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Abstract 

Zang, T.A., On the rotation and skew-symmetric forms for incompressible flow simulations, Applied Numerical 
Mathematics 7 (1991) 27-40. 

A variety of numerical simulations of transition and turbulence in incompressible flow are presented to compare 
the commonly used rotation form with the skew-symmetric (and other) forms of the nonlinear terms. The results 
indicate that the rotation form is much less accurate than the other forms for spectral algorithms which include 
aliasing errors. For de-aliased methods the difference is minimal. 

1. Introduction 

The primitive variable form of the three-dimensional incompressible Navier-Stokes equations 
has several equivalent versions, differing in the precise manner of expressing the nonlinear terms. 
Among these alternatives are the convection form, II. VU, the divergence form, V. (uu), the 
skew-symmetric form, iu. VU + +v. (uu), and the rotation form, o X u + iv1 u ( 2. (The veloc- 
ity is denoted by u and w = v X u is the vorticity.) For the past decade the rotation form has 
been the preferred choice for simulations of transition and turbulence (see [2, Chapter 71). It has 
the advantages of favorable conservation properties and economical implementation. However, 
in his paper, Horiuti [4] exhibited some large-eddy simulations of turbulent channel flow which 
suggested that the rotation form is markedly less accurate than the skew-symmetric form. 

The purpose of the present article is to clarify and to strengthen this conclusion. The 
calculations presented here are direct simulations (no turbulence modeling), are fully spectral (no 
low-order finite-difference errors), and encompass simulations of turbulence in homogeneous 
shear flows as well as of transition in channel and boundary-layer flow. Moreover, some 
comparisons are made between calculations which include aliasing errors and others in which 
these errors have been removed. 

2. Formulation 

The convection form of the incompressible Navier-Stokes equations is 

$+wvu+v~=vAu+S; 

v.u=o, 

(1) 

(2) 
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where S is a source term, the gradient operator, 

and the Laplacian, 

A=v.v. (4) 

The velocity u = ( ul, u2, u,), the static pressure is denoted by p, and the kinematic viscosity by 
V. 

Both spectral Galerkin and spectral collocation methods have been applied to numerical 
simulations of transition and turbulence. Fourier expansions are used for directions in which 
periodic boundary conditions are enforced; otherwise, Chebyshev expansions are appropriate. 
The Galerkin methods are applied in terms of the Fourier-Chebyshev coefficients, whereas the 
collocation approach is implemented in physical space. The major expense in a Galerkin method 
is the evaluation of the convolution sums that arise from the nonlinear terms. Transform 
methods allow this to be done in 0( N log,N) operations, where N is the total number of 
degrees of freedom. Most of the work in a collocation method is absorbed by the approximation 
of derivatives via analytic differentiation of the spectral interpolant. This, too, requires 
0( N log, N ) operations. 

In a proper Galerkin method the convolution sums are evaluated without aliasing errors. This 
requires the use of the 3/2-rule or of shifted grids in the transform method. A less expensive 
approach (by about a factor of 2) is the pseudospectral method, in which a more straightforward 
transform technique is employed at the price of including the aliasing errors. 

Similarly, aliasing errors are introduced in the evaluation of the nonlinear terms via a 
collocation method. They can, however, be eliminated by use of a 2/3-rule, in which the upper 
third of the frequency spectrum is forced to vanish. Moreover, most Galerkin or pseudospectral 
methods are algebraically equivalent to some collocaton method, with the 2/3-rule used in 
de-aliasing for equivalence with the Galerkin method. For simplicity, therefore, the discussion 
henceforth is confined to (de-aliased) Galerkin methods and to (aliased) collocation methods. We 
should note that the optimum efficiency-in terms of the minimal number of one-dimensional 
Fast Fourier Transforms and the minimal storage-can be achieved with the Galerkin formula- 
tion [1,12]. The reader is referred to [2, Chapter 71 for the details of spectral methods for the 
simulation of incompressible flow. Only the most general points have been reviewed here. 

