33 iterations.
CG took 5 iterations.
SOR took 9 iterations.
Gauss-Seidel took 14 iterations.
Jacobi took 27 iterations.

Problem 8.

A =

\[
\begin{pmatrix}
4 & -1 & 0 & -1 & 0 & 0 \\
-1 & 4 & -1 & 0 & -1 & 0 \\
0 & -1 & 4 & 0 & 0 & -1 \\
-1 & 0 & 0 & 4 & -1 & 0 \\
0 & -1 & 0 & -1 & 4 & -1 \\
0 & 0 & -1 & 0 & -1 & 4 \\
\end{pmatrix}
\]

b =

\[
\begin{pmatrix}
-1 \\
0 \\
1 \\
-2 \\
1 \\
2 \\
\end{pmatrix}
\]

Steepest descent took 28 iterations.
CG took 6 iterations.
SOR took 10 iterations.
Gauss-Seidel took 16 iterations.
Jacobi took 27 iterations.

Residual history for Problem 7:
Discussion:

Judging from the residual history plots, it is quite obvious that all methods except CG seem to produce algebraic convergence (i.e. there is an α such that convergence is of αth order), because their plots are roughly linear (note that the plots are semilogarithmic).

In particular, the convergence of the method of steepest descent is similar to that of the (pretty abysmal) Jacobi method, while the convergence of CG is faster than any algebraically-converging method.