
APMA 0330 — Applied Mathematics - I
Brown University Fall, 2017
Solutions to Homework, Set 3 Due October 4

3.1 ( 12 pts ) Given a potential function ψ(x, y), find the exact differential equation dψ(x, y) = 0.

• [1pt] differentiate with respect to x and y.

• [1pt] show identity of partial derivatives and conclude that φ is a potential function.

• [1pt] final solution.

(a) ψ(x, y) = 3x2 + 5 y2; (b) ψ(x, y) = exp(3x2y3);
(c) ψ(x, y) = ln(x3y4); (d) ψ(x, y) = (2x+ 3y − 5)2.

Solution: In all problems, we use the definition of the differential:

dψ(x, y) =
∂ψ

∂x
dx+

∂ψ

∂y
dy.

(a) 6x dx+ 10 y dy = 0;

(b) 6x y3e3x
2y3 dx+ 9x2y2 e3x

2y3 dy = 0; (can multiple e3x
2y3 be dropped ?)

(c)
3

x
dx+

4

y
dx = 0; (can multiple 2 be dropped ?)

(d) 2 · (2x+ 3y − 5) [2 dx+ 3dy] = 0. (can multiple (2x+ 3y − 5) be dropped ?)

3.2 ( 20 pts ) Show that the following differential equations are exact and solve them

(a) 3x2y2 y′ + 2y3x = 0; (b) y (exy + y) dx+ x (exy + 2y) dy = 0;
(c) (3x2y + 2x ey) dx+ (x2ey + x3) dy = 0; (d) (2xy2 − 3) dx+ (2x2y + y2) dy = 0.

Solution: In all problems, we use the following condition for exactness:

∂M

∂y
=
∂N

∂x
or in short My = Nx.

Then there exists a potential function ψ(x, y) such that

∂ψ

∂x
=M(x, y) and

∂ψ

∂y
= N(x, y). (1)

• [1pt] differentiate with respect to x and y

• [1pt] show identity of partial derivatives

• [2pts] IntegrateM with respect to x (or integrate N with respect to y), 1 point is deducted
if the integral does not contain arbitrary function of y.

• [1pt] Final result.
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(a) With N = 3x2y2 and M = 2xy3, we have My = 6xy2 and Nx = 6xy2. So the given
differential equation is exact. Then equations (1) becomes:

ψx = 2xy3 and ψy = 3x2y2.

Integrating the former (ψx = M), we get ψ(x, y) = x2y3 + h(y), where h(y) is an arbitrary
function in variable y. Substituting this form of ψ(x, y) into the latter (ψy = N), we obtain

ψy = 3x2y2 + h′(y) = N(x, y) = 3x2y2 =⇒ h′(y) = 0.

Therefore, h(y) is a constant that we drop and get the general solution to be

ψ(x, y) ≡ x2y3 = C.

(b) With M = y exy + y2 and N = x exy + 2xy, we have My = exy + xy exy + 2y and
Nx = exy + xy exy + 2y. Therefore, the given differential equation is exact, and we have two
equations for a potential function:

ψx = y exy + y2 and ψy = x exy + 2xy.

Integration of the latter gives ψ(x, y) = exy + x y2 + h(y). Then we use the former to obtain

ψy = x exy + 2x y + h′(y) = N = x exy + 2xy =⇒ h′ = 0.

So we get the general solution:

ψ(x, y) = exy + x y2 = C.

(c) With M = 3x2y + 2x ey and N = x2ey + x3, we have My = 3x2 + 2x ey = Nx. Then
equations (1) become

ψx =M = 3x2y + 2x ey and ψy = N = x2 ey + x3.

Integrating the latter, we get ψ(x, y) = x2 ey + x3y + k(x), where k(x) is arbitrary function of
x. Substitution into the equation ψx = M yields 3x2y + 2x ey = 2x ey + 3x2y + k′(x). Hence
k′(x) = 0 and upon its integration, we get the general solution:

ψ(x, y) ≡ x2 ey + x3y = C.

(d) With M = 2xy2−3 and N = 2x2y+ y2, we have My = 4xy = Nx, so the given differential
equation is exact. Then there exists a potential function ψ(x, y), for which we know its partial
derivatives according to (1):

ψx =M = 2xy2 − 3 and ψy = N = 2x2y + y2.

