
Applied Math 9

Handout 4: Assembling the Solution to the Wave Equation for a
More General Initial Condition

In the previous handout we discussed how one can represent certain
functions in terms of the functions

sin(kπx/L), k = 1, 2, . . . .

We are interested in these functions because when they are used for the
initial condition of the wave equation, the solution has a simple form. For
example, as discussed in Handout 2 (and as you can check for yourself), if

u(x, t) = sin(kπx/L) sin(kcπt/L),

then u(x, t) satisÞes the wave equation

utt(x, t) = c
2uxx(x, t), 0 < x < L, t > 0,

and the boundary conditions

u(0, t) = u(L, t) = 0, t > 0.

Note that for this solution we have the initial conditions

u(x, 0) = 0, ut(x, 0) =
kcπ

L
sin(kπx/L).

Likewise,
u(x, t) = sin(kπx/L) cos(kcπt/L)

satisÞes the wave equation, boundary conditions, and initial conditions

u(x, 0) = sin(kπx/L), ut(x, 0) = 0.

While this gives us some solutions to the wave equation, these are not �typ-
ical� initial conditions. How can we solve for more realistic conditions, such
as a plucked string, or a string that is struck with a hammer at time 0? The
linearity of the wave equation is crucial at this point. By linear, what we
mean is that if u1(x, t) and u2(x, t) are solutions to the wave equation and
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boundary conditions, then so is a1u1(x, t) + a2u2(x, t), where a1 and a2 are
any real valued constants. This is easy to check:
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∂2

∂t2
u1(x, t) + a2

∂2

∂t2
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= c2
∂2

∂x2
[a1u1(x, t) + a2u2(x, t)] ,

and
a1u1(0, t) + a2u2(0, t) = 0, a1u1(L, t) + a2u2(L, t) = 0

for t > 0. Thus, e.g.,

sin(πx/L) cos(cπt/L) + sin(2πx/L) cos(2cπt/L)

is a solution to the wave equation. We can take any Þnite sum, and in fact,
under conditions which guarantee convergence, we can even take inÞnite
sums.

Example. We recall the string plucked to height 1 at the center:

f(x) =

(
2x/L 0 ≤ x ≤ L/2
2− 2x/L L/2 ≤ x ≤ L.

In the last handout we discussed how this function can be represented in
the form

f(x) =
∞X
k=1

ak sin(kπx/L),

where

ak =
2

π2k2
sin(kπ/2).

If we want to solve the wave equation with u(x, 0) = f(x), ut(x, 0) = 0, then
perhpas we should try to build it from the known solutions

sin(kπx/L) cos(kcπt/L), k = 1, 2, . . .

(we don�t bother with the solutions sin(kπx/L) sin(kcπt/L) because ut(x, 0) =
0). The representation for f(x) suggests

u(x, t) =
∞X
k=1

µ
2

π2k2
sin(kπ/2)

¶
sin(kπx/L) cos(kcπt/L),
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and in fact this turns out to be the solution.
Note that the frequency of cos(kcπt/L) (number of oscillations per sec-

ond) is kc/2L. The frequencies of all parts of the solution are integer mul-
tiples of the lowest frequency c/2L (also called the fundamental). The co-
efficients ak measure the acoustic energy put into the different frequencies,
and these numbers differ for different initial conditions. It is this different
�weighting� of the frequencies that distinguishes the sound of the �plucked�
string from that of say a string struck with a hammer. For the record, the
solution to the wave equation when the string is struck in the middle by a
hammer, which has zero displacement at time 0 but nonzero velocity, is

u(x, t) =
∞X
k=1

µ
1

2L
sin(kπ/2)

¶
sin(kπx/L) sin(kcπt/L).
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