APMA 0330 - Applied Mathematics - I

Brown University

Fall, 2017
Solutions to Homework, Set 4
Due October 11
4.1 (14 pts) Determine the validity interval for each of the following initial value problems.

- 3 pts all intervals where both $a(x)$ and $f(x)$ are continuous.
- 3 pts validity interval.
(a) $\quad\left(x^{2}-4\right) y^{\prime}+x^{5} y=x^{2}+1, \quad y(0)=1$;
(b) $\quad(\cos \pi x) y^{\prime}+(\sin x) y=\tan \pi x, \quad y(1)=1$.

Solution: In all problems, we reduce the given differential equation to the standard form:

$$
y^{\prime}+a(x) y=f(x)
$$

(a) With $a(x)=\frac{x^{5}}{x^{2}-4}=\frac{x^{5}}{(x-2)(x+2)}$ and $f(x)=\frac{x^{2}+1}{(x-2)(x+2)}$, we see that both functions are continuous everywhere except points $x= \pm 2$. Therefore, the validity interval including the initial point $x=0$ will be $-2<x<2$
(b) With $a(x)=\sin x / \cos \pi x$ and $f(x)=\tan \pi x \csc \pi x=\sin \pi x /(\cos \pi x)^{2}$, we see that the function $a(x)$ has points of discontinuity at $x=1 / 2+n, n=0, \pm 1, \pm 2, \ldots$. The forcing function $f(x)$ is not defined at the same points. Therefore, the validity interval will be $1 / 2<x<3 / 2$
4.2 (6 pts) An inductor-resistor series circuit (LR circuit) can be modeled by the following differential equation (the initial condition is assumed to be given $i(0)=i_{0}=0.5$):

$$
V_{t}=V_{R}(t)+V_{L}(t) \quad \Longrightarrow \quad L \frac{\mathrm{~d} i}{\mathrm{~d} t}+R i=V(t)= \begin{cases}6, & \text { for } 0<t<2 \tau \\ 0, & \text { otherwise }\end{cases}
$$

where the voltage drop across the resistor is $V_{R}=i R$ (Ohms Law), $R=1$ being in Ohms, the voltage drop across the inductor is $V_{L}=L \mathrm{~d} i / \mathrm{d} t, L=0.1$ being in Henries. The $\tau=L / R$ term in the above equation is known commonly as the time constant. Plot the solution to IVP.

- 2 pts Solve the initial value problem
- 2 pts Write the final solution
- 2 pts Plot the solution

Solution: Solving the initial value problem

$$
\frac{\mathrm{d} i}{\mathrm{~d} t}+10 i=\left\{\begin{array}{ll}
60, & \text { for } 0<t<0.2, \\
0, & \text { otherwise },
\end{array} \quad i(0)=0.5\right.
$$

we get

$$
i(t)=\frac{1}{2} e^{-10 t} \times \begin{cases}12 e^{10 t}-11, & \text { for } 0 \leqslant t<0.2 \\ 12 e^{2}-11, & 0.2<t\end{cases}
$$

We check the answer with Mathematica and plot the solution.
V [t_] $=$ Piecewise[\{\{60, $0<\mathrm{t}<2 / 10\}\}$]
$\mathrm{s}=\mathrm{DSolve}[\{\mathrm{q}$ ' $[\mathrm{t}]+\mathrm{q}[\mathrm{t}] * 10==\mathrm{V}[\mathrm{t}], \mathrm{q}[0]==1 / 2\}, \mathrm{q}[\mathrm{t}], \mathrm{t}]$
Plot[Evaluate[q[t] /. s], \{t, 0, 0.6\}, PlotStyle -> \{Blue, Thick\}]

Figure 1: Solution to problem 2, plotted with Mathematica.

Partial Credits for Problem 3-6

5 points for problem 3 and 5 .
7 points for problem 4 and 6. 2 additional points for substituting initial value to calculate the constant C .

Integrating factor method

- 1 pt Formula or differential equation of integrating factor.
- 1 pt Solve integrating factor correctly
- 1 pt Exact Equation
- 1 pt Integration
- 1 pt Final solution

Bernoulli method

- 1 pt Differential equation for u
- 1 pt Find u correctly
- 1 pt Differential equation for v
- 1 pt Integration
- 1 pt Final solution
4.3 (20 pts) Solve the linear equations.
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sin x+(2 y-x) \cos x}{\sin x}$;
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}+y=\frac{1}{1+e^{-x}}$;
(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}+y \sin x=2 x \sin x$;
(d) $\frac{\mathrm{d} y}{\mathrm{~d} x}-y \ln x=x^{2}$.

