Center for Fluid Mechanics, Division of Applied Mathematics Fluids, Thermal and Chemical Processes Group, School of Engineering Joint Seminar Series

Eric R. Dufresne John J. Lee Associate Professor Department of Mechanical Engineering and Materials Science Department of Chemical and Environmental Engineering Department of Physics Yale University

Caught between a Drop and a Soft Place: The Deformation of an Elastic Substrate by a Three-Phase Contact Line

Young's classic analysis of the equilibrium of a three-phase contact line ignores the outof-plane component of the liquid-vapor surface tension. While it has long been appreciated that this unresolved force must be balanced by elastic deformation of the solid substrate, a definitive analysis has remained elusive because conventional idealizations of the substrate imply a divergence of stress at the contact line. While a number of theories have been presented to cut off the divergence, none of them have provided reasonable agreement with experimental data. We measure surface and bulk deformation of a thin elastic film near a three-phase contact line using fluorescence confocal microscopy. The out-of-plane deformation is well fit by a linear elastic theory incorporating an out-of-plane restoring force due to the surface tension of the gel. This theory predicts that the deformation profile near the contact line is scale-free and independent of the substrate elastic modulus.

Time permitting, I will discuss another problem at the interface of fluid and solid mechanics: the fracture and delamination of colloidal coatings. Here, we observe the deformation of the underlying substrate to infer spatially-resolved interfacial and internal stresses near cracks in a fluid-filled brittle solid.

TUESDAY – May 3, 2011

3:00 PM

Barus & Holley, Room 190