APMA 0330 — Applied Mathematics - I
Brown University Fall, 2017
Solutions to Homework, Set 3 Due October 4

3.1 (12 pts) Given a potential function 1(z,y), find the exact differential equation di(x,y) = 0.

e [1pt| differentiate with respect to x and y.
e [Ipt] show identity of partial derivatives and conclude that ¢ is a potential function.

e [1pt| final solution.

(a) W(z,y)=322+5y% (b) (z,y) = exp(32°y°);
(c) W(x,y) =In(z*y");  (d) Y(x,y) = (2x+ 3y —5)*

Solution: In all problems, we use the definition of the differential:

_ o o
dip(z,y) = %dx + i dy.

(a) 6xdzr+10ydy = 0;

(b) 6xy’e? v Qg + 922> A’ dy =0; (can multiple €3 25> he dropped ?7)
3 4

(c) —dx+ —dx=0; (can multiple 2 be dropped ?)
z Y

(d) 2-(2x+3y—5)[2dzr+3dy]=0. (can multiple (2z + 3y — 5) be dropped ?)

3.2 (20 pts) Show that the following differential equations are exact and solve them
(a) 322y +2y%x = 0; (b)  y (e"+vy)dx+ax (6" +2y) dy = 0;
(c) (Br’y+2xe¥)dr+ (2%¢V +23)dy =0; (d) (2zy* —3)dz + (22°y + y*)dy = 0.
Solution: In all problems, we use the following condition for exactness:
8_M = 3_N or in short M, = N,.
dy ox

Then there exists a potential function ¢ (z,y) such that

0 0
=My and G =Ny 1)

[1pt] differentiate with respect to x and y

[1pt] show identity of partial derivatives

2pts| Integrate M with respect to x (or integrate N with respect to y), 1 point is deducted
if the integral does not contain arbitrary function of y.

[1pt] Final result.
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(a) With N = 322y and M = 2zy>, we have M, = 6zy* and N, = 6zy*. So the given
differential equation is exact. Then equations (1) becomes:

Vy = 2xy° and Py = 32792

Integrating the former (¢, = M), we get ¥ (z,y) = z*y> + h(y), where h(y) is an arbitrary
function in variable y. Substituting this form of ¢(z,y) into the latter (¢, = N), we obtain

by = 32" + 1 (y) = N(z,y) =32%* = N(y) =0
Therefore, h(y) is a constant that we drop and get the general solution to be
w(ﬂ%y) = 55'2@/3 =C.

(b) With M = ye™ + y*> and N = ze™ + 2zy, we have M, = €™ + zye™ + 2y and
N, = €™ + xye®™ + 2y. Therefore, the given differential equation is exact, and we have two
equations for a potential function:

Yy = ye +y? and vy = x e + 2zy.
Integration of the latter gives 1 (z,y) = ¢* + zy* + h(y). Then we use the former to obtain
Yy =xe" +2xy+h(y) =N =uze"+ 2y — h = 0.
So we get the general solution:
U(z,y) = +ay* =C.

(¢) With M = 32y + 2ze¥ and N = z?¢¥ + 23, we have M, = 32® + 2z¢Y = N,. Then
equations (1) become

Vy = M = 32%y + 2w e¥ and Y, =N =a%e + 2%

Integrating the latter, we get ¥(z,y) = 2? e + 23y + k(x), where k(z) is arbitrary function of
x. Substitution into the equation ¢, = M yields 3z%y + 2z ¢¥ = 2x e + 32y + k'(x). Hence
E'(x) = 0 and upon its integration, we get the general solution:

U(x,y) = 2% e + 23y = C.

