APMA 0330 - Applied Mathematics - I

Brown University

Fall, 2017
Solutions to Homework, Set 6
Due November 8
6.1 (10 pts) Write out the characteristic equation for the given differential equation:
(a) $y^{(4)}+5 y^{\prime \prime}-3 y=0$;
(b) $y^{\prime \prime}-7 y^{\prime}+2 y=0$.

Solution:
(a) $\lambda^{4}+5 \lambda^{2}-3=0$;
(b) $\lambda^{2}-7 \lambda+2=0$.
6.2 (10 pts) Let α and β be real constants. Consider the differential operator of the second order:

$$
L[\mathrm{D}]=(\mathrm{D}-\alpha)^{2}+\beta^{2},
$$

where $\mathrm{D}=\mathrm{d} / \mathrm{d} t$ is the derivative operator. Show that the substitution $y=e^{\alpha t} v(t)$ reduces the differential equation

$$
L[\mathrm{D}] y=0 \quad \text { or } \quad\left[(\mathrm{D}-\alpha)^{2}+\beta^{2}\right] y=0
$$

to the canonical equation $\ddot{v}+\beta^{2} v=0$, where dot stands for the derivative with respect to t.
Solution: Calculating derivatives, we get

$$
\dot{y}=e^{\alpha t}[\alpha v+\dot{v}], \quad \ddot{y}=e^{\alpha t}\left[\alpha^{2} v+2 \alpha \dot{v}+\ddot{v}\right] .
$$

Then

$$
\begin{aligned}
L[\mathrm{D}] y & =\left[\mathrm{D}^{2}-2 \alpha \mathrm{D}+\left(\alpha^{2}+\beta^{2}\right)\right] e^{\alpha t} v(t) \\
& =e^{\alpha t}\left[\alpha^{2} v+2 \alpha \dot{v}+\ddot{v}-2 \alpha(\alpha v+\dot{v})+\left(\alpha^{2}+\beta^{2}\right) v\right]=e^{\alpha t}\left[\ddot{v}+\beta^{2} v\right] .
\end{aligned}
$$

6.3 (10 pts) The Wronskian of two functions is $W(x)=x^{2}-6 x+9$. Are the functions linearly independent or linearly dependent?
Solution: The Wronskian is $W(x)=(x-3)^{2}>0$ for $x \neq 3$. Therefore, two functions are linearly independent in any interval.
6.4 (10 pts) The characteristic equation for a certain differential equation is given. State the order of the differential equation and give the form of the general solution.

$$
\text { (a) } 2 \lambda^{3}-\lambda^{2}-7 \lambda+6=0 ; \quad \text { (b) } 3 \lambda^{3}-20 \lambda^{2}+39 \lambda=18
$$

Solution:

(a) Since the characteristic polynomial $2 \lambda^{3}-\lambda^{2}-7 \lambda+6=(\lambda+2)(2 \lambda-3)(\lambda-1)$ is of order three, the general solution becomes

$$
y=a e^{-2 t}+b e^{3 t / 2}+c e^{t}
$$

(b) Since the characteristic polynomial $3 \lambda^{3}-20 \lambda^{2}+39 \lambda-18=(3 \lambda-2)(\lambda-3)^{2}$ is of order three, the general solution becomes

$$
y=a e^{2 t / 3}+b t e^{3 t}
$$

6.5 (20 pts) Find the solution of the given initial value problem.
(a) $6 \ddot{y}+\dot{y}-y=0, \quad y(0)=1, \dot{y}(0)=2$.
(b) $\ddot{y}-3 \dot{y}=0, \quad y(0)=1, \dot{y}(0)=3$.

Solution:
(a)

$$
y=3 e^{t / 3}-2 e^{-t / 2}
$$

(b)

$$
y=\frac{1}{3}+\frac{2}{3} e^{3 t}
$$

6.6 (20 pts) Find the form of a particular solution $y_{p}(t)$ to the following ODEs to be used in the method of undetermined coefficients. Do not solve for the coefficients!
(a) $\ddot{y}-4 \dot{y}+4 y=3 t e^{2 t}$,
(b)
(c) $\ddot{y}+\dot{y}-2 y=e^{-2 t}+t e^{t}+t$,
(d) $\dddot{y}-5 \ddot{y}+7 \dot{y}-3 y=e^{-3 t}+t e^{t}$.

Solution:

(a) The characteristic polynomial $\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}$ has one double root $\lambda=2$. Therefore, we seek a particular solution in the form

$$
y=t^{2}\left(b_{0}+b_{1} t\right) e^{2 t}
$$

(b) The characteristic polynomial $\lambda^{2}+4 \lambda+13=(\lambda+2)^{2}+9$ has two complex conjugate roots $\lambda=-2 \pm 3 \mathbf{j}$, so we seek a particular solution in the form

$$
y=a t e^{-2 t} \cos 3 t+b t e^{-2 t} \sin 3 t
$$

(c) The characteristic polynomial of the corresponding homogeneous equation is $\lambda^{2}+\lambda-2=$ $(\lambda+2)(\lambda-1)$. The control numbers of the forcing term are $\mu=-2, \mu=1$, and $\mu=0$. Therefore, we seek a particular solution in the form

$$
y=t a e^{-2 t}+t\left(b_{0}+b_{1} t\right) e^{t}+c_{0}+c_{1} t .
$$

(d) Since the characteristic equation $(\lambda-1)^{2}(\lambda-3)=0$ has two real roots one of which $(\lambda=1)$ matches control number, we seek a particular solution in the form

$$
y=a e^{-3 t}+t^{2}\left(b_{0}+b_{1} t\right) e^{t} .
$$

6.7 [10 pts.] For given family of solutions $c_{1} x^{2}+c_{2} e^{-3 x} \cos 5 x$ to a constant coefficient differential equation $L[\mathrm{D}] y=0$, find a linear differential operator of least possible order that annihilates the family.
Solution:

$$
\mathrm{D}^{3}\left[(\mathrm{D}+3)^{2}+25\right] y=0
$$

6.8 [10 pts.] Let D stand for the derivative operator. Write the general solution of the following differential equation

$$
(D-2)^{3}\left[(D+5)^{2}+9\right]^{2} y=0 .
$$

Solution:

$$
y=\left(a_{0}+a_{1} t+a_{2} t^{2}\right) e^{2 t}+\left(b_{0}+b_{1} t\right) e^{-5 t} \cos 3 t+\left(c_{0}+c_{1} t\right) e^{-5 t} \sin 3 t .
$$

