
APMA 0330 — Applied Mathematics - I
Brown University Fall, 2017
Solutions to Homework, Set 2 Due September 27

2.1 ( 10 pts ) A spherical raindrop evaporates at a rate proportional to its surface area. Write a
differential equation for the volume of the raindrop as a function of time.

Solution: The surface area of a sphere is A = 4π r2 [2 pts ] and its volume is V =
4

3
π r3 [2 pts

] . Expressing volume through the area, we get

V =
4

3
π r3 =

4

3
π

(

A

4π

)3/2

.

Therefore, the required differential equation becomes [6 pts ]

dV

dt
= −k V 2/3

for some constant k.

2.2 ( 10 pts ) Newton’s law of cooling states that the temperature u(t) of an object changes at
a rate proportional to the difference between the temperature of the object itself and the
temperature of its surroundings (the ambient air temperature in most cases):

u̇(t) = −k (u− T ) ,

where T is the ambient temperature and k is a positive constant. Suppose that the initial
temperature of the object is u(0) = u0, find its temperature at any time t.

Solution: We compute:

du

u− T
= −kdt [3 pts]

ln(u− T )− ln(u0 − T ) = −k(t− t0) [3 pts] for integration

u(t) = T + (u0 − T )e−k(t−t0)

Or, since we have t0 = 0:
u(t) = T + (u0 − T )e−kt [4 pts]

2.3 ( 20 pts ) Consider a falling object of mass 5 kg that experiences the drag force, which is
assumed to be proportional to the square of the velocity (denoted by v):

v̇ =
[

492 − v2
]

/245.
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(a) Determine an equilibrium solution.

(b) Plot a slope field for the given differential equation using one of your lovely software
package. Provide the codes of your plot or state what resources did you use. Based on
the direction field, determine the behavior of v(t) as t → ∞.

(c) Find the limiting velocity v∞ = limt→∞ v(t) if initially v(0) = 0, and determine the time
that must elapse for the object to reach 98% of its limiting velocity.

(d) Find the time it takes the object to fall 300m.

Solution: (a) The equilibrium is achieved when

492 − v2

245
= 0, [1 point]

i.e., v = ±49. However, note that v = −49 is nonphysical: we designate positive velocity as
downwards velocity, so v = −49 would be falling upwards. Thus, the only equilibrium in which
we are interested is v = 49 [2 pts ] . Reduction: 1 point off if ±49.

(b) We have that v → 49 as t → ∞ for all physical trajectories. Note that with this model, if
the object were moving upwards fast enough, it would continue to accelerate upwards forever!

Now we plot using Mathematica:

VectorPlot[{1, (49^2 - y^2)/245}, {x, -100, 100}, {y, -100, 100},

VectorPoints -> 20, VectorStyle -> Arrowheads[0.028]]

Then we do the same job using matlab:

[ t , v ] = meshgrid ( 0 : . 5 : 1 0 , 4 0 : 1 : 6 0 ) ;
dv = (49ˆ2−v . ˆ 2 ) / 245 ;
dt = ones ( s i z e ( dy ) ) ;
dvu = dv . / sq r t ( dt . ˆ2 + dv . ˆ 2 ) ;
dtu = dt . / sq r t ( dt . ˆ2 + dv . ˆ 2 ) ;
qu iver ( t , v , dtu , dvu , 1 ) ;

(c) If v(0) = 0, then v∞ is indeed 49. To find the elapsed time we first solve the differential
equation

dv

492 − v2
=

dt

245
dv

98

(

1

49 + v
+

1

49− v

)

=
dt

245
[2 pts] for separation of variables.
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Figure 1: Direction field for Problem 2.3, plotted with Mathematica.

