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Solutions for Assignment 1.

1. We introduce the value functions

V (x, i,M) = inf Ex,i

(M∧N)−1X
j=i

c(Xj) + g(XM∧N)


where Ex,i denotes expected value given Xi = x, and the inÞmum is over
feedback controls (note that these controls can depend on the time to go).

We claim that V (x, i,M) = V̄ (x,M − i). The proof is by backward
induction on i. Let {u(x, i)} be any control scheme, where we stop if
u(Xi, i) = 1, and continue if u(Xi, i) = 0. Let N denote the corresponding
stopping time. Let {ū(x, i)} be the control deÞned in terms of V̄ . Thus
ū(x, i) = 1 if g(x) ≤ c(x) +

P
y∈S p(x, y)V̄ (x,M − i − 1) and ū(x, i) = 0

otherwise. Our inductive assumption is that V (x, j,M) = V̄ (x,M − j) and
that ū(x, j) is optimal for i < j ≤ M . By the Markov property and the
deÞnition of V as the minimal cost,

Ex,i

(M∧N)−1X
j=i

c(Xj) + g(XM∧N)


= g(x)1{u(x,i)=1} + Ex,i

(M∧N)−1X
j=i

c(Xj) + g(XM∧N )

 1{u(x,i)=0}
= g(x)1{u(x,i)=1} + Ex,i

Ex,i
(M∧N)−1X

j=i

c(Xj) + g(XM∧N )

¯̄̄̄¯̄Xi+1
 1{u(x,i)=0}

≥ g(x)1{u(x,i)=1} +

c(x) +X
y∈S

p(x, y) V (y, i+ 1)

 1{u(x,i)=0}
= g(x)1{u(x,i)=1} +

c(x) +X
y∈S

p(x, y)V̄ (y,M − i− 1)
 1{u(x,i)=0}

≥ min

g(x), c(x) +X
y∈S

p(x, y)V̄ (y,M − i− 1)


= V̄ (x,M − i).



Since the control scheme is arbitrary, this shows that V (x, i,M) ≥ V̄ (x,M−
i). Next consider the particular scheme {ū(x, i)}. Since V (x, i,M) is the
minimal cost,

V (x, i,M)

≤ Ex,i

(M∧N)−1X
j=i

c(Xj) + g(XM∧N)


= g(x)1{ū(x,i)=1} + Ex,i

(M∧N)−1X
j=i

c(Xj) + g(XM∧N )

 1{ū(x,i)=0}
= g(x)1{ū(x,i)=1} + Ex,i

Ex,i
(M∧N)−1X

j=i

c(Xj) + g(XM∧N )

¯̄̄̄¯̄Xi+1
 1{ū(x,i)=0}

= g(x)1{ū(x,i)=1} +

c(x) +X
y∈S

p(x, y)V̄ (y,M − i− 1)
 1{ū(x,i)=0}

= min

g(x), c(x) +X
y∈S

p(x, y)V̄ (y,M − i− 1)


= V̄ (x,M − i).

Thus V (x, i,M) ≤ V̄ (x,M−i). Combining and letting i = 0 we get V (x,M) =
V (x, 0,M) = V̄ (x,M).

2. Let us expand the state space by adding the absorbing state ∆. Let
p(x, y) = r(x, y), p(x,∆) = 1 −P

y∈S r(x, y), and p(∆, y) = 0 if x, y ∈ S.
We also deÞne f(∆) = 0.

Let Xi denote the associated chain, and deÞne N to be the Þrst time ∆
is reached. We claim that

Wn(x) = Ex

(N∧n)−1X
i=0

c(Xi) + f(X(N∧n))

 .
The condition W0(x) = f(x) holds, and by the Markov property

Wn+1(x)

= Ex

(N∧(n+1))−1X
i=0

c(Xi) + f(X(N∧(n+1)))





= Ex

c(x) + Ex
 (N∧(n+1))−1X

i=1

c(Xi) + f(X(N∧(n+1)))

¯̄̄̄
¯̄X1


= c(x) +

X
y∈S

p(x, y)Ex

 (N∧(n+1))−1X
i=1

c(Xi) + f(X(N∧(n+1)))

¯̄̄̄
¯̄X1 = y

+ p(x,∆) · 0
= c(x) +

X
y∈S

r(x, y)Wn(y).

