APMA 0330 - Applied Mathematics - I

Brown University

Fall, 2017
Solutions to Homework, Set 7
Due November 29
7.1 (20 pts) Find the general solution to the following differential equation

$$
y^{\prime \prime}+9 y=3 \cot (3 x) .
$$

Solution: The characteristic equation $\lambda^{2}+9=0$, corresponding to the homogeneous equation, $y^{\prime \prime}+9 y=0$, has two complex conjugate roots $\lambda= \pm 3 \mathbf{j}$. Therefore, the general solution of the homogeneous equation is

$$
y(x)=C_{1} \cos 3 x+C_{2} \sin 3 x
$$

for some arbitrary constants C_{1} and C_{2}. WE seek a particular solution in the form

$$
y_{p}(x)=A(x) \cos 3 x+B(x) \sin 3 x
$$

for some functions $A(x)$ and $B(x)$. Then their derivatives satisfy the Lagrange system of algebraic equations:

$$
\begin{aligned}
A^{\prime}(x) \cos 3 x+B^{\prime}(x) \sin 3 x & =0 \\
-A^{\prime}(x) \sin 3 x+B^{\prime}(x) \cos 3 x & =\cot (3 x)
\end{aligned}
$$

Solving this system of equations, we find

$$
A^{\prime}(x)=-\cos 3 x, \quad B^{\prime}(x)=\cos 3 x \cot 3 x=\frac{\cos ^{2} 3 x}{\sin 3 x}
$$

Integration yields

$$
A(x)=-\frac{1}{3} \sin 3 x, \quad B(x)=\frac{1}{3} \cos 3 x+\frac{1}{3} \ln \left|\tan \frac{3 x}{2}\right| .
$$

Substituting these values into the formula, we get a particular solution:

$$
y_{p}(x)=\frac{1}{3} \cos 3 x \ln \left|\tan \frac{3 x}{2}\right| .
$$

Then the general solution of the given equation will be the sum of these two functions:

$$
y=y_{h}(x)+y_{p}(x)=\frac{1}{3} \cos 3 x \ln \left|\tan \frac{3 x}{2}\right|+C_{1} \cos 3 x+C_{2} \sin 3 x .
$$

7.2 (60 pts) In each of problems, express $f(t)$ in terms of the Heaviside function, $H(t)$, and find its Laplace transform.
(a) $f(t)= \begin{cases}3, & 0 \leq t<3, \\ -2, & 3 \leq t<5, \\ 1, & 5 \leq t<8, \\ 2, & t \geq 8 .\end{cases}$
(d) $f(t)= \begin{cases}t^{2}, & 0 \leq t<2, \\ t+1, & t \geq 2 .\end{cases}$
(b) $f(t)= \begin{cases}0, & 0 \leq t<1, \\ -3, & 1 \leq t<2, \\ 2, & 2 \leq t<3, \\ -4, & 3 \leq t<4, \\ 1, & t \geq 4 .\end{cases}$
(e) $f(t)= \begin{cases}t^{2}, & 0 \leq t<1, \\ t-1, & 1 \leq t<2, \\ t^{2}+1, & 2 \leq t<3, \\ 10, & t \geq 3 .\end{cases}$
(c) $f(t)= \begin{cases}1, & 0 \leq t<3, \\ e^{2(t-3)}, & t \geq 3 .\end{cases}$
(f) $f(t)= \begin{cases}t-1, & 0 \leq t<2, \\ 1, & 2 \leq t<4, \\ 5-t, & 4 \leq t<8, \\ -3, & t \geq 8 .\end{cases}$

Hint: The Laplace transform of the power function is

$$
\mathcal{L}\left[t^{n}\right]=\int_{0}^{\infty} t^{n} e^{-\lambda t} \mathrm{~d} t=\frac{n!}{\lambda^{n+1}}, \quad n=0,1,2, \ldots
$$

Solution:
(a) (5 pts$)$ First, we represent the given functions as a sum of Heaviside functions:

$$
f(t)=3[H(t)-H(t-3)]-2[H(t-3)-H(t-5)]+H(t-5)-H(t-8)+2 H(t-8) .
$$

Then we simplify

$$
f(t)=3 H(t)-5 H(t-3)+3 H(t-5)+H(t-8) .
$$

According to the shift rule, we get its Laplace transform

$$
f^{L}(\lambda)=\frac{1}{\lambda}\left[3-5 e^{-3 \lambda}+3 e^{-5 \lambda}+e^{-8 \lambda}\right] .
$$

