Brown University Solutions to Homework, Set 3

Fall, 2017 Due October 4

- **3.1** (12 pts) Given a potential function $\psi(x,y)$, find the exact differential equation $d\psi(x,y)=0$.
 - [1pt] differentiate with respect to x and y.
 - [1pt] show identity of partial derivatives and conclude that ϕ is a potential function.
 - [1pt] final solution.

(a)
$$\psi(x,y) = 3x^2 + 5y^2$$
; (b) $\psi(x,y) = \exp(3x^2y^3)$;
(c) $\psi(x,y) = \ln(x^3y^4)$; (d) $\psi(x,y) = (2x + 3y - 5)^2$

(c)
$$\psi(x,y) = \ln(x^3y^4);$$
 (d) $\psi(x,y) = (2x+3y-5)^2.$

Solution: In all problems, we use the definition of the differential:

$$d\psi(x,y) = \frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy.$$

- (a) 6x dx + 10y dy = 0;
- **(b)** $6x y^3 e^{3x^2y^3} dx + 9x^2y^2 e^{3x^2y^3} dy = 0$; (can multiple $e^{3x^2y^3}$ be dropped?)
- (c) $\frac{3}{x} dx + \frac{4}{y} dx = 0$; (can multiple 2 be dropped?)
- (d) $2 \cdot (2x + 3y 5) [2 dx + 3 dy] = 0$. (can multiple (2x + 3y 5) be dropped?)
- 3.2 (20 pts) Show that the following differential equations are exact and solve them

(a)
$$3x^2y^2y' + 2y^3x = 0;$$

$$3x^2y^2y' + 2y^3x = 0;$$
 (b) $y(e^{xy} + y) dx + x(e^{xy} + 2y) dy = 0;$ $(3x^2y + 2xe^y) dx + (x^2e^y + x^3) dy = 0;$ (d) $(2xy^2 - 3) dx + (2x^2y + y^2) dy = 0.$

(c)
$$(3x^2y + 2xe^y) dx + (x^2e^y + x^3) dy = 0;$$

Solution: In all problems, we use the following condition for exactness:

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
 or in short $M_y = N_x$.

Then there exists a potential function $\psi(x,y)$ such that

$$\frac{\partial \psi}{\partial x} = M(x, y)$$
 and $\frac{\partial \psi}{\partial y} = N(x, y)$. (1)

- [1pt] differentiate with respect to x and y
- [1pt] show identity of partial derivatives
- [2pts] Integrate M with respect to x (or integrate N with respect to y), 1 point is deducted if the integral does not contain arbitrary function of y.
- [1pt] Final result.

(a) With $N = 3x^2y^2$ and $M = 2xy^3$, we have $M_y = 6xy^2$ and $N_x = 6xy^2$. So the given differential equation is exact. Then equations (1) becomes:

$$\psi_x = 2xy^3$$
 and $\psi_y = 3x^2y^2$.

Integrating the former $(\psi_x = M)$, we get $\psi(x, y) = x^2y^3 + h(y)$, where h(y) is an arbitrary function in variable y. Substituting this form of $\psi(x, y)$ into the latter $(\psi_y = N)$, we obtain

$$\psi_y = 3x^2y^2 + h'(y) = N(x, y) = 3x^2y^2 \implies h'(y) = 0.$$

Therefore, h(y) is a constant that we drop and get the general solution to be

$$\psi(x,y) \equiv x^2 y^3 = C.$$

(b) With $M = y e^{xy} + y^2$ and $N = x e^{xy} + 2xy$, we have $M_y = e^{xy} + xy e^{xy} + 2y$ and $N_x = e^{xy} + xy e^{xy} + 2y$. Therefore, the given differential equation is exact, and we have two equations for a potential function:

$$\psi_x = y e^{xy} + y^2 \qquad \text{and} \qquad \psi_y = x e^{xy} + 2xy.$$

Integration of the latter gives $\psi(x,y) = e^{xy} + xy^2 + h(y)$. Then we use the former to obtain

$$\psi_y = x e^{xy} + 2x y + h'(y) = N = x e^{xy} + 2xy \implies h' = 0.$$

So we get the general solution:

$$\psi(x,y) = e^{xy} + xy^2 = C.$$

(c) With $M = 3x^2y + 2xe^y$ and $N = x^2e^y + x^3$, we have $M_y = 3x^2 + 2xe^y = N_x$. Then equations (1) become

$$\psi_x = M = 3x^2y + 2x e^y$$
 and $\psi_y = N = x^2 e^y + x^3$.