This proves the representation.
Under the given condition, all states save ∆ are transient. In fact an

explicit upper bound for the probability to still be in S can be given in
terms of

ε = min
x∈S

1−X
y∈S

rk(x, y)

 > 0,
which shows that the probability that the chain is not absorbed by time n
decays faster than K(1 − ε/k)n. Thus the exit time N is integrable. By
Lebesque Dominated Convergence,

Wn(x) = Ex

(N∧n)−1X
i=0

c(Xi) + f(X(N∧n))

→W (x) = Ex

"
N−1X
i=0

c(Xi)

#
.

3. DeÞne N = min {i : Ui(Xi) = 1}. Let G be an arbitrary continuous
function of the argument (X1, . . . ,Xn, N1{N≤n}). Using the deÞnition of
conditional expectation, it is enough to show that

E
h
E [F (Xn+1, . . . , Xm)|Xn]G(X1, . . . , Xn, N1{N≤n})

i
= E

h
F (Xn+1, . . . , Xm)G(X1, . . . , Xn, N1{N≤n})

i
.

We condition on Fn = σ (X1, . . . ,Xn, U1(·), . . . , Un(·)). By the Markov
property of Xn and the independence of the random vector Þelds from this
chain,

E [F (Xn+1, . . . ,Xm)|Xn] = E [F (Xn+1, . . . ,Xm)|X1, . . . ,Xn, U1(·), . . . , Un(·)] .
Thus

E
h
E [F (Xn+1, . . . , Xm)|Xn]G(X1, . . . , Xn, N1{N≤n})

i
= E

h
E [F (Xn+1, . . . ,Xm)|X1, . . . , Xn, U1(·), . . . , Un(·)]G(X1, . . . ,Xn, N1{N≤n})

i



= E
h
E
h
F (Xn+1, . . . ,Xm)G(X1, . . . ,Xn, N1{N≤n})

¯̄̄
X1, . . . , Xn, U1(·), . . . , Un(·)

ii
= E

h
F (Xn+1, . . . , Xm)G(X1, . . . , Xn, N1{N≤n})

i
.

For M <∞ and a given admissible stopping time N , let

WM (x,N) = Ex

(N∧M)−1X
i=0

c(Xi) + g(XN )1{N≤M} + V̄ (XM )1{M<N}


and

WM (x, i,N) = Ex,i

(N∧M)−1X
j=i

c(Xj) + g(XN)1{N≤M} + V̄ (XM )1{M<N}

 .
Then

Ex,i

(M∧N)−1X
j=i

c(Xj) + g(XM∧N)


= Ex,i

 Ex,i
g(x)1{u(x,i)=1} + Ex,i

(M∧N)−1X
j=i

c(Xj) + g(XM∧N)

 1{u(x,i)=0}
¯̄̄̄
¯̄ 1{u(x,i)=1}


= g(x)Ex,i

h
1{u(x,i)=1}

i
+ Ex,i

Ex,i
 (M∧N)−1X

j=i

c(Xj) + g(XM∧N)

¯̄̄̄
¯̄ 1{u(x,i)=1}

 1{u(x,i)=0}


= g(x)Ex,i
h
1{u(x,i)=1}

i
+ Ex,i

h
Ex,i

h
c(x) +WM (Xi+1, i+ 1, N)| 1{u(x,i)=1}

i
1{u(x,i)=0}

i
= g(x)Ex,i

h
1{u(x,i)=1}

i
+ Ex,i

h
Ex,i [c(x) +WM (Xi+1, i+ 1, N)] 1{u(x,i)=0}

i
= g(x)Px,i {u(x, i) = 1}+ Ex,i [c(x) +WM (Xi+1, i+ 1, N)]Px,i {u(x, i) = 0}

≥ min

g(x), c(x) +X
y∈S

p(x, y)WM (y, i+ 1, N)

 .
By induction, this shows

WM (x,N) ≥WM (x,M,N) ≥ V̄ (x).
We now let M → ∞. Since c > 0, the cost is ∞ if N is not integrable.

When N is integrable, LDCT gives

W (x,N) = inf Ex

"
N−1X
i=0

c(Xi) + g(XN)

#
≥ V̄ (x).

Since the stopping time is arbitrary, V (x) ≥ V̄ (x). The reverse inequality
is exactly as in class for the case where we restricted to feedback controls.