The momentum equation in its skew-symmetric form (S) reads 

au - 
at +~u.Vu+tV.(uu)+Vp=vAu+S. (5) 

The term skew-symmetric is used because the operator iu. VU -I- $ V. ( uu) (for fixed 0 satisfying 
v. tz = 0) is skew-symmetric. Some of the advantages of skew-symmetric operators are discussed 
in [8,14]. The momentum equation is equivalent to 

au - 
at + o x u + v(+ 1 u I’) + vp = vdu + S. (6) 

Usually, the static pressure is replaced by the total pressure, P = p + i 1 u 1 2, to produce the 
customary rotation version (R) of the momentum equation, 

g +wxu+VP=vAu+S. 
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For completeness, we also list here the divergence form (D), 

au - 
at + v . (uu) + vp = vAu + S, (8) 

and recall the convection form (C) given in (1). 
As discussed in [2, Chapter 21, for Fourier-Gale&in methods the projection (spatial discretiza- 

tion) and differentiation operators commute, but for collocation methods they do not. This 
means that for the semidiscrete (continuous-in-time, discrete-in-space) momentum equation, the 
Fourier-Galerkin convection, divergence, and skew-symmetric forms are algebraically identical. 
Some differences are expected between computations using these forms and those using the 
rotation form because of the use of the total pressure in the latter. On the other hand, for 
collocation methods none of these forms are algebraically identical. 

Consider now the conservation properties for the ideal inviscid (V = 0), unforced (S = 0), fully 
periodic case. The ideal Navier-Stokes equations conserve linear momentum, / u dV, and 
kinetic energy, /i 1 u ( 2 dV. For the semidiscrete ideal equations, a Galerkin method conserves 
the discrete counterparts of both quantities. However, for a collocation method the semidiscrete 
conservation properties depend upon the exact form of the momentum equation which is 
discretized. In particular, for the rotation and skew-symmetric forms, both quantities are 
conserved, for the divergence form only linear momentum is conserved, and for the convection 
form neither quantity is conserved. 

In the presence of physical boundaries, the ideal conservation laws still hold with the 
boundary fluxes taken into account. However, for the requisite expansions in Chebyshev 
polynomials the Gale&in projection and differentiation operators do not commute and a 
semidiscrete conservation law, even accounting for the boundary fluxes, does not hold precisely 
(see [2, Chapter 41). Nevertheless, it holds to a sufficient degree of precision to warrant a 
preference for the conservation form of the semidiscrete equations. 

The question of which, if any, of these conservation properties are important for an accurate, 
physically meaningful simulation is apt to be very problem-dependent. However, the conserva- 
tion of kinetic energy is virtually mandatory for a simulation to be numerically stable in time. 
Thus, for quite practical reasons use of the convection or divergence forms is ruled out. Although 
either of these forms alone is numerically unstable, a method which uses the convection and 
divergence forms on alternate time steps appears to be well-behaved. We shall refer to this 
version as the alternating form (A). (Kerr [7] has used an alternating convection-divergence form 
on a scalar equation appended to the incompressible Navier-Stokes equations in rotation form.) 

Only 6 derivatives are required for the evaluation of the nonlinear terms for a collocation 
approximation in the rotation form, whereas 18 derivatives are needed for the skew-symmetric 
form. The convection, divergence, and alternating forms take 9 derivatives. (By invoking the 
incompressibility constraint, the number of derivatives for the convection and skew-symmetric 
forms can be reduced by 1.) Thus, the rotation form takes the least work for the evaluation of the 
nonlinear terms, the alternating form slightly more, and the skew-symmetric form appreciably 
more. Recall, however, that there is additional work required for the pressure and viscous terms. 
For flows which are inhomogeneous, even in only one direction. the solution of the implicit 
equations for the pressure and viscous terms takes most of the total CPU time. 
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3. Homogeneous turbulence 

The primary example will be homogeneous turbulence (see Fig. l), for which the mean flow is 

u(x) = (Sy, 0, 0), with S denoting the shear rate. This has served as a model problem for many 
extensive numerical investigations of shear flow turbulence. Numerous references are provided in 
the review articles by Rogallo and Moin [13] and Hussaini and Zang [6]. Following Rogallo [12], 
the total velocity is written 

u=u,+u’, (9) 

and the coordinate transformation, 

x’ = x - sty, Y’ =y, 

z’ = z, tl= t, 

between the Cartesian coordinates (unprimed) and the sheared (primed) coordinates is employed. 
The basic equations given in the previous section apply to the primed variables with the source 

term, 

S=(-S&0,0), (11) 

with differentiation with respect to t replaced by differentiation with respect to t’, with the 
gradient operator of (3) replaced by the transformed gradient operator, 

