APPLIED MATH 226

Solutions for Assignment 1.

1. We introduce the value functions
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where E,; denotes expected value given X; = x, and the infimum is over
feedback controls (note that these controls can depend on the time to go).
We claim that V(z,i, M) = V(z, M —i). The proof is by backward
induction on i. Let {u(z,7)} be any control scheme, where we stop if
u(Xj,1) = 1, and continue if u(X;,7) = 0. Let N denote the corresponding
stopping time. Let {u(x,4)} be the control defined in terms of V. Thus
a(x,i) = 1if g(z) < e(z) + Xyesp(x,y)V(z, M —i—1) and u(x,i) = 0
otherwise. Our inductive assumption is that V(z, j, M) = V(z, M — j) and
that @(x,j)is optimal for i < j < M. By the Markov property and the

definition of V' as the minimal cost,
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= V(x, M —1).



Since the control scheme is arbitrary, this shows that V (z,i, M) > V (x, M —
i,

i). Next consider the particular scheme {u(x,7)}. Since V(x,i, M) is the
minimal cost,
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= V(z,M —1).

Thus V (x,i, M) < V(x, M—i). Combining and letting i = 0 we get V (x, M) =
V(x,0,M) =V (x, M).
2. Let us expand the state space by adding the absorbing state A. Let
p(may) = r(xay)a p(a:,A) =1- Zyesr(xay)a and p(Aay) =0if T,y € S.
We also define f(A) = 0.

Let X; denote the associated chain, and define N to be the first time A
is reached. We claim that
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The condition Wy(z) = f(x) holds, and by the Markov property
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This proves the representation.

Under the given condition, all states save A are transient. In fact an
explicit upper bound for the probability to still be in S can be given in
terms of
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which shows that the probability that the chain is not absorbed by time n
decays faster than K(1 — ¢/k)"™. Thus the exit time N is integrable. By
Lebesque Dominated Convergence,
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3. Define N = min{i:U;(X;) =1}. Let G be an arbitrary continuous
function of the argument (Xi,..., X, Nl{y<p)). Using the definition of
conditional expectation, it is enough to show that
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We condition on F,, = o (X1,...,Xn,U1(*),...,Un(-)). By the Markov
property of X,, and the independence of the random vector fields from this
chain,

E[F(Xnit,- X)) Xnl = E[F(Xnits s Xo)| X1s oy Xy Ui (), -, Un(0)].
Thus
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= E[E[F(Xai1, ., Xn)G(X1, o, Xy Nveny)| X1,y X, Ur(), -, Un (9]
- E [F(XnH, e X)) G(X, . .. ,Xn,Nl{NSn})} :

For M < oo and a given admissible stopping time NV, let
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By induction, this shows
Wa(z, N) > Wy(z, M,N) > V(z).
We now let M — oco. Since ¢ > 0, the cost is co if N is not integrable.
When N is integrable, LDCT gives
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> V(z).

Since the stopping time is arbitrary, V(z) > V(x). The reverse inequality
is exactly as in class for the case where we restricted to feedback controls.