Integrating the latter, we get $\psi(x,y) = x^2 e^y + x^3 y + k(x)$, where k(x) is arbitrary function of x. Substitution into the equation $\psi_x = M$ yields $3x^2y + 2x e^y = 2x e^y + 3x^2y + k'(x)$. Hence k'(x) = 0 and upon its integration, we get the general solution:

$$\psi(x,y) \equiv x^2 e^y + x^3 y = C.$$

(d) With $M = 2xy^2 - 3$ and $N = 2x^2y + y^2$, we have $M_y = 4xy = N_x$, so the given differential equation is exact. Then there exists a potential function $\psi(x, y)$, for which we know its partial derivatives according to (1):

$$\psi_x = M = 2xy^2 - 3$$
 and $\psi_y = N = 2x^2y + y^2$.

Integrating the former, we get

$$\psi(x,y) = x^2y^2 - 3x + h(y)$$
 \implies $\psi_y = 2x^2y + h'(y) = 2x^2y + y^2.$

Since $h'(y) = y^2$, we integrate it and obtain the general solution:

$$\psi(x,y) \equiv x^{2}y^{2} - 3x + \frac{y^{3}}{3} = C.$$

- 3.3 (24 pts) Are the following equations exact? Solve the initial value problems.
 - (a) $\cos \pi x \cos 2\pi y \, dx = 2 \sin \pi x \sin 2\pi y \, dy$, y(3/2) = 1/3;
 - **(b)** $2xy \, dy + (x^2 + y^2) \, dx = 0, \ y(0) = 4;$
 - (c) $(3x^2y 5) dx + (x^3 + 6y^2) dy = 0$, y(1) = 2;
 - (d) $(\cos \theta 2r \cos^2 \theta) dr + r \sin \theta (2r \cos \theta 1) d\theta = 0$, $r(\pi/4) = 1$.

6 points for each problem. The same distribution as in Problem 2. Plus 1 point for substituting initial condition to compute the constant C.

Solution: In all problems, we first check for exactness and then find the potential function using the line integral:

$$\psi(x,y) = \int_{(x_0,y_0)}^{(x,y)} M(x,y) \, \mathrm{d}x + N(x,y) \, \mathrm{d}y, \tag{2}$$

where integration is conducted along some path connecting the given point (x_0, y_0) with an arbitrary point (x, y) taken along straight lines along coordinate axis.

(a) With $M = \sin \pi x \cos 3\pi y$ and $N = 3\cos \pi x \sin 3\pi y$, we have $M_y = -3\pi \sin \pi x \sin 3\pi y$ and $N_x = -3\pi \sin \pi x \sin 3\pi y$; therefore $M_y = N_x$ and the given differential equation is exact. To find a potential function, we use formula (2), where $x_0 = 3/2$ and $y_0 = 1/3$ and the path of integration is taken first horizontally, and then vertically:

$$\psi(x,y) = \int_{3/2}^{x} M(x,1/3) \, dx + \int_{1/3}^{y} N(x,y) \, dy$$

$$= \int_{3/2}^{x} \sin \pi x \cos \pi \, dx + \int_{1/3}^{y} 3 \cos \pi x \sin 3\pi y \, dy$$

$$= -\int_{3/2}^{x} \sin \pi x \, dx - 3 \cos \pi x \int_{1/3}^{y} \sin 3\pi y \, dy$$

$$= \left[\frac{1}{\pi} \cos \pi x \right]_{x=3/2}^{x} - \cos \pi x \left[\frac{1}{\pi} \cos 3\pi y \right]_{y=1/3}^{y}$$

$$= \frac{1}{\pi} \cos \pi x - \frac{2}{\pi} \cos \pi x \cos^{2} \frac{3\pi y}{2}.$$

Equating $\pi \psi(x,y)$ to zero, we obtain the solution (in implicit form):

$$\cos \pi x \left(1 - 2 \cos^2 \frac{3\pi y}{2} \right) = 0.$$

(b) With M = 6xy and $N = 3x^2 + 4y^3$, we get $M_y = 6x = N_x$, so the given differential equation is exact and equations (1) must hold for some potential function $\psi(x, y)$. To find its explicit expression, we use line integral (2) with $x_0 = 3$ and $y_0 = 4$:

$$\psi(x,y) = \int_{4}^{y} (3x^{2} + 4y^{3}) dy = 3x^{2} (y - 4) + y^{4} - 4^{4}.$$