(12) 

and with the Laplacian (4) replaced by 

A’= v’. v’. (13) 

The computations are performed in terms of the sheared coordinate system (in which there is a 
uniform grid) and periodic boundary conditions are enforced in the computational system. As 
time evolves the physical coordinate system becomes more and more distorted. It has become 
customary to perform a coordinate re-meshing whenever the angle between the x and y axes 
reaches 45 O. This is done using 

x” = X-tY, y”=y, zrt=z. 04) 
This re-meshing amounts to rotating the y axis 90 o in a counterclockwise direction. It is 

illustrated in Fig. 2. The angle now becomes 135” and the computation is continued until it 

again reaches 45 O. In order to avoid aliasing during the re-meshing, the Fourier modes which 

alias on a finite grid are removed. These are the modes for which ( k,. - k, 1 > +JV,, where NY is 

Fig. 1. Schematic of the homogeneous, uniform shear problem. 
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Y’ Y’ 

i_ )x, Computational grid 11 tX, 

St = l/2 St = -l/Z 

Fig. 2. Physical and sheared (primed) coordinate systems before (unprimed) and after (double primed) re-gridding at 
St=;. 

the number of grid points in the y direction (see Fig. 3). As a result of this removal of modes, 
there is a loss of energy during the re-meshing procedure. 

The specific uniform shear flow problem chosen here for illustrative purposes has a computa- 
tional domain of [0, 2~1 in each coordinate direction, the viscosity Y = 0.0212, and the shear rate 
S = 28.3. The number of grid points in each direction is the same. The time discretization is a 
low-storage third-order Runge-Kutta method (see [2, Section 4.3.21) with a time step of roughly 
half the stability limit. 

The initial condition consists of a random divergence-free velocity field whose three-dimen- 
sional energy spectrum, E(k), which measures the kinetic energy in a spherical shell in wave 

number space at a distance k from the origin, satisfies 

(15) 

The two diagnostics that we shall use in presenting the results of our simulations are the 
turbulence intensity and the correlation spectra. Let ( . ) denote a spatial average. The turbu- 

St = 1/2 St = -l/2 

Fig. 3. Wave number transformation at re-gridding. The shaded regions undergo aliasing and are truncated 
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Fig. 4. Rotation (R), alternating (A), and Gale&in (G) results for homogeneous turbulence on a 643 grid: turbulence 
intensity (a) and u auto-correlation spectra in x (b), y (c), and z (d). 

lence intensity in the j direction is given by 

iii= (U;(r)UJ(X))“2 

(no summation on j is intended). The total turbulence intensity is 

4” = (iif + ii; + E:)1’2. 

The correlation tensor is given by 

R,,(r) = (~,‘(-+U~ + r)), 

06) 

07) 

(18) 

and its one-dimensional spectrum in the 1 direction is 

Ejk(kl) = &k2qK,,(rfz,) epikfr dr, (19) 

where e, is a unit vector in the 1 direction. 
Simulations of all the available alternatives have been run for the test problem on a 643 grid 

from a time of St = 0 to St = 8. Figure 4 displays the results for the rotation, alternating, and 
Gale&in forms of the nonlinear terms. (The Galerkin calculations used the rotation form.) 
Figure 4(a) shows the time histories of the total turbulence intensity. The plots were made from 
measured intensities at intervals of St = 0.5. The loss of energy during the re-gridding procedure 
is quite noticeable here. The most dramatic effect is the inability of the rotation form to sustain 
the turbulence at the proper level. The alternating form also suffers a slight loss of turbulence 
intensity, but this is much less than the loss for the rotation form. 

