Center for Fluid Mechanics, Division of Applied Mathematics Fluids, Thermal and Chemical Processes Group, School of Engineering Joint Seminar Series

Tatiana Kuriabova University of Colorado Boulder, CO

Linear Aggregation and Liquid-crystalline Order: Comparison of Monte Carlo Simulation and Analytic Theory

Many soft-matter and biophysical systems are composed of monomers that reversibly assemble into rod-like aggregates. The aggregates can then order into liquid-crystal phases if the density is high enough, and liquid- crystal ordering promotes increased growth of aggregates. Systems that display coupled aggregation and liquid-crystal ordering include worm- like micelles, chromonic liquid crystals, DNA and RNA, and protein polymers and fibrils. Coarse-grained molecular models that capture key features of coupled aggregation and liquid-crystal ordering common to many different systems are lacking; in particular, the roles of monomer aspect ratio and aggregate flexibility are not well understood. We study a system of sticky cylinders that interact primarily by hard-core interactions but can stack and bind end to end. We use Monte Carlo simulations and analytic theory. We present results for several different cylinder aspect ratios and a range of end-to-end binding energies. The phase diagrams are qualitatively similar to those of chromonic liquid crystals, with an isotropic-nematic-columnar triple point. Our analytic theory shows improvement compared to previous theory in quantitatively predicting the I–N transition for relatively stiff aggregates, but requires a better treatment of aggregate flexibility.

TUESDAY - May 10, 2011

4:00 PM

Barus & Holley, Room 190