Solution: (a) Solving equation for an integrating factor

$$
\mu^{\prime}(x)+2 \mu \cot x=0 \quad \Longrightarrow \quad \int \frac{\mathrm{~d} \mu}{\mu}=\ln \mu=-2 \int \cot x \mathrm{~d} x=-2 \ln \sin x
$$

we find $\mu(x)=\sin ^{-2} x$. Multiplying by $\mu(x)$, we get an exact equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[y(x) \sin ^{-2} x\right]=\sin ^{-2} x(1-x \cos x)
$$

Upon integration, we obtain

$$
y(x) \sin ^{-2} x=\int \sin ^{-2} x[1-x \cos x] \mathrm{d} x=\frac{1}{2}\left(x \csc ^{2} x-\cot x\right)+C,
$$

where C is a constant of integration. Multiplication by $\sin ^{2} x$ gives the general solution

$$
y(x)=C \sin ^{2} x+\frac{1}{2}(x-\sin x \cos x) .
$$

(b) Using the Bernoulli method, we seek its solution as a product $y=u v$, where u is a solution of the separable equation $u^{\prime}+u=0$, which gives $u(x)=e^{-x}$. For $v(x)$, we also have a separable equation

$$
u v^{\prime}=\frac{1}{1+e^{-x}} \quad \Longrightarrow \quad v=\int \frac{e^{x}}{1+e^{-x}} \mathrm{~d} x=e^{x}-\ln \left(1+e^{x}\right)+C
$$

Therefore, the general solution becomes

$$
y(x)=C e^{-x}+e^{-x}\left(e^{x}-\ln \left(1+e^{x}\right)\right)=C e^{-x}+1-e^{-x} \ln \left(1+e^{x}\right) .
$$

(c) Using the Bernoulli method, we seek its solution as a product $y=u v$, where u is a solution of the separable equation $u^{\prime}+u \sin x=0$, which gives $u(x)=e^{\cos x}$. For $v(x)$ we also have a separable equation

$$
u v^{\prime}=2 x \sin x \quad \Longrightarrow \quad v=\int 2 x \sin x e^{\cos x} \mathrm{~d} x+C
$$

Then the general solution becomes

$$
y(x)=C e^{-\cos x}+e^{-\cos x} \int 2 x \sin x e^{\cos x} \mathrm{~d} x
$$

(d) Solving an equation for an integrating factor $\mu^{\prime}+\mu \ln x=0$, we get

$$
\ln \mu(x)=x(1-\ln x) \quad \Longrightarrow \quad \mu(x)=e^{x-x \ln x}=e^{x} e^{-x \ln x}
$$

Multiplication by $\mu(x)$ reduces the given equation to an exact equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}[y(x) \mu(x)]=x^{3} \mu(x) .
$$

Integration yields the general solution:

$$
y(x)=\frac{1}{\mu(x)}\left[\int x^{3} \mu(x) \mathrm{d} x+C\right]=e^{-x} e^{x \ln x}\left[\int x^{3} e^{x} e^{-x \ln x} \mathrm{~d} x+C\right] .
$$

4.4 (20 pts) Find the particular solution to the given initial value problem.
(a) $x y^{\prime}+(x+2) y=2 \sin x, \quad y(\pi)=-1$;
(b) $x^{2} y^{\prime}-4 x y=x^{4}, \quad y(1)=2$;
(c) $y^{\prime}+3 y=f(x)=\left\{\begin{array}{ll}9 x, & \text { if } 0 \leq x<1, \\ 9, & \text { if } 1 \leq x<\infty ;\end{array}, \quad y(0)=0\right.$;
(d) $x^{2} y^{\prime}+2 x y=\cos x, \quad y(\pi)=0$.

