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Handout 3 for Zero Sum Games: Randomized Strategies

Before formulating games with randomized strategies, we review some very
elementary deÞnitions from probability. Suppose that the random vari-
able X can take a value from among the Þnite set of real numbers S =
{a1, . . . , an}. Let pi denote the probability of outcome ai: pi = P{X = ai}.
We refer to {pi, i = 1, . . . , n} as the distribution associated with X . The
rules of probability require that pi ≥ 0, i = 1, . . . , n, and that

Pn
i=1 pi =

p1 + · · ·+ pn=1. We deÞne the expected value of X to be

EX =
nX
i=1

aipi.

Now suppose that we have a collection of random variables {Xk, k =
1, ...,K}, all of which take on only the values {a1, . . . , an}. We say that
these random variables have the same distribution as X if

P{X = ai} = P{Xk = ai} for all i = 1, . . . , n, k = 1, . . . , K.
We will be very interested in understanding the degree and sense in which
one random variable is related to other random variables. One very sim-
ple setting is where they are essentially unrelated. Consider a sequence of
values from S, one for each random variable: {bk ∈ S : k = 1, . . . , K}.
The collection {Xk, k = 1, ...,K} is said to be independent if for any such
sequence

P{X1 = b1,X2 = b2, . . . , XK = bK}& = P{X1 = b1}P{X2 = b2} × · · · × P{XK = bK}.
If the collection {Xk, k = 1, ...,K} all have the same distribution and are
also independent, then it is called a collection of independent and identically
distributed (iid) random variables.

We also note that one deÞnes independence in the analogous way when
each Xk can take values from a different (but still Þnite) set.

Example. Let S = {−1, 0, 1}. Suppose that X takes on more than one
value with positive probability, and let X1 = X,X2 = −X. Then {X1, X2}
are not independent, and hence not iid. For example, if P{X1 = −1} = p ∈
(0, 1), then P{X2 = 1} = p. But
p = P{X = −1} = P{X1 = −1, X2 = 1} 6= P{X1 = −1}P{X2 = 1} = p2.
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Randomized strategies. Suppose that each player will choose his or her
action according to some pre-selected distribution. Thus Player 1 will have
a probability distribution {xi, i = 1, . . . , n}, and Player 2 will have a prob-
ability distribution {yj , j = 1, . . . , m}. At this time we will assume that
neither player has any information on the other player, and that the selec-
tion of actions of the two players are independent. Thus the probability that
Player 1 chooses action i and Player 2 chooses action j is the product: xiyj .
Let A be the payoff matrix. When considering randomized strategies it is
customary for each player to optimize the expected payoff

nX
i=1

mX
j=1

aijxiyj.

We will explain why in a moment, after discussing the law of large numbers.

The law of large numbers. Suppose we return to the collection {Xk, k =
1, ...,K} of iid random variables, but suppose that in fact we are dealing
with an inÞnite collection {Xk, k = 1, ...} (although such sequences exist,
there are some mathematical subtleties which we will ignore). Suppose also
that we keep track of the sample average, which is just the average of the
actual outcomes. The sample average for the Þrst K is thus

mK =
X1 +X2 + · · ·+XK

K
.

Then the law of large numbers states that with probability 1, mK (the
sample mean) converges to EX (the probabilistic mean) as K tends to ∞.
If you think of Xk as the (random) outcome of an experiment, and if the
experiments are �independent� in the sense deÞned previously, then the
average of the experiments tends to the probabilistic average. Can you Þnd
a sequence of random variables which are not independent and for which the
sample mean does not converge to the expected value?

We now return to the game model. Here, Xk would represent the random
payoff. Suppose the game is played repeatedly with the same strategies, and
that the actions of the players are independent from game to game. Then
the average of the actual payoffs will converge to the expected payoff. It is
this convergence which justiÞes the use.
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