APMA 0330 - Applied Mathematics - I

Brown University

Fall, 2017
Solutions to Homework, Set 5
Due November 1
5.1 (30 pts) Consider the initial value problem

$$
3 y^{\prime}+y=x, \quad y(0)=-2
$$

Upon introducing uniform grid $x_{n}=n h(n=0,1,2, \ldots)$ with step size $h=0.1$, find an approximate value of $y(1)$ using

- Euler's rule $y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$, and
- Heun's method $y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n=1}, y_{n}+h f\left(x_{n}, y_{n}\right)\right)\right]$.

Compare your answer with the true value $\phi(1)$, where $y=\phi(t)$ is the actual solution.
Solution: The given initial value problem has the solution

$$
y=\phi(x)=e^{-x / 3}-3+x
$$

Therefore, $\phi(1)=-1.2834686894262108$.

- Using Euler's rule $y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$ for the slope function $f(x, y)=(x-y) / 3$, we get

$$
y_{n+1}=y_{n}+\frac{h}{3}\left(x_{n}-y_{n}\right), \quad y_{0}=-2 .
$$

We use Mathematica to generate the sequence of Euler points:

```
x0 = 0; y0 = -2; h = 0.1;
Y[0] = y0; X[0] = x0;
f[x_, y_] = (x - y)/3
For[i = 1, i <= 10, i++, X[i] = x0 + i*h;
    Y[i] = Y[i - 1] + f[X[i - 1], Y[i - 1]]*h;];
data = Table[{X[i], Y[i]}, {i, 0, 10}]
{{0, -2}, {0.1, -1.93333}, {0.2, -1.86556}, {0.3, -1.7967}, {0.4, \
-1.72681}, {0.5, -1.65592}, {0.6, -1.58406}, {0.7, -1.51125}, {0.8, \
-1.43755}, {0.9, -1.36296}, {1., -1.28753}}
```

- Using Heun's method $y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n=1}, y_{n}+h f\left(x_{n}, y_{n}\right)\right)\right]$ for $f(x, y)=$ $(x-y) / 3$, we get

$$
y_{n+1}=y_{n}+\frac{h}{6}\left(x_{n}-y_{n}\right), \quad y_{0}=-2 .
$$

We use Mathematica to generate the sequence of Heun points:

```
f[x_, y_] = (x - y)/3;
y[0]=-2; h = 0.1;
Do[k1 = h f[h n, y[n]];
    k2 = h f[h (n + 1), y[n] + k1];
    y[n + 1] = y[n] + .5 (k1 + k2), {n, 0, 9}]
y[10]
Out[8]= -1.28342
```

So we see that the Heun method gives the better approximation than the Euler method.
5.2 (10 pts) Find the separatrix to the differential equation $y^{\prime}=4 \sin (2 t)+2 y-8$.

Solution: Since the general solution of the given differential equation is $y=4-\cos 2 t-\sin 2 t+$ $C e^{2 t}$, the separatrix will be

$$
4-\cos 2 t-\sin 2 t
$$

5.3 (20 pts) Solve the equations with the dependent variable missing.
(a) $x y^{\prime \prime \prime}-2 y^{\prime \prime}=0$;
(b) $y^{\prime \prime \prime}-y^{\prime \prime}=1$;
(c) $x^{2} y^{\prime \prime}+2 y^{\prime}=4 x$;
(d) $y^{\prime \prime}+y^{\prime}=4 \sinh x$.

Solution:

(a) We set $p=y^{\prime \prime}$ and reduce the given differential equation to a first order equation:

$$
x p^{\prime}-2 p=0 \quad \Longrightarrow \quad \frac{\mathrm{~d} p}{p}=2 \frac{\mathrm{~d} x}{x} .
$$

Integration yields

$$
p=x^{2}+C_{1} \quad \Longrightarrow \quad y^{\prime \prime}=p=x^{2}+C_{1} .
$$

We integrate twice to obtain the general solution:

$$
y=\frac{x^{4}}{12}+C_{1} x^{2}+C_{2} x+C_{3},
$$

where C_{1}, C_{2}, and C_{3} are arbitrary constants.
(b) Setting $p=y^{\prime \prime}$, we get the linear differential equation, which is also a separable one

$$
p^{\prime}-p=1 \quad \Longrightarrow \quad \frac{\mathrm{~d} p}{p+1}=\mathrm{d} x .
$$

Integration yields

$$
p=C_{1} e^{x}-1 \quad \Longrightarrow \quad y^{\prime \prime}=p=C_{1} e^{x}-1
$$