Upon simplification and equating $\psi(x,y)$ to zero, we obtain the required solution in implicit form:

$$y^4 + 3x^2y - 12x^2 - 256 = 0.$$

(c) With $M = 3x^2y - 5$ and $N = x^3 + 6y^2$, we get $M_y = 3x^2$ and $N_x = 3x^2$; therefore, the given differential equation is exact. Using line integral with $x_0 = 1$ and $y_0 = 2$, we obtain the potential function:

$$\psi(x,y) = \int_{1}^{x} (6x^{2} - 5) dx + \int_{2}^{y} (x^{3} + 6y^{2}) dy = 2x^{3} - 2 - 5x + 5 + x^{3}(y - 2) + 2y^{3} - 2^{4}.$$

Upon simplification and equating $\psi(x,y)$ to zero, we obtain the required solution in implicit form:

$$x^3y - 5x + 2y^3 = 13.$$

With $M(r,\theta) = \cos\theta - 2r\cos^2\theta$ and $N(r,\theta) = r\sin\theta(2r\cos\theta - 1)$, we have $M_{\theta} =$ $-\sin\theta + 4r\cos\theta\sin\theta$ and $N_r = 4r\sin\theta\cos\theta - \sin\theta$. Therefore, the given differential equation is exact and we use formula (2) to obtain the potential function:

$$\psi(r,\theta) = \int_{1}^{r} M(r,\pi/4) dr + \int_{\pi/4}^{\theta} N(r,\theta) d\theta$$
$$= \int_{1}^{r} \left(\frac{1}{\sqrt{2}} - r\right) dr + \int_{\pi/4}^{\theta} r \sin\theta (2r\cos\theta - 1) d\theta$$
$$= \frac{r - 1}{\sqrt{2}} - \frac{r^{2}}{2} + \frac{1}{2} - \frac{r}{\sqrt{2}} + r\cos\theta - \frac{r^{2}}{2}\cos 2\theta.$$

Using trigonometric identity $1 + \cos 2\theta = 2 \cos^2 \theta$, we simplify the potential function and equate it to zero:

$$\frac{1}{2} - \frac{1}{\sqrt{2}} + r \cos \theta - r^2 \cos^2 \theta = 0.$$

3.4 (24 pts) Show that the given equations are not exact, but become exact when multiplied by the corresponding integrating factor. Find an integrating factor as a function of x only and determine a potential function for the given differential equations.

6 points for each problem. The same distribution as in Problem 3.5 and plus 1 point for showing that equations are not exact.

(a)
$$y' + y(1+2x) = 0;$$
 (b)

(b)
$$x^3y' = x^2y + 3x$$

(a)
$$y' + y(1+2x) = 0;$$
 (b) $x^3 y' = x^2 y + 3x;$
(c) $(yx^3e^{xy} - 2y^3) dx + (x^4e^{xy} + 3xy^2) dy = 0;$ (d) $4 dx - e^{y-2x} dy = 0.$

Solution: In all problems, subscript M_x means the partial derivative $M_y = \frac{\partial M}{\partial u}$ and corre-

spondingly $N_x = \frac{\partial N}{\partial x}$. Integrating factor as a function of y can be obtained explicitly:

$$\mu(x) = \exp\left\{ \int \frac{M_y - N_x}{N} \, \mathrm{d}x \right\}. \tag{3}$$

(a) With M = y + xy and N = 1, we have $M_y = 1 + 2x$ and $N_x = 0$, so the given differential equation is not exact. However, the ratio $\frac{M_y - N_x}{N} = 1 + 2x$ is a function of x along. From equation (3), we find an integrating factor:

$$\mu(x) = \exp\left\{ \int (1+2x) \, \mathrm{d}x \right\} = e^{x+x^2}.$$

Upon multiplication by $\mu(x)$, we get an exact equation with $M=(y+2xy)\,e^{x+x^2}$ and $N=e^{x+x^2}$. Integrating $\psi_y=N$, we obtain

$$\psi(x,y) = y e^{x+x^2} + k(x),$$

where k(x) is determined from the equation $\psi_x = M$, which becomes

$$\psi_x = y(1+2x)e^{x+x^2} + k'(x) = M = (y+2xy)e^{x+x^2}.$$

Therefore, k'(x) = 0 and k(x) is a constant, which we drop. The given problem has the general solution:

$$y e^{x+x^2} = C.$$

(b) With $M = x^2y + 3x$ and $N = -x^3$, we have $M_y = x^2$, $N_x = -3x^2$, so our differential equation is not exact. However, the ratios