(d) With M = 2zy*—3 and N = 22%y+y?, we have M, = 4y = N,, so the given differential
equation is exact. Then there exists a potential function v (z,y), for which we know its partial
derivatives according to (1):

ey = M = 22y* — 3 and Y, = N =22y + ¢°.
Integrating the former, we get
U(y) =2y =3z +h(y) = Yy =220y + N (y) =22y + ¢

Since h'(y) = y*, we integrate it and obtain the general solution:

3
w(x,y)zx2y2—3x+%: :
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3.3 (24 pts) Are the following equations exact? Solve the initial value problems.

(a) cosmz cos2mydr = 2sin 7z sin 2wy dy, y(3/2) = 1/3;

(b) 2zydy + (2% + y?)dx = 0, y(0) = 4;

(c) (3z?y —5)dx + (2% + 6y*)dy = 0, y(1) = 2;

(d) (cosf —2rcos?0)dr +rsinf(2rcosf —1)df =0, r(w/4)=1.

6 points for each problem. The same distribution as in Problem 2. Plus 1 point for substituting
initial condition to compute the constant C.

Solution: 1In all problems, we first check for exactness and then find the potential function
using the line integral:

(z,)
Y(x,y) :/( )M(x,y) dz + N(z,y)dy, (2)
Z0,Yo

where integration is conducted along some path connecting the given point (z¢,y) with an
arbitrary point (x,y) taken along straight lines along coordinate axis.

(a) With M = sinmz cos3my and N = 3cosnz sin3my, we have M, = —37 sinnz sin 37y
and N, = =37 sin 7z sin 37y; therefore M, = N, and the given differential equation is exact.
To find a potential function, we use formula (2), where xy = 3/2 and yo = 1/3 and the path of
integration is taken first horizontally, and then vertically:

x y
Uz, y)= | M(z,1/3)dz+ | N(z,y)dy
3/2 1/3
x y
= / sin mx cos 7 dx +/ 3cosx sin 3Ty dy
3/2 1/3
x y
= —/ sintx dr — 3cos7r:c/ sin 3y dy
3/2 1/3
o] e o]
= |— cosTx — COSTX | — COS 3TY
Q x=3/2 ™ y=1/3
1 2 9 3TY
= — COSTT — — COSTXL COS” ——.
s us 2

Equating 7 (x,y) to zero, we obtain the solution (in implicit form):

3
COSTX (1 — 2 cos? %) =0.

(b) With M = 6xy and N = 32% + 4¢3, we get M, = 6z = N,, so the given differential
equation is exact and equations (1) must hold for some potential function ¢ (z,y). To find its
explicit expression, we use line integral (2) with zo = 3 and yy = 4:

)
Y(r,y) = / (327 +4y°) dy = 32° (y — 4) + y* — 4%
4
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3.4

Upon simplification and equating 1 (z,y) to zero, we obtain the required solution in implicit
form:
y* + 32y — 1227 — 256 = 0.

(¢) With M = 32%y — 5 and N = 2® + 6y*, we get M, = 32% and N, = 3z?%; therefore, the
given differential equation is exact. Using line integral with o = 1 and yy = 2, we obtain the
potential function:

x y

(z,y) —/ (62° — 5) dx—i—/ (2 +6y°)dy =22° =2 — bz + 5+ 2°(y — 2) + 2¢° — 2°.

1 2
Upon simplification and equating 1 (z,y) to zero, we obtain the required solution in implicit
form:

a3y — bz + 2y = 13.

(d) With M(r,0) = cosf — 2rcos*6 and N(r,0) = rsinf(2rcosf — 1), we have My =
—sinf+4r cosf sinf and N, = 4r sin @ cos § —sin 6. Therefore, the given differential equation
is exact and we use formula (2) to obtain the potential function:

r [
w(r,ﬁ):/I M(r,m/4)dr + N(r,0)do

w/4

r 1 0
= — =7 dr+/ rsinf(2rcosfd — 1) do
/1 (\/5 ) /4 ( )

r—1 r? N 1 r N g r? o0
=—— — —+ - ——+1rcosf — — cos26.