Integrating again, we obtain the general solution

$$
y=C_{1} e^{x}-\frac{x^{2}}{2}+C_{2} x+C_{3} .
$$

(c) Setting $p=y^{\prime}$, we obtain the first order differential equation

$$
x^{2} p^{\prime}+2 p=4 x \quad \Longrightarrow \quad p^{\prime}+\frac{2}{x^{2}} p=\frac{4}{x} .
$$

An integrating factor is obtained from the differential equation

$$
\mu^{\prime}-\frac{2}{x^{2}} \mu=0 \quad \Longrightarrow \quad \frac{\mathrm{~d} \mu}{\mu}=2 \frac{\mathrm{~d} x}{x^{2}} \quad \Longrightarrow \quad \mu=e^{-2 / x}
$$

Multiplying by μ, we obtain an exact equation

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[e^{-2 / x} p\right]=\frac{4}{x} e^{-2 / x} \quad \Longrightarrow \quad e^{-2 / x} p=\int \frac{4}{x} e^{-2 / x} \mathrm{~d} x+C_{1} .
$$

Next integrating gives the required solution:

$$
y(x)=\int \mathrm{d} x e^{2 / x} \int \frac{4}{x} e^{-2 / x} \mathrm{~d} x+C_{1} \int \mathrm{~d} x e^{2 / x}+C_{2} .
$$

(d) We set $p=y^{\prime}$, then $p^{\prime}=y^{\prime \prime}$ and the equation becomes

$$
p^{\prime}+p=4 \sinh x,
$$

which is a linear equation. Using the Bernoulli method, we seek its solution as the product $p(x)=u(x) v(x)$, where

$$
\begin{gathered}
u^{\prime}+u=0 \quad \Longrightarrow \quad u=e^{-x}, \\
u v^{\prime}=4 \sinh x \quad \Longleftrightarrow \quad v^{\prime}=3\left(e^{2 x}-1\right) \quad \Longrightarrow \quad v=e^{2 x}-2 x+C,
\end{gathered}
$$

where C is a constant of integration. Therefore, the general solution becomes

$$
p=u v=e^{x}-2 x e^{-x}+C e^{-x} \quad \Longrightarrow \quad y=e^{x}+2 e^{-x}+2 x e^{-x}-C e^{-x}+C_{2} .
$$

5.4 (20 pts) Solve the equations with the independent variable missing.
(a) $y^{\prime \prime}+2 y\left(y^{\prime}\right)^{3}=0$;
(b) $2 y y^{\prime \prime}=y^{2}+\left(y^{\prime}\right)^{2}$;
(c) $y y^{\prime \prime}=\left(y^{\prime}\right)^{3}$;
(d) $y^{\prime \prime}+\left(y^{\prime}\right)^{2}=2 e^{-y}$.

Solution: In all problems we use the chain rule:

$$
\frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{\mathrm{d} v}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{\prime} \frac{\mathrm{d} v}{\mathrm{~d} y}
$$

We also set $v=y^{\prime}$
(a) We have

$$
v \frac{\mathrm{~d} v}{\mathrm{~d} y}+2 y v^{3}=0 \quad \Longrightarrow \quad \frac{\mathrm{~d} v}{\mathrm{~d} y}=-2 y v^{2} .
$$

Separating variables, we get

$$
-\frac{\mathrm{d} v}{v^{2}}=2 y \mathrm{~d} y \quad \Longrightarrow \quad \frac{1}{v}=y^{2}+C_{1}
$$

where C_{1} is an arbitrary constant. Next separation of variables yields

$$
v=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{y^{2}+C_{1}} \quad \Longrightarrow \quad\left(y^{2}+C_{1}\right) \mathrm{d} y=\mathrm{d} x
$$

Integration gives the solution (in implicit form):

$$
\frac{y^{3}}{3}+C_{1} y=x+C_{2}
$$

(b) We have

$$
2 y v \frac{\mathrm{~d} v}{\mathrm{~d} y}=y^{2}+v^{2} \quad \Longrightarrow \quad \frac{\mathrm{~d} v}{\mathrm{~d} y}=\frac{y^{2}+v^{2}}{2 y v}
$$

Setting $v=y z(y)$, we reduce our equation in v to a separable one:

$$
\frac{\mathrm{d} v}{\mathrm{~d} y}=z+y z^{\prime}=\frac{1+z^{2}}{2 z} \quad \Longrightarrow \quad \frac{2 z}{1-z^{2}} \mathrm{~d} z=\frac{\mathrm{d} y}{y}
$$

Integration yields

$$
-\ln \left|1-z^{2}\right|=\ln C_{1} y \quad \Longrightarrow \quad 1-z^{2}=\frac{C_{1}}{y} \quad \Longrightarrow \quad z^{2}=1-\frac{C_{1}}{y}
$$