Then we integrate

∫
(

1

49 + v
+

1

49− v

)

dv =

∫

2

5
dt

1

98
[ln(49 + v)− ln(49− v)] =

t

245

ln

(

49 + v

49− v

)

=
2t

5
49 + v

49− v
= e

2

5
t

49 + v = (49− v)e
2

5
t [3 pts] for intermediate steps

v(1 + e
2

5
t) = 49(1− e

2

5
t)

v = 49
e2t/5−1

1 + e2t/5

= 49 tanh

(

t

5

)

[2 pts] for solution
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We seek t such that v(t) = 0.98 · v∞ = 0.98 · 49, i.e.,

0.98 · 49 = 49 tanh

(

t

5

)

t = 5 tanh−1(0.98)

≈ 11.5 [2 pts]

(d) We can arbitrarily define the starting point as x0 = x(0) = 0. then the position of the
object is the same as the distance traveled, and is given by [2 pts ]

x(t) =

∫ t

0

v(s)ds =

∫ t

0

49 tanh
(s

5

)

ds = 245 ln cosh

(

t

5

)

.

We seek t such that x(t) = 300, then [2 pts ] for answer and [2 pts ] for simplification

300 = 245 ln cosh

(

t

5

)

=⇒ t = 5 cosh−1
(

e300/245
)

≈ 9.48.

2.4 ( 10 pts ) At a given level of effort, it is reasonable to assume that the rate at which fish are
caught depends on the population P (t): the more fish there are, the easier it is to catch them.
Thus we assume that the rate at which fish are caught is given by E P (t), where E is a positive
constant, with units of 1/time, that measures the total effort made to harvest the given species
of fish. To include this effect, the logistic equation is replaced by

dP/dt = r (1− P/K)P − EP, (i)

where r and K are positive constants. This equation is known as the Schaefer model.

(a) Show that if E < r, the there are two equilibrium points P1 = 0 and P2 = K (1− E/r) > 0.

(b) Show that P = P1 is unstable and P = P2 is asymptotically stable. As a confirmation,
you may want to draw a direction field for some numerical values of constants r, K, and
E.

(c) A sustainable yield Y of the fishery is a rate at which fish can be caught indefinitely. It
is the product of the effort E and the asymptotically stable population P2. Find Y as a
function of the effort E: the graph of this function is known as the yield–effort curve.

(d) Determine E so as to maximize Y and thereby find the maximum sustainable yield
Ym.

Solution:

(a) Equating the slope function to zero, we get [1 point ]

r (1− P/K)P − EP = 0 =⇒ P
(

r − E − r

K
P
)

= 0.
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Therefore, there are two critical points: [1 point ]

P1 = 0 and P2 = K

(

1− E
1

r

)

.

We observe that for [1 point ]

E < r =⇒ −E

r
> −1 =⇒ P2 > 0.

(b) We define f(P ) = r (1− P/K)P − EP , then we compute its derivative [1 point ]

df(P )

dP
=

d

dP
(r (1− P/K)P − EP ) = r (1− P/K)− rP/K − E.

Evaluating at P1 and P2 we obtain

df(P1)

dP
= r

(

1− P1
1

K

)

− r

K
P1 − E = r − E > 0. [1 point]

df(P2)

dP
= r

(

1− P2
1

K

)

− r

K
P2 − E [1 point]

= r

(

1−K

(

1− E

r

)

1

K

)

− r

K
K

(

1− E

r

)

− E

= r

(

E

r

)

− r

(

1− E

r

)

− E

= E − r < 0.

Therefore,

df(P1)

dP
> 0 =⇒ P1 is unstable

df(P2)

dP
< 0 =⇒ P2 is asymptotically stable.

(c) By definition we have [1 point ]

Y = E P2 = EK

(

1− E

r

)

.

(d) We maximize Y . Differentiating the previous equation and equaling to zero we have
[1 point each equation]

0 =
dY (E)

dE
= K

(

1− E

r

)

− 1

r
EK =⇒ E =

r

2
.

Then, [1 point ]

Ym = Y
(r

2

)

=
r

2
K

(

1− 1

2

)

=
r

4
K.
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2.5 ( 10 pts ) Assuming that fish are caught at a constant rate h, its population is modeled by

dP/dt = r (1− P/K)P − h. (ii)

(a) If h < rK/4, show that Eq. (ii) has two equilibrium points q1 and q2 with q1 < q2;
determine these points.

(b) Show that q1 is unstable and q2 is asymptotically stable.

