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Handout 3: Representing a Given Vector in Terms of a Fixed set
of Orthonormal Vectors

It often turns out that one might want to describe an n-dimensional
vector in terms of a Þxed set of reference vectors. The most familiar instance
is representation in terms of the standard basis vectors. If v = (v1, . . . , vn),
and if the standard basis vectors are denoted by ei, i.e.,

(ei)j =

(
1 if j = i
0 if j 6= i,

then the representation is well-known and obvious:

v =v1e1 + · · ·+ vnen.
It may work out that the standard basis vectors are not so convenient. For
example, a problem could involve the ßight of an object such as a plane, and
one may wish to consider reference vectors that reßect the orientation of the
plane. In this handout we discuss how one can represent a given vector in
terms of such a �nonstandard� set of basis vectors.

A set of vectors wi, i = 1, . . . , n are called orthogonal if

wi ·wj = 0
whenever i 6= j. They are called orthonormal if wi ·wi = 1 for i = 1, . . . , n.
We shall need one fact that is intuitive and natural, but which we do not
prove.

A Basic Fact. Let wi, i = 1, . . . , n be an orthonormal set of vectors in
n-dimensional space. If the vector u is perpendicular to eachwi, i = 1, . . . , n,
then u must be the zero vector: u = 0.

Now suppose that we want to represent a vector v in terms of these
wi, i = 1, . . . , n. We know that the �part� of v that points in the w1 is just

(v ·w1)w1,
and there is no �part� of w1 that points in any of the directions wi, i =
2, . . . , n. This suggests that if we add up the parts of v that point in each
of the directions wi, i = 1, . . . , n, then we should recover v:

v =(v ·w1)w1 + · · ·+ (v ·wn)wn.
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This is true, and in fact not hard to prove. Let

u = v − [(v ·w1)w1 + · · ·+ (v ·wn)wn].

If we show that u is perpendicular to each wi, i = 1, . . . , n, then u is zero,
which means v =(v ·w1)w1 + · · ·+ (v ·wn)wn. We will use the properties
of an orthonormal set of vectors. For any i, wi · wj = 0 when i 6= j and
wi ·wi = 1 imply

u ·wi = {v− [(v ·w1)w1 + · · ·+ (v ·wn)wn]} ·wi
= v ·wi − [(v ·w1)w1 ·wi + · · ·+ (v ·wn)wn ·wi]
= v ·wi − (v ·wi)wi ·wi
= v ·wi − v ·wi
= 0.

Thus u = 0.
It is easy to remember this formula. Just keep in mind that you can

write v in the given form. If we suppose that

v =a1w1 + · · ·+ anwn
for some (as yet) unknown constants ai, i = 1, . . . , n, then by dotting both
sides with wi we Þnd

v ·wi = {a1w1 + · · ·+ anwn} ·wi
= ai(wi ·wi)
= ai,

so ai = v ·wi. This only works if the property wi ·wi = 1 holds. If this is
not the case (the vectors are orthogonal but not orthonormal) then we need
to take ai = v ·wi/wi ·wi.

Example. Suppose that

w1 =
1√
3
(1,−1,−1) ,

w2 =
1√
6
(2, 1, 1) ,

w3 =
1√
2
(0, 1,−1) .
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It is easy to check that these vectors are orthonormal. How can we represent
v = (1, 0, 0)? We compute

v ·w1 =
1√
3

v ·w2 =
2√
6

v ·w3 = 0.

Thus we have

v =
1√
3
w1 +

2√
6
w2 =

1

3
(1,−1,−1) + 2

6
(2, 1, 1) = (1, 0, 0).

What about v = (1, 1, 1)? Here

v ·w1 = − 1√
3

v ·w2 =
4√
6

v ·w3 = 0,

and

v = − 1√
3
w1 +

4√
6
w2 = −1

3
(1,−1,−1) + 4

6
(2, 1, 1) = (1, 1, 1).

Now that basic idea we have just discussed extends when vectors are
replaced by functions on the interval [0, L], the dot product is replaced by
the inner product, and we allow an inÞnite sum. In the case of the vibrating
string we consider only functions that are tied down at 0 and L, and in this
case the basis vectors are most commonly replaced by the set of functions

sin(πx/L), sin(2πx/L), . . . .

The idea was suggested by one of the Bernoulli brothers, and developed by
Fourier. One must be extra careful through, to make sure the set of functions
with respect to which we are expanding is �big enough.� For example, if
we left out sin(4πx/L) then we could not represent sin(4πx/L) in terms of
what remains, since they are all perpendicular to sin(4πx/ úL).

Let f(x) be continuous and satisfy f(0) = f(L) = 0. Suppose that f has
the representation
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f(x) = a1 sin(πx/L) + a2 sin(2πx/L) + · · · .

We will not be precise at all with regard to the sense in which the inÞnite
sum converges. By taking the inner product of f with each sin function, we
see that

hf(x), sin(kπx/L)i = h a1 sin(πx/L) + a2 sin(2πx/L) + · · · , sin(kπx/L)i
= ak hsin(kπx/L), sin(kπx/L)i
= ak

1

L

Z L

0
(sin(kπx/L))2 dx

= ak
1

L
2L,

so that we need

ak =
1

2
hf(x), sin(kπx/L)i

=
1

2L

Z L

0
f(x) sin(kπx/L)dx.

Example. We consider the string plucked to height 1 at the center:

f(x)

(
2x/L 0 ≤ x ≤ L/2
2− 2x/L L/2 ≤ x ≤ L.

Then by evaluating the resulting integral we Þnd

ak =
1

2L

Z L/2

0

2

L
x sin(kπx/L)dx+

1

2L

Z L/2

0

2

L
(L− x) sin(kπx/L)dx

=
2

π2k2
sin(kπ/2).
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