NAME: \qquad

APMA 0330 - Applied Mathematics - I

Brown University

Fall, 2017
Homework, Set 4
4.1 (14 pts) Determine the validity interval for each of the following initial value problems.
(a) $\quad\left(x^{2}-4\right) y^{\prime}+x^{5} y=x^{2}+1, \quad y(0)=1$;
(b) $\quad(\cos \pi x) y^{\prime}+(\sin x) y=\tan \pi x, \quad y(1)=1$.
4.2 (6 pts) An inductor-resistor series circuit (LR circuit) can be modeled by the following differential equation (the initial condition is assumed to be given $i(0)=i_{0}=0.5$):

$$
V_{t}=V_{R}(t)+V_{L}(t) \quad \Longrightarrow \quad L \frac{\mathrm{~d} i}{\mathrm{~d} t}+R i=V(t)= \begin{cases}6, & \text { for } 0<t<2 \tau \\ 0, & \text { otherwise }\end{cases}
$$

where the voltage drop across the resistor is $V_{R}=i R$ (Ohms Law), $R=1$ being in Ohms, the voltage drop across the inductor is $V_{L}=L \mathrm{~d} i / \mathrm{d} t, L=0.1$ being in Henries. The $\tau=L / R$ term in the above equation is known commonly as the time constant. Plot the solution to IVP.
4.3 (20 pts) Solve the linear equations. (Parts (c) and (d) do not have a nice integrable function.)
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sin x+(2 y-x) \cos x}{\sin x}$;
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}+y=\frac{1}{1+e^{-x}}$;
(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}+y \sin x=2 x \sin x$;
(d) $\frac{\mathrm{d} y}{\mathrm{~d} x}-y \ln x=x^{2}$.
4.4 (20 pts) Find the particular solution to the given initial value problem.
(a) $x y^{\prime}+(x+2) y=2 \sin x, \quad y(\pi)=-1$;
(b) $x^{2} y^{\prime}-4 x y=x^{4}, \quad y(1)=2$;
(c) $y^{\prime}+3 y=f(x)=\left\{\begin{array}{ll}9 x, & \text { if } 0 \leq x<1, \\ 9, & \text { if } 1 \leq x<\infty ;\end{array} \quad y(0)=0\right.$;
(d) $x^{2} y^{\prime}+2 x y=\cos x, \quad y(\pi)=0$.
4.5 (20 pts) Solve the following Bernoulli equations.
(a) $x y^{\prime}-y=-3 x^{4} y^{3}$;
(b) $x y^{\prime}=(x+1) y-2 y^{3}$;
(c) $3 y^{\prime}+2 y^{4} x e^{-3 x}=y$;
(d) $y^{\prime}+2 y \csc (2 x)=y^{2}$.
4.6 (20 pts) Solve the initial value problems for the Bernoulli equation.
(a) $x y^{\prime}+y=x^{4} y^{3}$,
$y(1)=1 / 4 ;$
(b) $x y^{\prime}+3 y=x^{3} y^{2}, \quad y(1)=1 / 2$.