$$\frac{M_y - N_x}{N} = \frac{x^2 + 3x^2}{-x^3} = -\frac{4}{x} \quad \text{and} \quad \frac{M_y - N_x}{M} = \frac{x^2 + 3x^2}{x^2y + 3x}$$

show that there exists an integrating factor as a function of x:

$$\mu(x) = x^{-4}.$$

Upon multiplication by $\mu(x)$, we get an exact equation:

$$(x^{-2}y + 3x^{-3}) dx - x^{-1}dy = 0.$$

Indeed,

$$\frac{\partial}{\partial y} (x^{-2}y + 3x^{-3}) x^{-2}$$
 and $-\frac{\partial}{\partial x} x^{-1} = x^{-2}$.

Therefore, there exists a potential function $\psi(x,y)$ such that $\psi_x = (x^{-2}y + 3x^{-3})$ and $\psi_y = -x^{-1}$. Integration of the latter yields

$$\psi(x,y) = -y x^{-1} + k(x)$$
 \Longrightarrow $\psi_x = x^{-2}y + k'(x) = (x^{-2}y + 3x^{-3}).$

Therefore, $k'(x) = 3x^{-3}$. This allows us to determine the general solution:

$$x^{-1}y + \frac{3}{2}x^{-2} = C$$
 or $2xy + 3 = Cx^2$.

(c) With $M = yx^3e^{xy} - 2y^3$ and $N = x^4e^{xy} + 3xy^2$, we have $M_y = x^3e^{xy} + yx^4e^{xy} - 6y^2$ and $N_x = (4x^3 + x^4y)e^{xy} + 3y^2$. The ratio

$$\frac{M_y - N_x}{N} = -3\frac{x^3 e^{xy} + 3y^2}{x(x^3 e^{xy} + 3y^2)} = -\frac{3}{x}$$

tells us that there exists an integrating factor as a function of x, namely, $\mu(x) = x^{-3}$. Multiplication by $\mu(x)$ reduces the given equation to an exact equation $M_1 dx + N_1 dy = 0$, where

$$M_1(x,y) = y e^{xy} - 2x^{-3}y^3$$
 and $N_1(x,y) = x e^{xy} + 3x^{-2}y^2$.

Integrating the latter with respect to y, we get

$$\psi(x,y) = \int N_1(x,y) \, \mathrm{d}y = e^{xy} + x^{-2}y^3 + k(x) \implies \psi_x = y \, e^{xy} - 2x^{-3}y^3 + k'(x).$$

Since $k'(x) \equiv 0$, we obtain the potential function and the general solution:

$$e^{xy} + x^{-2}y^3 = C.$$

(d) With M=4 and $N=-e^{y-2x}$, we have $M_y=0$ and $N_x=2e^{y-2x}$. Since the ratio

$$\frac{M_y - N_x}{N} = \frac{2e^{y-2x}}{e^{y-2x}} = 2$$

is a function on x (as well as on any other variable because it is a constant), there exists an integrating factor as a function of x: $\mu(x) = e^{2x}$. Upon multiplication by $\mu(x)$, we obtain an exact equation

$$4e^{2x} dx - e^y dy = 0.$$

Actually, it is a separable equation, so simple integration yields the general solution:

$$2e^{2x} - e^y = C.$$

- **3.5** (20 pts) Find an integrating factor as a function of y only and determine the general solution for the given differential equations (a and b are constants).
 - [2pts] Compute the integrating factors
 - \bullet [2pts] Integral
 - [1pt] Final solution

(a)
$$(y+3) dx - (x-y) dy = 0$$
; (b) $(\frac{y}{x}-1) dx + (2y^2+1+\frac{x}{y}) dy = 0$;

(c)
$$(2xy^2 + 3y) dx - 3x dy = 0$$
; (d) $y(x+y+1) dx + x(x+3y+2) dy = 0$.

