NAME: \qquad

APMA 0330 - Applied Mathematics - I

Brown University

Homework, Set 6

Fall, 2017
Due November 8
6.1 (10 pts) Write out the characteristic equation for the given differential equation:
(a) $y^{(4)}+5 y^{\prime \prime}-3 y=0$;
(b) $y^{\prime \prime}-7 y^{\prime}+2 y=0$.
6.2 (10 pts) Let α and β be real constants. Consider the differential operator of the second order:

$$
L[\mathrm{D}]=(\mathrm{D}-\alpha)^{2}+\beta^{2},
$$

where $\mathrm{D}=\mathrm{d} / \mathrm{d} t$ is the derivative operator. Show that the substitution $y=e^{\alpha t} v(t)$ reduces the differential equation

$$
L[\mathrm{D}] y=0 \quad \text { or } \quad\left[(\mathrm{D}-\alpha)^{2}+\beta^{2}\right] y=0
$$

to the canonical equation $\ddot{v}+\beta^{2} v=0$, where dot stands for the derivative with respect to t.
6.3 (10 pts) The Wronskian of two functions is $W(x)=x^{2}-6 x+9$. Are the functions linearly independent or linearly dependent?
6.4 (10 pts) The characteristic equation for a certain differential equation is given. State the order of the differential equation and give the form of the general solution.
(a) $2 \lambda^{3}-\lambda^{2}-7 \lambda+6=0$;
(b) $3 \lambda^{3}-20 \lambda^{2}+39 \lambda=18$.
6.5 (20 pts) Find the solution of the given initial value problem.
(a) $6 \ddot{y}+\dot{y}-y=0, \quad y(0)=1, \dot{y}(0)=2$.
(b) $\ddot{y}-3 \dot{y}=0, \quad y(0)=1, \dot{y}(0)=2$.
6.6 (20 pts) Find the form of a particular solution $y_{p}(t)$ to the following ODEs to be used in the method of undetermined coefficients. Do not solve for the coefficients!
(a) $\ddot{y}-4 \dot{y}+4 y=3 t e^{2 t}$,
(b)
$\ddot{y}+4 \dot{y}+13 y=4 e^{-2 t} \sin 3 t$,
(c) $\ddot{y}+\dot{y}-2 y=e^{-2 t}+t e^{t}+t$,
(d) $\dddot{y}-5 \ddot{y}+7 \dot{y}-3 y=e^{-3 t}+t e^{t}$.
6.7 [10 pts.] For given family of solutions $c_{1} x^{2}+c_{2} e^{-3 x} \cos 5 x$ to a constant coefficient differential equation $L[\mathrm{D}] y=0$, find a linear differential operator of least possible order that annihilates the family.
6.8 [10 pts.] Let D stand for the derivative operator. Write the general solution of the following differential equation

$$
(\mathrm{D}-2)^{3}\left[(\mathrm{D}+5)^{2}+9\right]^{2} y=0
$$

