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Handout 5: Three Other Wave Equations, Their Normal Modes
and Associated Frequencies

We will discuss three other wave equation problems.

Vibrating string with dissipation. Here the equation takes the form

utt(x, t) + εut(x, t) = c
2uxx(x, t), 0 < x < L, t > 0,

and the boundary conditions

u(0, t) = u(L, t) = 0, t > 0.

The parameter ε > 0 reßects dissipative effects, and is typically small. If we
look for solutions in the separated form u(x, t) = f(x)g(t) we Þnd that

gtt(t) + εgt(t)

g(t)
= c2

fxx(x)

f(x)
.

Both sides must be a constant, which we call A. The boundary conditions
again imply f(0) = f(L) = 0, and so we get

c2fxx(x)−Af(x) = 0, f(0) = f(L) = 0
and

gtt(t) + εgt(t)−Ag(t) = 0.
As before the Þrst of these only has solutions of the form sin kπx/L, k =
1, 2, . . ., which occur when A = −c2k2π2/L2. This means the corresponding
g equation is

gtt(t) + εgt(t) +
c2k2π2

L2
g(t) = 0.

The general solution to this equation is
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where a1 and a2 are arbitrary constants. Notice that the temporal frequency
is shifted slightly (if ε is small), and that the �simple� solutions to the wave
equation
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now tend to zero as t→∞.

Wave equation for a tube, with one end closed and one end
open. This is the model used for say a ßute or a pipe. The �medium� here
is the air in the tube, as opposed to the string in vibrating string example.
The diameter of the tube is assumed small, so that the important variations
occur along the tube�s length, and thus the problem can be considered one-
dimensional. The stopped end of the tube is considered to be at x = 0,
and the open end at x = L. The function u(x, t) represents air pressure
now, and since we are interested in differences of pressure, we let u(x, t)
denote the difference between the pressure at position x at time t in the
tube and the pressure in the room outside the tube. The correct boundary
condition at the open end is then u(L, t) = 0, while the sealed end of the tube
�disconnects� the air inside from that outside, and the correct boundary
condition turns out to be ux(0, t) = 0. The wave equation itself is the same
as in the case of the vibrating string:

utt(x, t) = c
2uxx(x, t), 0 < x < L, t > 0,

where c now reßects properties of air. If we look for solutions of the separated
form u(x, t) = f(x)g(t), we now get the equations

c2fxx(x)−Af(x) = 0, fx(0) = f(L) = 0
and

gtt(t)−Ag(t) = 0.
The solutions to the Þrst equation are fundamentally different owing to
the change from f(0) = 0 to fx(0) = 0. In fact, instead of only sin�s for
solutions, the new boundary conditions permit only cos�s for solutions. If
we try f(x) = cosλx, then fx(0) = 0 is automatic, while f(0) = 0 requires
that λL equal one of
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Thus λ = π/2L + kπ/L, k = 0, 1, . . .. Now from the equation the relation
λ2 = −A/c2must hold, and so the constant A must be of the form
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µ
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, k = 0, 1, . . . .

Solving for the corresponding g part for a given k gives
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and so we get simple solutions of the form
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The lowest frequency corresponds to k = 0 and the normal mode cos (πx/2L).
This frequency is ((πc/2L)/2π) = c/4L. The Þrst few frequencies are in fact
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These should be compared to the frequencies �allowed� by the boundary
conditions that go with the vibrating string with no friction:

2c

4L
,
4c

4L
,
6c

4L
, . . . .

The wave equation for a drum head. With c again representing prop-
erties of the physical medium, the wave equation for the drum head of radius
R is

utt(x, y, t) = c
2 (uxx(x, y, t) + uyy(x, y, t)) , x

2 + y2 < R, t > 0.

The boundary condition is

u(x, y, t) = 0, x2 + y2 = R, t > 0.

Because of the geometry, it is easier to solve this equation in polar coordi-
nates. You may remember that there is a �correction factor� that must be
included when one changes coordinate systems, and the equation in polar
coordinates (r, θ, t) is

utt(r, θ, t) = c
2
µ
urr(r, θ, t) +

1

r
ur(r, θ, t) +

1

r2
uθθ(r, θ, t)

¶
, x2+y2 < R, t > 0,

and the boundary condition is

u(R, θ, t) = 0, 0 ≤ θ < 2π, t > 0.

One can once again look for solutions in the separated form u(r, θ, t) =
f(r)h(θ)g(t). This produces a set of differential equations that require more
advanced techniques than we have available right now. The solutions were
presented in the form of animations on the web page
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http://www.gmi.edu/�drussell/Demos.html.

The allowed frequencies here are determined by two parameters, reßecting
the two-dimensional nature of the drum head. The frequencies ωk,n, k =
1, 2, . . . , n = 1, 2, . . . , are implicitly described by the equations

Jk(ωk,nR/c) = 0,

where the different values of n correspond to different roots of the Bessel
function Jk, which is itself a solution to what is called the Bessel equation of
order k. The frequencies higher than the fundamental are no longer related
in a simple fashion to the fundamental, resulting in a tone that differs greatly
from the clear tone of the vibrating string.
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