Integrating the former, we get

ψ(x, y) = x2y2 − 3x+ h(y) =⇒ ψy = 2x2y + h′(y) = 2x2y + y2.

Since h′(y) = y2, we integrate it and obtain the general solution:

ψ(x, y) ≡ x2y2 − 3x+
y3

3
= C.
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3.3 ( 24 pts ) Are the following equations exact? Solve the initial value problems.

(a) cos πx cos 2πy dx = 2 sin πx sin 2πy dy, y(3/2) = 1/3;

(b) 2xy dy + (x2 + y2) dx = 0, y(0) = 4;

(c) (3x2y − 5) dx+ (x3 + 6y2) dy = 0, y(1) = 2;

(d) (cos θ − 2r cos2 θ) dr + r sin θ(2r cos θ − 1) dθ = 0, r(π/4) = 1.

6 points for each problem. The same distribution as in Problem 2. Plus 1 point for substituting
initial condition to compute the constant C.

Solution: In all problems, we first check for exactness and then find the potential function
using the line integral:

ψ(x, y) =

∫ (x,y)

(x0,y0)

M(x, y) dx+N(x, y) dy, (2)

where integration is conducted along some path connecting the given point (x0, y0) with an
arbitrary point (x, y) taken along straight lines along coordinate axis.

(a) With M = sin πx cos 3πy and N = 3 cos πx sin 3πy, we have My = −3π sin πx sin 3πy
and Nx = −3π sin πx sin 3πy; therefore My = Nx and the given differential equation is exact.
To find a potential function, we use formula (2), where x0 = 3/2 and y0 = 1/3 and the path of
integration is taken first horizontally, and then vertically:

ψ(x, y) =

∫ x

3/2

M(x, 1/3) dx+

∫ y

1/3

N(x, y) dy

=

∫ x

3/2

sin πx cos π dx+

∫ y

1/3

3 cos πx sin 3πy dy

= −
∫ x

3/2

sin πx dx− 3 cos πx

∫ y

1/3

sin 3πy dy

=

[

1

π
cos πx

]x

x=3/2

− cos πx

[

1

π
cos 3πy

]y

y=1/3

=
1

π
cos πx− 2

π
cos πx cos2

3πy

2
.

Equating π ψ(x, y) to zero, we obtain the solution (in implicit form):

cos πx

(

1− 2 cos2
3πy

2

)

= 0.

(b) With M = 6xy and N = 3x2 + 4y3, we get My = 6x = Nx, so the given differential
equation is exact and equations (1) must hold for some potential function ψ(x, y). To find its
explicit expression, we use line integral (2) with x0 = 3 and y0 = 4:

ψ(x, y) =

∫ y

4

(

3x2 + 4y3
)

dy = 3x2 (y − 4) + y4 − 44.
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Upon simplification and equating ψ(x, y) to zero, we obtain the required solution in implicit
form:

y4 + 3x2y − 12x2 − 256 = 0.

(c) With M = 3x2y − 5 and N = x3 + 6y2, we get My = 3x2 and Nx = 3x2; therefore, the
given differential equation is exact. Using line integral with x0 = 1 and y0 = 2, we obtain the
potential function:

ψ(x, y) =

∫ x

1

(

6x2 − 5
)

dx+

∫ y

2

(

x3 + 6y2
)

dy = 2x3 − 2− 5x+ 5 + x3(y − 2) + 2y3 − 24.

Upon simplification and equating ψ(x, y) to zero, we obtain the required solution in implicit
form:

x3y − 5x+ 2y3 = 13.

(d) With M(r, θ) = cos θ − 2r cos2 θ and N(r, θ) = r sin θ(2r cos θ − 1), we have Mθ =
− sin θ+4r cos θ sin θ and Nr = 4r sin θ cos θ− sin θ. Therefore, the given differential equation
is exact and we use formula (2) to obtain the potential function:

ψ(r, θ) =

∫ r

1

M(r, π/4) dr +

∫ θ

π/4

N(r, θ) dθ

=

∫ r

1

(

1√
2
− r

)

dr +

∫ θ

π/4

r sin θ(2r cos θ − 1) dθ

=
r − 1√

2
− r2

2
+

1

2
− r√

2
+ r cos θ − r2

2
cos 2θ.

Using trigonometric identity 1+cos 2θ = 2 cos2 θ, we simplify the potential function and equate
it to zero:

1

2
− 1√

2
+ r cos θ − r2 cos2 θ = 0.