Since $z=v / y$, we get

$$
v^{2}=y^{2}-C_{1} y \quad \Longrightarrow \quad v=\frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{y^{2}-C_{1} y}
$$

Again, separating variables, we obtain

$$
\frac{\mathrm{d} y}{\sqrt{y^{2}-C_{1} y}}=\mathrm{d} x \quad \Longrightarrow \quad 2 \ln \left[\sqrt{y}+\sqrt{y-C_{1}}\right]=x+C_{2} .
$$

(c) We have

$$
y v \frac{\mathrm{~d} v}{\mathrm{~d} y}=v^{3} \quad \Longrightarrow \quad \frac{\mathrm{~d} v}{\mathrm{~d} y}=\frac{v^{2}}{y} .
$$

Separation of variables gives

$$
\frac{\mathrm{d} v}{v^{2}}=\frac{\mathrm{d} y}{y} \quad \Longrightarrow \quad-\frac{1}{v}=\ln C_{1} y \quad \Longrightarrow \quad v=-\frac{1}{\ln C_{1} y},
$$

where C_{1} is a constant. Next separation of variables yields

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=v=-\frac{1}{\ln C_{1} y} \quad \Longrightarrow \quad\left(\ln C_{1} y\right) \mathrm{d} y=-\mathrm{d} x
$$

Integrating both sides, we obtain the general solution (in implicit form):

$$
y \ln C_{1} y-y=-x+C_{2} .
$$

(d) We have

$$
v \frac{\mathrm{~d} v}{\mathrm{~d} y}+v^{2}=e^{-y} \quad \Longrightarrow \quad \frac{\mathrm{~d} v}{\mathrm{~d} y}+v=v^{-1} e^{-y}
$$

Since the equation in v is a Bernoulli equation, we seek its solution in the form: $v=u w$, where u is a solution of the linear part:

$$
u^{\prime}+u=0 \quad \Longrightarrow \quad u=e^{-y}
$$

The function w is the general solution of the separable equation:

$$
u w^{\prime}=\frac{1}{u w} e^{-y}=\frac{1}{w} \quad \Longrightarrow \quad w w^{\prime}=e^{y}
$$

Integration yields

$$
\frac{w^{2}}{2}=e^{y}+C_{1} \quad \Longrightarrow \quad w= \pm \sqrt{2 e^{y}+C_{1}}
$$

Hence,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=v=u w=e^{-y} \sqrt{2 e^{y}+C_{1}} \quad \Longrightarrow \quad \frac{\mathrm{~d} y}{e^{-y} \sqrt{2 e^{y}+C_{1}}}=\mathrm{d} x
$$

Next integration yields the general solution (in implicit form)

$$
\int \frac{\mathrm{d} y}{e^{-y} \sqrt{2 e^{y}+C_{1}}}=\sqrt{2 e^{y}+C_{1}}=x+C_{2}
$$

Squaring both sides, we get

$$
2 e^{y}+C_{1}=\left(x+C_{2}\right)^{2}
$$

5.5 (10 pts) Determine the longest interval in which the given initial value problem is certain to have a unique twice-differentiable solution.
(a) $(t-1) y^{\prime \prime}-4 t y^{\prime}+5 y=\cos t, \quad y(0)=2, \quad y^{\prime}(0)=1$;
(b) $t\left(t^{2}-4\right) y^{\prime \prime}+t y^{\prime}+(\ln |t|) y=0, \quad y(1)=0, \quad y^{\prime}(1)=2$.

Solution:

(a) We rewrite the given differential equation in normal form:

$$
y^{\prime \prime}-\frac{4 t}{t-1}+\frac{5}{t-1} y=\frac{\cos t}{t-1} .
$$

The coefficients of the above equation are undefined at $t=1$. Therefore, the validity interval becomes

$$
-\infty<t<1
$$

(b) We rewrite the given differential equation in normal form:

$$
y^{\prime \prime}+\frac{1}{t^{2}-4} y^{\prime}+\frac{\ln |t|}{t\left(t^{2}-4\right)} y=0 .
$$

The coefficients of the above equation are undefined at $t= \pm 2$ and $t=0$ (where logarithm blows up). Therefore, the validity interval becomes

$$
0<t<2 .
$$

5.6 (10 pts) Find the Wronskian of two solutions of the differential equation $t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+$ $(t+2) y=0$ without solving the equation.
Solution: The Wronskian of any two solutions to the differential equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=$ 0 is

$$
W=C \exp \left\{-\int \mathrm{d} x p(x)\right\},
$$

where C is a constant. In our case, $p(t)=-\frac{t+2}{t}=-1-\frac{2}{t}$, so the Wronskian will be

$$
W=C t^{2} e^{t} .
$$