(c) From a plot of the rate function r (1− P/K)P − h versus P , show that if the initial
population P (0) > q1, then P (t) 7→ q2 as t → ∞, but that if P (0) < q1, then P (t)
decreases as t increases. Note that P ≡ 0 is not an equilibrium point, so if P (0) < q1,
then extinction will be reached in a finite time.

(d) If h > rK/4, show that P (t) decreases to zero as t increases, regardless of the value of
P (0).

(e) If h = rK/4, show that there is a single equilibrium point P ≡ K/2 and that this point
is semistable. Thus the maximum sustainable yield is hm = rK/4, corresponding to the
equilibrium value P ≡ K/2. Observe that hm has the same value as Ym.

Solution:

(a) Equating the slope function to zero, we get [1 point ]

r (1− P/K)P − h = 0 =⇒ −P 2 r

K
+ r P − h = 0.

This is a quadratic equation that has two roots [1 point ]

q1 =
r −

√

r2 − 4 r
K
h

2 r
K

and q2 =
r +

√

r2 − 4 r
K
h

2 r
K

when its discriminant is not negative, that is, r2 > 4h r
K
.

(b) Define f(P ) = r (1− P/K)P − h, then we differentiate [1 point ]

df(P )

dP
= r (1− P/K)− r P

1

K
= r − 2r P

1

K
.

Evaluating at the equilibrium points, we obtain [1 point ]

df(q1)

dP
=

√

r2 − 4
r

K
h > 0

df(q2)

dP
= −

√

r2 − 4
r

K
h < 0.

We conclude that q1 is unstable and q2 is asymptotically stable. [1 point ]

(c) Plot [1 point ]
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Figure 1: Plot of P vs f(P ) = r (1− P/K)P − h.

From the plot we observe [1 point ]

• If P (0) > q1 and P (0) <= q2, we observe in Figure 1 that the values of the function
are positive (the slopes are positives), then the solution is increasing towards q2.

• If P (0) > q2, we observe in Figure 1 that the values of the function are negative, then
the solution is decreasing towards q2 .

• If 0 < P (0) < q1, we observe in Figure 1 that the values of the function are negative,
then the solution is decreasing, then it will reach 0 in a finite time.

(d) [2 pts ] If h > rK
4
, then the discriminant of the equilibrium points is negative. Therefore

there are no critical points and equivalent curve to Figure 1 will be below 0 (meaning that
dP
dt

< 0). We can conclude that the solutions are decreasing as t increases independently
of the value of P (0).

(e) [2 pts ] If h = rK
4
, then the discriminant is 0 (q1 = q2) and we have one equilibrium point

q1 =
K
2
. Evaluating the derivative of f in this point, we have

df(q1)

dP
= 0.

Then we conclude that this point is semistable. We can also see this from the plot of
the quadratic function f(P ) with one root, since the function is negative for all values of
P 6= q1.

2.6 ( 10 pts ) Solve the given differential equation of the form x y′ = y F (xy) by using transforma-
tion v = xy.
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(a) x y′ = exy − y; (b) x y′ = y/(xy + 1).

Solution: (a) [5 pts ] Setting v = xy, we differentiate and separate variables: [1 point for
change of variable ]

v′ = y + xy′ = y + exy − y = exy = ev =⇒ e−vdv = dx.

Integration yields [1 point for integration and 2 points for integration ]

−e−v = x+ C or x+ e−xy = C,

where C is a constant of integration. [1 point for final answer ]

(b) [5 pts ] Differentiation of v = xy yields

v′ = y + xy′ = y +
y

v + 1
= y

(

1 +
1

v + 1

)

=
v

x

v + 2

v + 1
.

Separation of variables yields
v + 1

v(v + 2)
dv =

dx

x

Integrating the latter, we have

1

2
ln |v|+ 1

2
ln |v + 2| = lnCx ⇐⇒ ln |v(v + 2)| = lnCx2.

Exponentiation brings the general solution:

v(v + 2) = Cx2 or y(xy + 2) = Cx.

2.7 ( 10 pts ) Solve the differential equation y′ = (4x+ y − 5)2 by using appropriate transforma-
tion.

Solution: Setting v = 4x+ y − 5, we get [3 pts ]

v′ = 4 + y′ = 4 + v2.