Solution: In all problems, subscript M_x means the partial derivative $M_y = \frac{\partial M}{\partial y}$ and correspondingly $N_x = \frac{\partial N}{\partial x}$. Integrating factor as a function of y can be obtained explicitly:

$$\mu(y) = \exp\left\{-\int \frac{M_y - N_x}{M} \,\mathrm{d}y\right\}. \tag{4}$$

(a) Let M(x,y) = y + 1 and N(x,y) = y - x. Since $M_y = 1$ and $N_x = -1$, the given equation is not exact. Since the ratio $\frac{M_y - N_x}{N} = \frac{2}{y + 3}$

is a function on y only, there exists an integrating factor

$$\mu(y) = \exp\left\{-\int \frac{2}{y+3} \,dy\right\} = (y+3)^{-2}.$$

Multiplying both sides of the given differential equation by $\mu(y)$, we get an exact equation:

$$\frac{\mathrm{d}x}{y+3} + \frac{y-x}{(y+3)^2} \,\mathrm{d}y = 0, \quad \text{with} \quad M = (y+3)^{-1}, \quad N = \frac{y-x}{(y+3)^2}.$$

Integrating $\psi_x = (y+3)^{-1}$ with respect to x, we obtain

$$\psi(x,y) = \frac{x}{y+3} + h(y)$$
 \Longrightarrow $\psi_y = -\frac{x}{(y+3)^2} + h'(y) = N = \frac{y-x}{(y+3)^2}.$

Therefore, $h'(y) = \frac{y}{(y+3)^2}$. Integration yields $h(y) = 3(y+3)^{-1} + \ln(3+y)$. Hence, the general solution becomes

$$\frac{x+3}{y+3} + \ln|3+y| = C.$$

(b) With M = y/x - 1 and $N = 2y^2 + 1 + x/y$, we have $M_y = 1/x$ and $N_x = 1/y$. Therefore the ratio

$$\frac{M_y - N_x}{M} = \frac{1/x - 1/y}{y/x - 1} = \frac{1}{y}$$

is a function of y only. So there exists an integrating factor $\mu(y) = y^{-1}$, upon multiplication by it, we get an exact equation:

$$\frac{y-x}{xy} dx + \left(2y + \frac{1}{y} + \frac{x}{y^2}\right) dy = 0.$$

Therefore there exists a potential function $\psi(x,y)$ such that

$$\psi_x = \frac{y-x}{xy}$$
 and $\psi_y = 2y + \frac{1}{y} + \frac{x}{y^2}$.

Integrating the latter with respect to y, we obtain

$$\psi(x,y) = y^2 + \ln|y| - \frac{x}{y} + k(x)$$
 \Longrightarrow $k'(x) = \frac{1}{x}$.

Hence, the general solution becomes

$$\psi(x,y) \equiv y^2 + \ln|y| + \ln|x| - \frac{x}{y} = C.$$

(c) With $M = 2xy^2 + 3y$ and N = -3x, we have $M_y = 4xy + 3$ and $N_x = -3$. Since the ratio

$$\frac{M_y - N_x}{M} = \frac{4xy + 6}{2xy^2 + 3y} = \frac{2(2xy + 3)}{y(2xy + 3)} = \frac{2}{y}$$

is a function of y only, we find an integrating factor $\mu(y) = y^{-2}$. Upon its multiplication, we get an exact equation

$$\left(2x + \frac{3}{y}\right) dx - \frac{3x}{y^2} dy = 0.$$

Therefore, there exists a potential function $\psi(x,y)$ such that its partial derivatives are multiples of differentials:

$$\psi_x = 2x + \frac{3}{y}$$
 and $\psi_x = -\frac{3x}{y^2}$.

Integrating the former, we obtain

$$\psi(x,y) = x^2 + \frac{3x}{y} + h(y) \qquad \Longrightarrow \qquad h'(y) = 0.$$

So the general solution becomes

$$x^2 + \frac{3x}{y} = C.$$

(d) With M = y(x+y+2) and N = x(x+3y+4), we have $M_y = x+2y+2$ and $N_x = 2x+3y+4$. Since the ratio

$$\frac{M_y - N_x}{M} = -\frac{2 + x + y}{y(x + y + 2)} = -\frac{1}{y}$$

is a function of y only, we find an integrating factor $\mu(y) = y$. Upon multiplication by $\mu(y)$, we get an exact equation

$$y^{2}(x + y + 2) dx + (x^{2}y + 3xy^{2} + 4xy) dy = 0.$$

For a potential function $\psi(x,y)$, we have

$$\psi_x = y^2 (x + y + 2)$$
 and $\psi_y = x^2 y + 3xy^2 + 4xy$.

Integrating the latter with respect to y, we obtain

$$\psi(x,y) = \frac{x^2y^2}{2} + xy^3 + 2xy^2 + k(x) \implies k'(x) = 0.$$

Therefore, the general solution becomes

$$\frac{x^2y^2}{2} + xy^3 + 2xy^2 = C.$$