NAME:

APMA 0330 - Applied Mathematics - I

Brown University
Homework, Set 7
Fall, 2017
Due November 29
7.1 (20 pts) Find the general solution to the following differential equation

$$
y^{\prime \prime}+9 y=3 \cot (3 x) .
$$

7.2 (60 pts) In each of problems, express $f(t)$ in terms of the Heaviside function, $H(t)$, and find its Laplace transform.
(a) $f(t)= \begin{cases}3, & 0 \leq t<3, \\ -2, & 3 \leq t<5, \\ 1, & 5 \leq t<8, \\ 2, & t \geq 8 .\end{cases}$
(d) $f(t)= \begin{cases}t^{2}, & 0 \leq t<2, \\ t+1, & t \geq 2 .\end{cases}$
(b) $f(t)= \begin{cases}0, & 0 \leq t<1, \\ -3, & 1 \leq t<2, \\ 2, & 2 \leq t<3, \\ -4, & 3 \leq t<4, \\ 1, & t \geq 4 .\end{cases}$
(e) $f(t)= \begin{cases}t^{2}, & 0 \leq t<1, \\ t-1, & 1 \leq t<2, \\ t^{2}+1, & 2 \leq t<3, \\ 10, & t \geq 3 .\end{cases}$
(c) $f(t)= \begin{cases}1, & 0 \leq t<3, \\ e^{2(t-3)}, & t \geq 3 .\end{cases}$
(f) $f(t)= \begin{cases}t-1, & 0 \leq t<2, \\ 1, & 2 \leq t<4, \\ 5-t, & 4 \leq t<8, \\ -3, & t \geq 8 .\end{cases}$

Hint: The Laplace transform of the power function is

$$
\mathcal{L}\left[t^{n}\right]=\int_{0}^{\infty} t^{n} e^{-\lambda t} \mathrm{~d} t=\frac{n!}{\lambda^{n+1}}, \quad n=0,1,2, \ldots
$$

7.3 (20 pts) Find the Laplace transform of the periodic with period $T=6$ sawtooth function that is the half-wave rectifier of the function

$$
f(t)=1-t, \quad 0<t<3
$$