Separation of variables yields [4 pts ]

∫

dv

4 + v2
= x+ C =⇒ 1

2
arctan

v

2
= x+ C.

When we return to the original variables, we obtain the general solution: [3 pts ]

4x+ y − 5 = 2 tan (2x+ C) .
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2.8 ( 20 pts ) Solve the given differential equation with a homogeneous right-hand side function.
Then determine an arbitrary constant that satisfies the auxiliary condition.

(a) xy dx+ (x2 + 3y2) dy = 0, y(1) = 1;

(b) (y +
√

x2 + y2) dx− 2x dy = 0, y(1) = 0;

(c) (x− y) dx+ (3x+ 2y) dy = 0, y(2) = 1;

(d) (y2 + 3xy) dx− 2x2 dy = 0, y(1) = 1.

Solution: In all problems, we use substitution y = x v, where v = v(x) is unknown function to
be determined. Its differential becomes dy = v dx+ x dv.

(a) [5 pts ] Using substitution y = x v, we get

v dx+
(

1 + 3v2
)

[v dx+ x dv] = 0.

Therefore, separation of variables yields

−dx

x
=

(1 + 3v2)

v (2 + 3v2)
dv,

which upon integration gives

− lnCx =
1

4

(

2 ln v + ln(2 + 3v2
)

=
1

6
ln(3 + 4v2) v4.

Raising to exponent, we get

C

x4
= (2 + 3v2) v2 =

(

2 +
3y2

x2

)

y2

x2
.

Multiplication by x4 yields the general solution:

C =
(

2x2 + 3y2
)

y2.

To satisfy the initial condition y(1) = 1, we set C = 5.

(b) [5 pts ] Upon substitution y = x v, we get
(

v +
√
1 + v2

)

dx = 2 [v dx+ x dv] .

Separation of variables and integration yields

2√
1 + v2 − v

dv =
dx

x
=⇒ v

(

v +
√
1 + v2

)

+ arcsinh v = lnCx.

With old variables v = y/x, we obtain the general solution

lnCx =
y

x

(

y

x
+

√

x2 + y2

x

)

+ arcsinh
(y

x

)

.

Using the initial condition y(1) = 0, we derive C = 1 and the particular solution becomes

x2 ln x = y
(

y +
√

x2 + y2
)

+ x2arcsinh
(y

x

)

.

Page 9 of 10



AM33 Solutions to HW #2 Fall, 2017

(c) [5 pts ] Upon substitution y = x v, we get

v + x v′ =
v − 1

3 + 2v
=⇒ x v′ =

v − 1

3 + 2v
− v = −1 + 2v + 2v2

3 + 2v
.

Separation of variables and integration yields

3 + 2v

(2v2 + 2v + 1
dv = −dx

x
=⇒ 4 arctan(1+2v)+ ln

(

1 + 2v + 2v2
)

= −2 ln x+C.

Uniting two logarithms, we get

C = 4 arctan(1 + 2v) + ln x2
(

1 + 2v + 2v2
)

From the initial condition, it follows that v(2) = 1/2 and we determine the value of
arbitrary constant C to be C = 4 arctan 2 + ln 10. Since v = y/x, we obtain the general
solution in implicit form:

4 arctan 2 + ln 10 = 4 arctan
2y + x

x
+ ln

(

x2 + 2xy + 2y2
)

.

(d) [5 pts ] Upon substitution y = x v, we get

(

v2 + 3v
)

dx = 2 [x dv + v dx] =⇒
(

v2 + v
)

dx = 2x dv.

Separation of variables and integration yields

dv

v2 + v
=

dx

2x
=⇒ ln(v)− ln(1 + v) = ln

v

1 + v
= lnCx.

Raising to exponent, we have
v

1 + v
= C x1/2.

Since v = y/x, we obtain the general solution:

y

x+ y
= C x1/2.

From the initial condition follows that C = 1/2.

Grade distribution for the last problem:
[2 pts ] for change of variable
[2 pts ] for separation of variables
[2 pts ] for integration
[2 pts ] for correct use of initial condition
[2 pts ] for final answer
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