Figures 4(b)-(d) give the one-dimensional spectra for E,,. Aside from the discrepancy in scale, 

due to errors in the turbulence intensity, there are differences in shape at the high-wave-number 
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Table 1 
Turbulence properties for 643 simulations at St = 8 

Version 4 L,, L 33 h 11 x 33 s II S 33 FII F 33 

rotation 2.4619 0.41607 0.07612 0.32857 0.16547 - 0.45314 0.09365 3.8435 3.4285 
alternating 4.2096 0.37039 0.09395 0.30039 0.17161 - 0.84961 - 0.16872 5.0004 3.3062 
skew-symmetric 4.2178 0.37165 0.09401 0.30024 0.17154 - 0.85758 - 0.16971 5.0316 3.3025 
Galerkin 4.4745 0.38412 0.10144 0.31579 0.17321 - 0.63965 - 0.15038 4.4086 3.2478 

end of the spectra. This is most noticeable in the x spectra, primarily because this direction is 
resolved better than the other two. The aliased results (R and A) have a slower decay than the 
de-aliased results (G). Although the tails of the aliased results show the familiar curl, this effect is 
much less pronounced for the alternating form. 

Table 1 compares the results at St = 8 for several of the 643 cases on some specific turbulence 
properties. The symbols L,, and h,, denote the integral scale and the microscale, computed by 

L,k= $jTR,,(rek) dr, 
J a 

and 

A,, = ii,/(( au;/ax,)2)1’21 

(20) 

(21) 

respectively. The symbols S,k and FJk refer to the velocity derivative skewness and flatness, 
which are the third and fourth moments of au,l/axk, normalized by CJ’ and ii;, respectively. The 
difference between the versions of the nonlinear terms increases with the order of the moment 
involved, and also is greater for quantities involving x-derivatives than those involving z-deriva- 
tives. The latter behavior is clearly due to the greater differences in the x spectra. Notice that the 
(collocation) alternating form results agree quite well with those of the proper skew-symmetric 
case (and also prove to be numerically stable). 

As for the other simulations, the collocation versions of the convection and divergence forms 
proved to be numerically unstable, whereas the de-aliased computations based on the convection, 
divergence, and skew-symmetric versions were all numerically stable and the results were 
indistinguishable. There were slight differences-in the third digit for skewness and flatness and 
in the fourth digit for the other properties-between these results and those obtained from the 
de-aliased rotation form. This should be expected since with the fully discrete equations the total 
pressure is treated implicitly in the latter case, whereas only the static pressure is in the other 
cases. 

A final 643 simulation of interest was based on equation (6)-the rotation form using the 
static rather than the total pressure-using collocation. The results were indistinguishable from 
those of the standard rotation form. 

A similar comparison of three forms of the nonlinear terms is presented in Fig. 5 and Table 2 
for simulations on a 963 grid. (The initial conditions in Fourier space were identical to those for 
the 643 case.) The same trend is apparent, but the actual differences are less. The rotation form is 
still unsatisfactory, but now the alternating form is quite acceptable. Figure 6 and Table 3 
present corresponding results on a 1283 grid. (A Galerkin simulation was not conducted here 
because of the expense involved.) On this grid, even the rotation form now seems acceptable. 
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Fig. 5. Rotation (R), alternating (A), and Galerkin (G) results for homogeneous turbulence on a 963 grid: turbulence 
intensity (a) and u auto-correlation spectra in x (b), y (c), and z (d). 

Clearly, all the (stable) forms of the momentum equation converge to the same result. 
However, the absolute error level is much larger for the (collocation) rotation form. Moreover, by 
the time enough resolution is achieved to resolve the higher-order moments, the collocation 
alternating form result is just as acceptable as a Galerkin one. 
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Fig. 6. Rotation (R) and alternating (A) results for homogeneous turbulence on a l283 grid: turbulence intensity (a) 
and u auto-correlation spectra in x (b), y (c) and z (d). 
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Table 2 
Turbulence properties for 963 simulations at St = 8 

Version 4 Ll, L 33 h 11 h 33 s,, s33 4, 63 

rotation 3.8873 0.39110 0.09350 0.32118 0.17371 - 0.78180 - 0.06726 4.8490 3.5054 
alternating 4.5700 0.38979 0.10611 0.30527 0.17216 - 0.93917 -0.18593 5.8959 3.3570 

Galerkin 4.6246 0.38223 0.10423 0.30875 0.17236 - 0.76757 - 0.18131 5.0874 3.3483 

Table 3 
Turbulence properties for 12g3 simulations at St = 8 

Version 4 L,, L 33 h 11 h 33 S,, S 33 4, F33 

rotation 4.4726 0.38337 0.10362 0.31008 0.17259 - 0.83988 - 0.16551 5.3763 3.4563 
alternating 4.6193 0.37874 0.10359 0.30636 0.17208 -0.91124 -0.19722 5.8916 3.3959 