Solution: (a) Using the Bernoulli method, we seek its solution as a product $y=u v$, where u is a solution of the separable equation $x u^{\prime}+u(x+2)=0$, which gives $u(x)=x^{-2} e^{-x}$. For $v(x)$ we also have a separable equation

$$
x u v^{\prime}=2 \sin x \quad \Longrightarrow \quad v^{\prime}=x e^{x} 2 \sin x
$$

Integration yields

$$
v(x)=e^{x}[(1-x) \cos x+x \sin x]+C .
$$

Multiplying by $u(x)=x^{-2} e^{-x}$, we get the general solution:

$$
y(x)=C x^{-2} e^{-x}+x^{-2}(1-x) \cos x+x^{-1} \sin x .
$$

Setting $x=\pi$ and equating the result to -1 , we obtain

$$
C=e^{\pi}\left(1-\pi-\pi^{2}\right)
$$

(b) Using the Bernoulli method, we seek its solution as a product $y=u v$, where u is a solution of the separable equation

$$
\frac{\mathrm{d} u}{u}=\frac{4 x}{x^{2}} \mathrm{~d} x \quad \Longrightarrow \quad u=x^{4}
$$

For $v(x)$ we also have a separable equation

$$
x^{2} u v^{\prime}=x^{4} \quad \Longrightarrow \quad v^{\prime}=1 / x^{2} \quad \Longrightarrow \quad v=C-x^{-1}
$$

This gives us the general solution:

$$
y=u(x) v(x)=C x^{4}-x^{3} .
$$

From the initial condition, we get $C=3$.
(c) First, we solve the initial value problem in the interval $0 \leq x<1$:

$$
y^{\prime}+9 y=9 x, \quad y(0)=0 .
$$

Multiplying both sides by an integrating factor $\mu(x)=e^{3 x}$, we get an exact equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[e^{3 x} y(x)\right]=9 x e^{3 x} \quad \Longrightarrow \quad e^{3 x} y(x)=e^{3 x}(3 x-1)+C \text {. }
$$

To satisfy the initial condition, we set C to be 1 , so we have

$$
y(x)=3 x-1+e^{-3 x} \quad \text { for } 0 \leq x \leq 1 .
$$

Setting $x=1$, we get $y(1)=2-e^{-3}$; therefore, we have to solve the following initial value problem for $1<x$:

$$
y^{\prime}+3 y=9, \quad y(1)=2-e^{-3} .
$$

Its solution becomes

$$
y(x)= \begin{cases}e^{-3 x}-1+3 x, & \text { for } 0<x \leq 1 \\ e^{-3 x}\left(1-e^{3}\right)+3, & \text { for } 1 \leq x<\infty\end{cases}
$$

(d) We solve the given differential equation using Bernoulli method: $y=u v$, where u is a solution of the homogeneous equation

$$
x^{2} u^{\prime}+2 x u=0 \quad \Longrightarrow \quad u(x)=x^{-2} .
$$

Then for v we get the following separable equation:

$$
x^{2} u v^{\prime}=\cos x \quad \Longrightarrow \quad v^{\prime}=\cos x \quad \Longrightarrow \quad v=\sin x+C \text {, }
$$

where C is an arbitrary constant. Multiplying $v(x)$ by $u=x^{-2}$, we get the general solution:

$$
y=x^{-2} \sin x+C x^{-2} .
$$

From the initial condition $y(\pi)=0$, we obtain $C=0$. Hence,

$$
y=x^{-2} \sin x
$$

4.5 (20 pts) Solve the following Bernoulli equations.
(a) $x y^{\prime}-y=-3 x^{4} y^{3}$;
(b) $x y^{\prime}=(x+1) y-2 y^{3}$;
(c) $3 y^{\prime}+2 y^{4} x e^{-3 x}=y$;
(d) $y^{\prime}+2 y \csc (2 x)=y^{2}$.

Solution: (a) Using the Bernoulli method, we seek its solution as a product $y=u v$, where u is a solution of the separable equation $x u^{\prime}-u=0$, which gives $u=x$. Then for $v(x)$ we have a separable equation:

$$
x u v^{\prime}=-3 x^{4} u^{3} v^{3} \quad \Longrightarrow \quad-\frac{\mathrm{d} v}{v^{3}}=3 x^{5} \mathrm{~d} x .
$$

Integration yields

$$
\frac{1}{2 v^{2}}=3 \frac{x^{6}}{6}+C \quad \Longrightarrow \quad v(x)=\left(x^{6}+C\right)^{-1 / 2}
$$

Multiplying by $u(x)$, we get the general solution:

$$
y(x)=x\left(x^{6}+C\right)^{-1 / 2}
$$

(b) We use the Bernoulli method; so we seek the solution as the product of two functions $y(x)=u(x) v(x)$, where $u(x)$ is a solution of the "linear truncated" part:

$$
x u^{\prime}=(x+1) u \quad \Longrightarrow \quad \frac{\mathrm{~d} u}{u}=\frac{x+1}{x} \mathrm{~d} x .
$$