3.4 ( 24 pts ) Show that the given equations are not exact, but become exact when multiplied by
the corresponding integrating factor. Find an integrating factor as a function of x only and
determine a potential function for the given differential equations.

6 points for each problem. The same distribution as in Problem 3.5 and plus 1 point for showing
that equations are not exact.

(a) y′ + y(1 + 2x) = 0; (b) x3 y′ = x2y + 3x;
(c) (yx3exy − 2y3) dx+ (x4exy + 3xy2) dy = 0; (d) 4 dx− ey−2x dy = 0.

Solution: In all problems, subscript Mx means the partial derivative My =
∂M

∂y
and corre-

spondingly Nx =
∂N

∂x
. Integrating factor as a function of y can be obtained explicitly:

µ(x) = exp

{
∫

My −Nx

N
dx

}

. (3)
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(a) With M = y + xy and N = 1, we have My = 1 + 2x and Nx = 0, so the given differential

equation is not exact. However, the ratio
My −Nx

N
= 1 + 2x is a function of x along. From

equation (3), we find an integrating factor:

µ(x) = exp

{
∫

(1 + 2x) dx

}

= ex+x2

.

Upon multiplication by µ(x), we get an exact equation with M = (y + 2xy) ex+x2

and N =
ex+x2

. Integrating ψy = N , we obtain

ψ(x, y) = y ex+x2

+ k(x),

where k(x) is determined from the equation ψx =M , which becomes

ψx = y (1 + 2x) ex+x2

+ k′(x) =M = (y + 2xy) ex+x2

.

Therefore, k′(x) = 0 and k(x) is a constant, which we drop. The given problem has the general
solution:

y ex+x2

= C.

(b) With M = x2y + 3x and N = −x3, we have My = x2, Nx = −3x2, so our differential
equation is not exact. However, the ratios

My −Nx

N
=
x2 + 3x2

−x3 = −4

x
and

My −Nx

M
=
x2 + 3x2

x2y + 3x

show that there exists an integrating factor as a function of x:

µ(x) = x−4.

Upon multiplication by µ(x), we get an exact equation:

(

x−2y + 3x−3
)

dx− x−1dy = 0.

Indeed,
∂

∂y

(

x−2y + 3x−3
)

x−2 and − ∂

∂x
x−1 = x−2.

Therefore, there exists a potential function ψ(x, y) such that ψx = (x−2y + 3x−3) and ψy =
−x−1. Integration of the latter yields

ψ(x, y) = −y x−1 + k(x) =⇒ ψx = x−2y + k′(x) =
(

x−2y + 3x−3
)

.

Therefore, k′(x) = 3x−3. This allows us to determine the general solution:

x−1y +
3

2
x−2 = C or 2xy + 3 = C x2.
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(c) With M = yx3exy − 2y3 and N = x4exy + 3xy2, we have My = x3exy + yx4exy − 6y2 and
Nx = (4x3 + x4y) exy + 3y2. The ratio

My −Nx

N
= −3

x3exy + 3y2

x (x3exy + 3y2)
= −3

x

tells us that there exists an integrating factor as a function of x, namely, µ(x) = x−3. Multi-
plication by µ(x) reduces the given equation to an exact equation M1 dx+N1 dy = 0, where

M1(x, y) = y exy − 2x−3y3 and N1(x, y) = x exy + 3x−2y2.

Integrating the latter with respect to y, we get

ψ(x, y) =

∫

N1(x, y) dy = exy + x−2y3 + k(x) =⇒ ψx = y exy − 2x−3y3 + k′(x).

Since k′(x) ≡ 0, we obtain the potential function and the general solution:

exy + x−2y3 = C.

(d) With M = 4 and N = −ey−2x, we have My = 0 and Nx = 2 ey−2x. Since the ratio

My −Nx

N
=

2 ey−2x

ey−2x
= 2

is a function on x (as well as on any other variable because it is a constant), there exists an
integrating factor as a function of x: µ(x) = e2x. Upon multiplication by µ(x), we obtain an
exact equation

4 e2x dx− ey dy = 0.

Actually, it is a separable equation, so simple integration yields the general solution:

2 e2x − ey = C.

3.5 ( 20 pts ) Find an integrating factor as a function of y only and determine the general solution
for the given differential equations (a and b are constants).