The calculations reported above were performed on a Cray 2. The performance of this 
machine is heavily dependent upon system load, with timings varying by as much as 30%. On 
average the timings suggest that the alternating and skew-symmetric form codes took 25% and 
50% longer per step, respectively, than the rotation form code. The Galerkin results were 
obtained with a collocation code using the 2/3-rule on a grid 50% larger in each direction. 
Although this code produces reduces identical to that of a Galerkin method (see [2, Chapter 3]), 
it is much less efficient than a highly tuned Galerkin method [12]. Hence timings from this code 
are not informative. 

4. Channel and boundary-layer transition 

Another popular application of spectral methods has been to transition in wall-bounded shear 
flows. The ideal channel flow problem is sketched in Fig. 7. For this problem the source term 
represents the mean pressure gradient driving the flow and is given by 

S = (2/V, 0, 0). (22) 

The boundary conditions are no-slip at the walls (y = f l), and periodic in x and z. A Fourier 

Fig. 7. Schematic of the channel flow problem. 
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Fig. 8. Channel flow resolution spectra at r = 22.5 for the rotation (R) form, the alternating (A) form, and a high 
resolution (H) case. 

discretization is used in the two periodic directions and a Chebyshev discretization is used in the 
direction normal to the wall. Spectral methods for this problem are also covered in depth in [2, 
Chapter 71. See [2,6] for detailed references on specific applications. 

‘The particular example that we shall use to illustrate the effect of the form employed for the 
nonlinear terms in channel flow is the case that has been discussed in great detail by Krist and 
Zang [9]. The periodicity lengths are 27 in both x and z. The viscosity is v = l/1500. The initial 
conditions at t = 0 consist of the mean flow plus prescribed eigenfunctions of the linearized 
Navier-Stokes equations. The particular spectral method employed for the calculations is the 
Fourier-Chebyshev collocation scheme described in [15]. 

The comparison is made over the interval from t = 15 to t = 22.5 and is restricted to 
collocation methods. The flow at t = 15 is well-resolved (even with the rotation form) on a 
48 x 96 x 96 grid. Figure 8 compares the spectra obtained from the rotation and alternating 
forms at t = 22.5. Also included for comparison are the spectra from a high resolution simulation 
using the rotation form on a 96 X 128 X 216 grid. The results from the alternating form are much 
closer to those of the high resolution case than are the results from the lower resolution rotation 
form case. The principal error in the x direction is one of truncation, in the y direction it is one 
of slight noise at the tail, and in the z direction it is the curl in the tail. 

Figure 9 presents some critical flow field features for each of these cases. On the left is shown 
the vertical shear (i3u,/ay) in the plane z = T, which is the so-called “peak plane”. On the right 
is displayed the streamwise vorticity (L+) in the plane for which it is most intense (x = $rr). Both 
flow field features contain strong gradients. On the fine grid, these are resolved sufficiently well. 
On the coarser grid, the resolution is inadequate, as evidenced by the noticeable oscillations in 
the flow. These oscillations are much more pronounced for the coarse grid results which used the 
rotation form than they are for the alternating form case. This is consistent with the spectra and 
the conclusions of Krist and Zang [9,17], who found that the tails of the spectra need to be 
roughly 8 orders of magnitude below the level at low wave numbers in order to have sufficient 
resolution in transition simulations. 

Additional simulations indicate that the flow field oscillations are virtually eliminated by a 
simulation on a 64 x 96 x 128 grid when the alternating form is employed. Equivalent accuracy 
using the rotation form code required over twice as many total grid points. For the particular 
channel flow algorithm employed here the alternating form has two additional advantages over 
the rotation form. The pressure step requires the solution of an implicit equation. This is done 
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Fig. 9. Vertical shear in the peak plane (left) and streamwise vorticity at x = $u for channel flow at t = 22.5. 

with an iterative method. It turned out to take only half as many iterations with the alternating 
form code as it did with the rotation form code. As a result the overall CPU time for the 
alternating form code was less than that of the rotation form code. (The bulk of the work in this 
application occurs in the solution of the implicit equations.) Moreover, the stability limit on the 
time step (which is governed by the explicit advection limit) is, in practice, over twice as large for 
the alternating form as for the rotation form code. 

