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Handout 1: Derivation of the Equation of a Vibrating String

In this handout we derive (at least formally) the partial differential equa-
tion that is satisÞed by a vibrating string. There are several assumptions
that underlie the derivation. The chief among these are that only small
displacements occur in the vertical direction, and that the displacements in
the horizontal direction are even smaller, and in fact negligible with respect
to the vertical displacements. The string is held at x = 0 and x = L, where
L > 0 is a constant, and thus the displacement at these points is 0. The
main notations are as follows.

u(x, t) = vertical displacement of the string at position x at time t
θ(x, t) = the angle of the element of the string between x

and x+∆x with respect to the horizontal
T (x, t) = tension in the string at position x and time t
ρ(x) = mass density of the string at x.

The derivation of the equation is based on Newton�s law that relates
force and acceleration. This law states that the vector sum of all forces that
act on a body equals the mass times the (vector) acceleration. If we consider
the element of the string between x and x + ∆x, then the following forces
act on the element.
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� The tension pulling to the right, which has a magnitude of T (x+∆x, t),
and acts at the angle of θ(x+∆x, t) above the horizontal.

� The tension pulling to the left, which has a magnitude of T (x, t), and
acts at the angle of θ(x, t) above the horizontal.

� Other external forces, such as gravity.
We will assume that the effects of the other forces are negligible with respect
to the effect of tension.

Now the mass of the string element is mass density times the length, or
approximately

ρ(x)
h
∆x2 +

³
u(x+∆x, t)− u(x, t)2

´i 1
2 .

Using that Newton�s law is phrased in terms of vectors (and in this particular
case vectors with two components), we Þnd from the vertical component that

ρ(x)
h
∆x2 +

³
u(x+∆x, t)− u(x, t)2

´i 1
2 utt(x, t)

= T (x+∆x, t) sin θ(x+∆x, t)− T (x, t) sin θ(x, t).
If we divide by ∆x and then send ∆x→ 0, then the resulting equation is

ρ(x)
h
1+ (ux(x, t))

2
i 1
2 utt(x, t)

=
∂

∂x
[T (x, t) sin θ(x, t)]

= Tx(x, t) sin θ(x, t) + T (x, t) cos θ(x, t) · θx(x, t)
Now from the Þgure we see that

tan θ(x, t) = lim
∆x→0

u(x+∆x, t)− u(x, t)
∆x

= ux(x, t).

Using standard trigonometric identities, this implies

sin θ(x, t) =
ux(x, t)h

1+ (ux(x, t))
2
i 1
2

cos θ(x, t) =
1h

1+ (ux(x, t))
2
i 1
2

θ(x, t) = tan−1 ux(x, t)

θx(x, t) =
uxx(x, t)h

1+ (ux(x, t))
2
i
.
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Small displacement means that θ(x, t) is small in absolute value (i.e., close
to zero), and hence so is ux(x, t). This simpliÞes much of the above. Indeed,
we have (approximately)

tan θ(x, t) ≈ θ(x, t)

sin θ(x, t) ≈ θ(x, t)

cos θ(x, t) ≈ 1

θx(x, t) ≈ uxx(x, t).

Plugging these equations into

ρ(x)
h
1+ (ux(x, t))

2
i 1
2
utt(x, t) = Tx(x, t) sin θ(x, t)+T (x, t) cos θ(x, t)·θx(x, t)

gives
ρ(x)utt(x, t) = Tx(x, t)ux(x, t) + T (x, t)uxx(x, t).

Next we use the horizontal component. Here Newton�s law tells us that
the horizontal force is approximately zero. Thus

T (x+∆x, t) cos θ(x+∆x, t)− T (x, t) cos θ(x, t) = 0.
If we divide by ∆x and then send ∆x→ 0, then the resulting equation is

∂

∂x
[T (x, t) cos θ(x, t)] = Tx(x, t) cos θ(x, t) + T (x, t) sin θ(x, t) · θx(x, t) = 0.

For small amplitude vibrations, cos θ(x, t) is close to one, sin θ(x, t) is close
to zero, and hence Tx(x, t) is close to zero. In other words, T is a function
of t only, and is determined by how hard you pull on the ends of the string.

Thus the equation

ρ(x)utt(x, t) = Tx(x, t)ux(x, t) + T (x, t)uxx(x, t)

simpliÞes to
ρ(x)utt(x, t) = T (t)uxx(x, t).

If T is actually a constant (independent of t) and ρ(x) is a constant (inde-
pendent of x), then we get the simpliÞed equation

ρutt(x, t) = Tuxx(x, t).

This is usually written

utt(x, t) = c
2uxx(x, t),

where c2 = T/ρ.

3


