Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to the main page for the first course APMA0330
Return to the main page for the second course APMA0340
Return to Part I of the course APMA0340
Introduction to Linear Algebra with Mathematica

Preface


This section presents some properties of the most remarkable and useful in numerical computations Chebyshev polynomials of first kind \( T_n (x) \) and second kind \( U_n (x) .\) Both Chebyshev polynomials are eigenfunctions of the corresponding singular Sturm--Liouville problems. Other two Chebyshev polynomials of the third kind and the fourth kind are not so popular in applications.

Orthogonality


The ordinary generating function for Legendre polynomials is
\begin{equation} \label{EqLege1.1} G(x,t) = \frac{1}{\sqrt{1 -2xt + t^2}} = \sum_{n\ge 0} P_n (x)\, t^n , \end{equation}
where Pn(x is the Legendre polynomial of degree n. Legendre's polynomials are orthogonal
\begin{equation} \label{Eqlegendre.4} \int_{-1}^1 P_n (x) \, P_m (x) \,{\text d} x = \begin{cases} 0 , & \ \mbox{for} \quad n\ne m, \\ \frac{2}{2n+1} , & \ \mbox{for} \quad n = m. \end{cases} \end{equation}
\[ \int_0^{\pi} P_n^m (\cos\theta )\,P_k^m (\cos\theta )\,\sin\theta\,{\text d}\theta = \frac{2\left( k+m \right)!}{\left( 2k+1 \right) \left( k-m \right)!}\,\delta_{n,k} \]
It turns out that the associated Legendre's polynomials are also orthogonal
\[ \int_{-1}^1 P_n^m (x) \, P_k^m (x) \,{\text d} x = \begin{cases} 0 , & \ \mbox{for} \quad n\ne k, \\ \frac{2}{2n+1} \cdot \frac{(n+m)!}{(n-m)!}, & \ \mbox{for} \quad n = k . \end{cases} \]
Also, they satisfy the orthogonality condition for fixed n with weight w = 1/(1 - x²):
\[ \int_{-1}^1 \frac{P_n^i (x) \, P_n^m (x)}{1 - x^2} \,{\text d} x = \begin{cases} 0 , & \ \mbox{for} \quad m\ne i, \\ \frac{(n+m)!}{2(n-m)!}, & \ \mbox{for} \quad m = i \ne 0 , \\ \infty , & \ \mbox{for} \quad m = i =0. \end{cases} \]
  1. Clenshaw, C.W., Norton, H.J.: The solution of nonlinear ordinary differential equations in chebyshev series. The Computer Journal, 1963, {\bf 6}, Issue 1, 88–92; https://doi.org/10.1093

 

Return to Mathematica page
Return to the main page (APMA0340)
Return to the Part 1 Matrix Algebra
Return to the Part 2 Linear Systems of Ordinary Differential Equations
Return to the Part 3 Non-linear Systems of Ordinary Differential Equations
Return to the Part 4 Numerical Methods
Return to the Part 5 Fourier Series
Return to the Part 6 Partial Differential Equations
Return to the Part 7 Special Functions