Similar improvement is obtained in simulations of boundary-layer transition. The numerical 
method is the same, with the semi-infinite domain in y handled by an expansion in Chebyshev 
polynomials in terms of a transformed variable. 

A high resolution simulation of boundary-layer transition has recently been performed by 
Hussaini, Erlebacher and Zang [5,16]. One segment of this simulation (from t = 4 - lo/80 to 
t = 4 - 14/80) has been repeated with a calculation using the alternating form instead of the 
rotation form. Both were performed on a 128 X 144 X 288 grid. A comparison of the resolution 
spectra at t = 4 - 14/80 is provided in Fig. 10. The use of the alternating form has drastically 
reduced the misbehavior of the tail of the spectra in the y and z directions. These spectra suggest 
a drastic reduction in the oscillations in the y and z directions but little change in those in the x 
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Fig. 10. Boundary-layer resolution spectra at t = 4- 14/80 for the rotation (R) form and the alternating (A) form. 
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Fig. 11. Vertical shear in the peak plane for boundary-layer flow at t = 4 - 14/80: rotation form (left) and alternating 

form (right). 

direction. The improved flow field in the y direction is evident from the reduction in the vertical 
oscillations in Fig. 11. The oscillations in x have been unaffected, as expected. (Regrettably, data 
is no longer available to illustrate the reduction in the oscillations in z.) 

5. Discussion 

The various comparisons presented above reinforce the case raised by Horiuti [4] against the 
use of the rotation form in numerical simulations of incompressible flow. Since all the computa- 
tions presented here used fully spectral methods, they enable the cause of the inferior perfor- 
mance of the rotation form to be deduced more clearly than from the calculations of Horiuti who 
employed low-order finite differences in the y direction. Horiuti found that in his large-eddy 
simulations of turbulent channel flow (without the use of a residual stress model), the turbulence 
decayed when the rotation form was employed, whereas it sustained itself under the skew-sym- 
metric form. Faced with the evidence that Moser and Moin [ll] had achieved a computation of 
sustained turbulence in a direct simulation of channel flow using the rotation form, Horiuti 
concluded, on the basis of some sketchy truncation error analysis, that the errors in the near-wall 
region were much larger with the rotation form. He speculated that Moser and Moin succeeded 
because of the greater accuracy of their Chebyshev discretization in the y direction. 

The comprehensive results provided in the present paper demonstrate that the blame for the 
poor performance of the rotation form has been misplaced. All the calculations here were fully 
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spectral and thus free of the low-order finite-difference errors which Horiuti suspected to be the 
culprit. Nevertheless, the collocation results based on the rotation form were decidedly inferior to 
those based on the skew-symmetric (or the more economical alternating) form. And yet, the 
rotation form performed quite admirably whenever the aliasing errors were removed. Given that 
Horiuti’s calculation included the Fourier aliasing errors, whereas Moser and Moin’s employed a 
Galerkin scheme, the inescapable conclusion is that the rotation form produces aliasing errors 
that are more damaging than those produced by the skew-symmetric form. 

As yet no rigorous demonstration of this property is available. Analysis of the computed flow 
field for the homogeneous turbulence problem indicates that the root-mean-square aliasing errors 
for the rotation form are about twice as large as those for the convection, divergence, and 
skew-symmetric forms. Numerical analysts have proven that aliased and de-aliased spectral 
algorithms for a variety of nonlinear problems have the same asymptotic rate of error decay as 
the grid is refined. This includes Fourier spectral methods for homogeneous, isotropic turbulence 
[lo] and Fourier-Chebyshev methods for channel flow [3]. However, these proofs utilized the 
divergence form. No analysis has been performed for the rotation form. The results in the 
present paper are consistent with these proofs of convergence. As the grid is refined, all the 
methods converge to the same solution. 

From a practical standpoint, the choice reduces to the skew-symmetric (or alternating) form or 
any Galerkin method. For spectral methods the final decision rests partly on matters of taste and 
partly on economics. For finite-difference or finite-element methods, however, the clear choice is 
the skew-symmetric form. De-aliasing procedures are only available for the simplest grids, and 
there they add substantially to the cost of the method since the de-aliasing procedure (which uses 
Fast Fourier Transforms) is much more expensive than the basic discretization. 
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