V2 2 2 2 2
Using trigonometric identity 1+cos 26 = 2 cos? 8, we simplify the potential function and equate
it to zero:

1
— —— 4 7rcosf —r?cos’0=0.

1
2 V2

(24 pts) Show that the given equations are not exact, but become exact when multiplied by
the corresponding integrating factor. Find an integrating factor as a function of x only and
determine a potential function for the given differential equations.

6 points for each problem. The same distribution as in Problem 3.5 and plus 1 point for showing
that equations are not exact.

(a) ¥ +y(l+2z)=0; (b) 2’y = 2%y + 3x;
(c) (yzde™ —2y3)dx + (z*e™ + 32y?)dy = 0; (d) 4dx—e?V2*dy = 0.
Solution: In all problems, subscript M, means the partial derivative M, = —— and corre-

Jdy

ON
spondingly N, = —. Integrating factor as a function of y can be obtained explicitly:

oz
1(x) = exp { / w dx} | (3)

Page 4 of 8



AM33 Solutions to HW #3 Fall, 2017

(a) With M =y+ 2y and N =1, we have M, =1+ 2z and N, = 0, so the given differential

equation is not exact. However, the ratio —~ "% — 1+ 2z is a function of z along. From

equation (3), we find an integrating factor:
p(x) = exp {/ (1+2x) dx} = "t

Upon multiplication by u(x), we get an exact equation with M = (y + 2zy) "t and N =
e*+*” Integrating 1, = N, we obtain

V() =yt + k(x),

where k(z) is determined from the equation 1, = M, which becomes
be =y (14 22) e 4 K (2) = M = (y + 2zy) e+

Therefore, k'(x) = 0 and k(z) is a constant, which we drop. The given problem has the general
solution:

Y et = .

(b) With M = 2%y + 3z and N = —z®, we have M, = 2, N, = —3z?, so our differential
equation is not exact. However, the ratios
M,— N, %+ 3a?
N - a8

d -
an M x?y + 3z

4 M,— N, 2%+ 3z?
T

show that there exists an integrating factor as a function of x:
p(r) ==

Upon multiplication by u(x), we get an exact equation:
(x’Qy + 33:’3) de — 27 'dy = 0.

Indeed,
0 -2

2 (x_Qy + Sx_g) r? and ——az'=ux

dy ox

Therefore, there exists a potential function ¢ (z,y) such that ¢, = (z7 %y + 3273) and ¢, =
—z~ L. Integration of the latter yields

U(ay) = —ya +h(r) = de=aTly+ k()= (27 + 3070

Therefore, k'(z) = 3z~3. This allows us to determine the general solution:

3
x_1y+§x_2:C’ or 22y + 3 = C 2*.
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3.5

c) With M = ya?e® — 2y and N = z%e™ + 32y?, we have M, = 23e™ + ya*e®™ — 6y> and
v
N, = (423 + 2*y) e™ + 3y?. The ratio
M,— N, 3e™ + 3y 3

N 7z (aBem + 3y2) x

tells us that there exists an integrating factor as a function of x, namely, u(z) = x=3. Multi-
plication by p(z) reduces the given equation to an exact equation M; dz + Ny dy = 0, where

My(z,y) = ye™ — 20 3y and Ni(z,y) = v e™ + 30~ %y%

Integrating the latter with respect to y, we get
U(r,y) = /Nl(fv, ydy=e™+a7%y’ +k(x) = vo=ye” - 227y +#(2).
Since k'(z) = 0, we obtain the potential function and the general solution:
e + a7yt = C.

(d) With M =4 and N = —e¥~ " we have M, =0 and N, = 2eY~%*. Since the ratio

M,—N, 2%
N - ey—2x

is a function on x (as well as on any other variable because it is a constant), there exists an
integrating factor as a function of z: u(r) = €**. Upon multiplication by u(z), we obtain an

exact equation
4e**dr —e?dy = 0.

Actually, it is a separable equation, so simple integration yields the general solution:

2% —¢e¥ = (.