Integration yields $u=x e^{x}$. Then for $v(x)$ we have a separable equation:

$$
x u v^{\prime}=-2 u^{3} v^{3} \quad \Longrightarrow \quad-\frac{\mathrm{d} v}{v^{3}}=2 x e^{2 x} \mathrm{~d} x
$$

Integration yields

$$
\frac{1}{v^{2}}=e^{2 x}(2 x-1)+C
$$

Therefore, the general solution becomes

$$
y(x)=u(x) v(x)=x e^{x}\left[e^{2 x}(2 x-1)+C\right]^{-1 / 2}
$$

(c) We use the Bernoulli method; so we seek the solution as the product of two functions $y(x)=u(x) v(x)$, where $u(x)$ is a solution of the "linear truncated" part:

$$
u^{\prime}=u \quad \Longrightarrow \quad u=e^{x}
$$

Then for $v(x)$, we have a separable equation:

$$
3 u v^{\prime}+2 u^{4} v^{4} x e^{-3 x}=0 \quad \Longrightarrow \quad-3 \frac{\mathrm{~d} v}{v^{4}}=2 x \mathrm{~d} x
$$

Integration yields

$$
\frac{1}{v^{3}}=x^{2}+C \quad \Longrightarrow \quad v(x)=\left(x^{2}+C\right)^{-1 / 3}
$$

We obtain the general solution upon multiplication by $u(x)$:

$$
y(x)=u(x) v(x)=e^{x}\left(x^{2}+C\right)^{-1 / 3}
$$

(d) We use the Bernoulli method; so we seek the solution as the product of two functions $y(x)=u(x) v(x)$, where $u(x)$ is a solution of the "linear truncated" part:

$$
u^{\prime}+2 u \csc x=0 \quad \Longrightarrow \quad \frac{\mathrm{~d} u}{u}=-2 \csc 2 x \mathrm{~d} x
$$

Integration yields

$$
\ln u=-\ln \frac{\sin x}{\cos x}=\ln \frac{\cos x}{\sin x} \quad \Longrightarrow \quad u(x)=\frac{\cos x}{\sin x}=\cot x .
$$

Substituting the product $y=u v$ into the given equation, we get a separable equation for v :

$$
u v^{\prime}=u^{2} v^{2} \quad \Longrightarrow \quad \frac{\mathrm{~d} v}{v^{2}}=u \mathrm{~d} x \quad \Longrightarrow \quad-\frac{1}{v}=\ln |\sin x|-C
$$

Therefore the general solution becomes

$$
y(x)=\frac{\cot x}{C-\ln |\sin x|} .
$$

4.6 (20 pts) Solve the initial value problems for the Bernoulli equation.
(a) $x y^{\prime}+y=x^{4} y^{3}, \quad y(1)=1 / 4$;
(b) $x y^{\prime}+3 y=x^{3} y^{2}, \quad y(1)=1 / 2$.

Solution: (a) First, we find the general solution using the Bernoulli method: $y=u v$, where u is a solution of the "linear truncated" part:

$$
x u^{\prime}+u=0 \quad \Longrightarrow \quad u=x^{-1} \text {. }
$$

Then for $v(x)$ we get a separable equation:

$$
x u v^{\prime}=x^{4} u^{3} v^{3} \quad \Longrightarrow \quad \frac{\mathrm{~d} v}{v^{3}}=x \mathrm{~d} x \quad \Longrightarrow \quad-\frac{1}{2 v^{2}}=\frac{x^{2}}{2}+C .
$$

Hence, the general solution becomes

$$
y(x)=u(x) v(x)=x^{-1}\left(C-x^{2}\right)^{-1 / 2} \quad \Longrightarrow \quad y(1)=(C-1)^{-1 / 2}=1 / 4
$$

Therefore, $C=3$ and we get

$$
y(x)=x^{-1}\left(3-x^{2}\right)^{-1 / 2}
$$

(b) First, we find the general solution using the Bernoulli method: $y=u v$, where u is a solution of the "linear truncated" part:

$$
x u^{\prime}+3 u=0 \quad \Longrightarrow \quad \frac{\mathrm{~d} u}{u}=-\frac{3}{x} \mathrm{~d} x
$$

Integrating, we obtain $u(x)=x^{-3}$. Then for $v(x)$, we get a separable equation:

$$
x u v^{\prime}=x^{3} u^{2} v^{2} \quad \Longrightarrow \quad v^{\prime}=x^{-1} v^{2}
$$

The general solution becomes

$$
y=x^{-3}(C-\ln |x|)^{-1} \quad \Longrightarrow \quad C=2 \text {. }
$$