(b) (5 pts) First, we represent the given functions as a sum of Heaviside functions:

$$
f(t)=-3[H(t-1)-H(t-2)]+2[H(t-2)-H(t-3)]-4[H(t-3)-H(t-4)]+H(t-4) .
$$

Then we simplify

$$
f(t)=-3 H(t-1)+5 H(t-2)-6 H(t-3)-3 H(t-4) .
$$

According to the shift rule, we get its Laplace transform

$$
f^{L}(\lambda)=\frac{1}{\lambda}\left[-3 e^{-\lambda}+5 e^{-2 \lambda}-6 e^{-3 \lambda}-3 e^{-4 \lambda}\right] .
$$

(c) (5 pts) We break the given function into the sum of two functions:

$$
f(t)=[H(t)-H(t-3)]+e^{2(t-3)} H(t-3)=H(t)+\left(e^{2(t-3)}-1\right) H(t-3) .
$$

Application of Laplace transform yields

$$
f^{L}(\lambda)=\frac{1}{\lambda}\left[1-e^{-3 \lambda}\right]+\frac{1}{\lambda-2} e^{-3 \lambda} .
$$

(d) (5 pts) We break the given function into the sum of two functions:

$$
f(t)=t^{2}[H(t)-H(t-2)]+(t+1) H(t-2)=t^{2} H(t)+\left(t+1-t^{2}\right) H(t-2) .
$$

We make a shift by 2 in the function

$$
t+1-t^{2}=(t-2)+3-(t-2+2)^{2}=-(t-2)^{2}-3(t-2)-1
$$

This allows us to represent the function as

$$
f(t)=t^{2} H(t)-H(t-2)\left[(t-2)^{2}+3(t-2)+1\right] .
$$

Then we apply the shift rule:

$$
f^{L}(\lambda)=\frac{2}{\lambda^{3}}-e^{-2 \lambda}\left[\frac{2}{\lambda^{3}}+\frac{3}{\lambda^{2}}+\frac{1}{\lambda}\right] .
$$

(e) (5 pts) Using the Heaviside function, we represent the given function as a sum of

$$
\begin{aligned}
f(t) & =t^{2}[H(t)-H(t-1)]+(t-1)[H(t-1)-H(t-2)]+\left(t^{2}+1\right)[H(t-2)-H(t-3)]+10 H(\\
& =t^{2} H(t)+\left[t-1-t^{2}\right] H(t-1)+\left[t^{2}-t+2\right] H(t-2)+\left[9-t^{2}\right] H(t-3) \\
& =t^{2} H(t)+\left[-t+1-(t-1)^{2}-1\right] H(t-1)+\left[(t-2)^{2}+3(t-2)+4\right] H(t-2)-\left[(t-3)^{2}+\right.
\end{aligned}
$$

Application of shift rule yields

$$
f^{L}=\frac{2}{\lambda^{3}}-\frac{2+\lambda+\lambda^{2}}{\lambda^{3}} e^{-\lambda}+\frac{2+3 \lambda+4 \lambda^{2}}{\lambda^{3}} e^{-2 \lambda}-\frac{2+6 \lambda}{\lambda^{3}} e^{-3 \lambda} .
$$

(f) (5 pts) Using the Heaviside function, we represent the given function as a sum of

$$
\begin{aligned}
f(t) & =(t-1)[H(t)-H(t-2)]+[H(t-2)-H(t-4)]+(5-t)[H(t-4)-H(t-8)]-3 H(t- \\
& =(t-1) H(t)-(t-2) H(t-2)-(t-4) H(t-4)+(t-5) H(t-8) \\
& =(t-1) H(t)-(t-2) H(t-2)-(t-4) H(t-4)+(t-8) H(t-8)
\end{aligned}
$$

Application of shift rule yields

$$
f^{L}=\frac{1-\lambda}{\lambda^{2}}-\frac{1}{\lambda^{2}} e^{-2 \lambda}-\frac{1}{\lambda^{2}} e^{-4 \lambda}+\frac{1}{\lambda^{2}} e^{-8 \lambda}
$$

7.3 (20 pts) Find the Laplace transform of the periodic with period $T=6$ sawtooth function that is the half-wave rectifier of the function

$$
f(t)=1-t, \quad 0<t<3
$$

Solution: First, we find the integral, which we denote by

$$
A=\int_{0}^{3}(1-t) e^{-\lambda t} \mathrm{~d} t=\frac{1}{\lambda}-\frac{1}{\lambda^{2}}+\frac{1+2 \lambda}{\lambda^{2}} e^{-3 \lambda}
$$

Then the Laplace transform of the half-wave rectifier will be

$$
\frac{1}{1-e^{-6 \lambda}} A .
$$