• [2pts] Compute the integrating factors

• [2pts] Integral

• [1pt] Final solution

(a) (y + 3) dx− (x− y) dy = 0; (b)
(

y
x
− 1

)

dx+
(

2y2 + 1 + x
y

)

dy = 0;

(c) (2xy2 + 3y) dx− 3x dy = 0; (d) y(x+ y + 1) dx+ x(x+ 3y + 2) dy = 0.
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Solution: In all problems, subscript Mx means the partial derivative My =
∂M

∂y
and corre-

spondingly Nx =
∂N

∂x
. Integrating factor as a function of y can be obtained explicitly:

µ(y) = exp

{

−
∫

My −Nx

M
dy

}

. (4)

(a) Let M(x, y) = y+1 and N(x, y) = y− x. Since My = 1 and Nx = −1, the given equation
is not exact. Since the ratio

My −Nx

N
=

2

y + 3

is a function on y only, there exists an integrating factor

µ(y) = exp

{

−
∫

2

y + 3
dy

}

= (y + 3)−2.

Multiplying both sides of the given differential equation by µ(y), we get an exact equation:

dx

y + 3
+

y − x

(y + 3)2
dy = 0, with M = (y + 3)−1, N =

y − x

(y + 3)2
.

Integrating ψx = (y + 3)−1 with respect to x, we obtain

ψ(x, y) =
x

y + 3
+ h(y) =⇒ ψy = − x

(y + 3)2
+ h′(y) = N =

y − x

(y + 3)2
.

Therefore, h′(y) = y
(y+3)2

. Integration yields h(y) = 3 (y + 3)−1 + ln(3 + y). Hence, the general
solution becomes

x+ 3

y + 3
+ ln |3 + y| = C.

(b) With M = y/x− 1 and N = 2y2 + 1 + x/y, we have My = 1/x and Nx = 1/y. Therefore
the ratio

My −Nx

M
=

1/x− 1/y

y/x− 1
=

1

y

is a function of y only. So there exists an integrating factor µ(y) = y−1, upon multiplication
by it, we get an exact equation:

y − x

xy
dx+

(

2y +
1

y
+
x

y2

)

dy = 0.

Therefore there exists a potential function ψ(x, y) such that

ψx =
y − x

xy
and ψy = 2y +

1

y
+
x

y2
.
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Integrating the latter with respect to y, we obtain

ψ(x, y) = y2 + ln |y| − x

y
+ k(x) =⇒ k′(x) =

1

x
.

Hence, the general solution becomes

ψ(x, y) ≡ y2 + ln |y|+ ln |x| − x

y
= C.

(c) With M = 2xy2 +3y and N = −3x, we have My = 4xy+3 and Nx = −3. Since the ratio

My −Nx

M
=

4xy + 6

2xy2 + 3y
=

2 (2xy + 3)

y (2xy + 3)
=

2

y

is a function of y only, we find an integrating factor µ(y) = y−2. Upon its multiplication, we
get an exact equation

(

2x+
3

y

)

dx− 3x

y2
dy = 0.

Therefore, there exists a potential function ψ(x, y) such that its partial derivatives are multiples
of differentials:

ψx = 2x+
3

y
and ψx = −3x

y2
.

Integrating the former, we obtain

ψ(x, y) = x2 +
3x

y
+ h(y) =⇒ h′(y) = 0.

So the general solution becomes

x2 +
3x

y
= C.

(d) WithM = y(x+y+2) and N = x(x+3y+4), we haveMy = x+2y+2 and Nx = 2x+3y+4.
Since the ratio

My −Nx

M
= − 2 + x+ y

y(x+ y + 2)
= −1

y

is a function of y only, we find an integrating factor µ(y) = y. Upon multiplication by µ(y),
we get an exact equation

y2 (x+ y + 2) dx+
(

x2y + 3xy2 + 4xy
)

dy = 0.

For a potential function ψ(x, y), we have

ψx = y2 (x+ y + 2) and ψy = x2y + 3xy2 + 4xy.

Integrating the latter with respect to y, we obtain

ψ(x, y) =
x2y2

2
+ xy3 + 2xy2 + k(x) =⇒ k′(x) = 0.

Therefore, the general solution becomes

x2y2

2
+ xy3 + 2xy2 = C.
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