(20 pts) Find an integrating factor as a function of y only and determine the general solution
for the given differential equations (a and b are constants).

e [2pts| Compute the integrating factors
e [2pts| Integral

e [Ipt] Final solution

() (y+3)de—(z—y)dy=0; (b) (£=1)dr+ (22+1+2)dy=0;
(c) (2zy*+3y)dz —3xdy=0; (d) ylx+y+1)de+x(x+3y+2)dy=0.
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Solution: In all problems, subscript M, means the partial derivative M, = e and corre-
Y

ON
spondingly N, = e Integrating factor as a function of y can be obtained explicitly:
x

1(y) ZeXp{—/Wdy}- (4)

(a) Let M(z,y) =y+1and N(z,y) =y —x. Since M, =1 and N, = —1, the given equation

is not exact. Since the ratio
M, — N, 2

N oy +3
is a function on y only, there exists an integrating factor

1(y) ZeXp{—/Ldy} =(y+3)7

y+3

Multiplying both sides of the given differential equation by u(y), we get an exact equation:

dx y—x ) _ y—x
+ dy=0, with M=(wy+3)""! N= .
yt+3 yrag w+3) (y+3)°
Integrating v, = (y + 3)~! with respect to x, we obtain
T y—
T,y) = ——+h — =— +h(y)=N = .
Y(z,y) 13 (y) Py T3 (y) T3

Therefore, I'(y) = —L=z. Integration yields h(y) = 3 (y + 3)~' +In(3 + y). Hence, the general

(y+3)2°
solution becomes 43
T
——— +Inl3+y|l=C.
3 3+ y

(b) With M =y/x —1and N =2y* + 1+ x/y, we have M, = 1/z and N, = 1/y. Therefore

the ratio
M,—N, 1/z—1/y 1

M y/r—1 y

1

is a function of y only. So there exists an integrating factor u(y) = y~', upon multiplication

by it, we get an exact equation:

— 1
Y xdx+(2y~|——+%)dy:0.
Ty y vy

Therefore there exists a potential function ¥ (z,y) such that

- 1 =
wx:y and Yy =2y+-+—.
Ty y oy
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Integrating the latter with respect to y, we obtain

x 1
U(z,y) =y* +Inlyl —§+k(ff) - K (x) = .
Hence, the general solution becomes

i
U(z,y) Ey2+ln!y|+ln|$|—§:0

(¢) With M = 2zy*+ 3y and N = —3x, we have M, = 42y + 3 and N, = —3. Since the ratio
M,— N, 4xy+6  2Q2zy+3) 2

M 202 +3y yRRry+3) oy
is a function of y only, we find an integrating factor u(y) = y~2. Upon its multiplication, we

get an exact equation
3 3
(2x+—) d:c——fdy:().
Y Y

Therefore, there exists a potential function ¢ (z, y) such that its partial derivatives are multiples

of differentials: 3 3
Ve =20+> and ¢, = -
Y Y
Integrating the former, we obtain

Y(r,y) =a2” + 3?“” +hy) = Ky =0

So the general solution becomes
5 3T
r+—=0C.
Y
(d) With M = y(z+y+2) and N = z(x+3y+4), we have M, = x+2y+2 and N, = 2z+3y+4.

Since the ratio
M, — N, 24+ z+vy

M ylet+y+2) oy
is a function of y only, we find an integrating factor u(y) = y. Upon multiplication by u(y),
we get an exact equation

y* (z+y+2)de + (2y + 3zy® + 4ay) dy = 0.

For a potential function ¢ (x,y), we have
Yy = ?JQ (x+y+2) and Yy = x2y + Sxy2 + 4xy.

Integrating the latter with respect to y, we obtain

2,2
U(z,y) = % + 2y® + 20y® + k(2) — K (z) =0.
Therefore, the general solution becomes
22y

5 + xy® + 22y* = C.
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