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Multiscale flow phenomena in microfluidic and biomedical applications require the use of
heterogeneous modeling approaches. In this paper we present a hybrid method based on
coupling the Molecular Dynamics (MD) method, the Dissipative Particle Dynamics (DPD)
method, and the incompressible Navier–Stokes (NS) equations. MD, DPD, and NS are for-
mulated in separate subdomains and are coupled via an overlapping region by communi-
cating state information at the subdomain boundaries. Imposition of boundary conditions
in the MD and DPD systems involves particle insertion and deletion, specular wall reflec-
tion and body force terms. The latter includes a boundary pressure force in order to min-
imize near-boundary density fluctuations, and an adaptive shear force which enforces the
tangential velocity component of boundary conditions. The triple-decker algorithm is ver-
ified for prototype flows, including simple and multi-layer fluids (Couette, Poiseuille, and
lid-driven cavity), using highly accurate reference solutions. A zero-thickness interface is
also possible if it is aligned with the flow streamlines.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In many microfluidic and biomedical applications there is often a need to model accurately multiscale flow phenom-
ena across several orders of magnitude in spatiotemporal scales. Examples in the first category include flow over nano-
tubes with hydrophobic surfaces and electroosmotic flows [1], where flow phenomena within a layer of less than 10 nm
from the wall may have a profound effect on the global dynamics. Examples in the second category include cytoadhe-
sion [2] and platelet aggregation [3], where interactions of freely flowing cells with protein-coated walls govern the
overall dynamics. In both cases it is important to capture molecular details within a near-wall subdomain but also re-
solve efficiently the outer flow. To this end, molecular dynamics (MD) simulations can be employed to resolve the
near-wall structure but cannot be used in big domains due to its unfavorable computational scaling compared to con-
tinuum discretizations. Multiscale approaches both in time and space can overcome this difficulty and provide a unified
description of liquid flows from nanoscales to larger scales. The majority of existing multiscale methods [4–10] attempt
to ‘‘glue” together atomistic and continuum approaches corresponding to MD and Navier–Stokes (NS), respectively.
However, between atomistic and continuum scales lies an intermediate range called mesoscopic, which exhibits features
of both the atomistic and continuum descriptions. Over the last decade, there has been great progress in developing
efficient numerical methods for this regime; the most popular method is the Lattice Boltzmann method (LBM) [11],
but other Lagrangian-type methods have also emerged, e.g. the Dissipative Particle Dynamics (DPD) [12,13] and the
Smoothed Particle Hydrodynamics (SPH) [14,15]. Remarkably, the mesoscopic level is simply omitted in the atomis-
tic/continuum paradigm although a few attempts have been made recently to couple atomistic and mesoscopic descrip-
tions directly, specifically MD and LBM [16,17]. However, to the best of our knowledge, there is no published hybrid
. All rights reserved.
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atomistic–mesoscopic–continuum method for multiscale flow phenomena, which would combine the advantages of all
three levels of description.

There are two main coupling approaches:

(1) The flux-exchange method [4–7] is based on the flux-exchange between continuum and particle domains.
(2) The state-exchange method [8–10,16,17] is based on the alternating Schwarz method [18].

More specifically, the flux-exchange method is based on the direct exchange of flux information in the overlap domain
between the particle region and the continuum region, and relies on the matching of fluxes of mass, momentum and energy.
In the state-exchange method the state information between the particle simulation and the NS equations is transferred
through an overlap region where the particles’s dynamics is constrained; the constrained dynamics is often imposed via a
dynamic relaxation technique [10]. The alternating Schwarz method is used to solve sequentially the problems in the con-
tinuum and atomistic domains, and state-exchange is performed until convergence is achieved. The main difficulty here is
extraction and imposition of the required state information in particle-based methods. The extraction of the mean flowfield
properties requires sampling of flow characteristics over some region and often over a time interval. This fact makes the
application of the flux-exchange model difficult and favors the alternating Schwarz method. However, the Schwarz method
appears to be more restrictive in the case of dynamic simulations of unsteady flows.

The choice of a particular multiscale algorithm depends strongly on the flow problem. Several algorithm characteristics
(e.g. performance, applicability and robustness) may be considered. The main requirement for all available algorithms is con-
servation of mass, momentum and energy. For instance, conservation of momentum and energy in particle-based methods is
often imposed on average and is not satisfied at every fixed point of time. The applicability of a particular algorithm may be
restricted, for example, to steady flows as well as to a certain range of flow regimes. The algorithm robustness includes the
ability of the hybrid method to efficiently decouple length and time scales. Both of the aforementioned coupling approaches
lead to a reasonably good decoupling of spatial scales. However, the state-exchange method enables less restrictive temporal
coupling than the flux-exchange method. In this work we employ the state-exchange method for coupling atomistic, mes-
oscopic, and continuum formulations.

The paper is organized as follows: in Section 2 we describe the coupling among regions with different formulations. De-
tails of atomistic modeling are presented in Section 2.1, mesoscopic modeling in Section 2.2, and continuum modeling in
Section 2.3. Simulation results of the triple-decker algorithm for Couette, Poiseuille and lid-driven cavity flows are presented
in Section 3. We conclude in Section 4 with a brief discussion.

2. Triple-decker algorithm

In this section we describe the coupling mechanism. The hybrid coupling technique used in this paper is based on the
domain decomposition similar to the Schwarz alternating method [18]. The flow domain is decomposed into three (or poten-
tially more) overlapping regions: an atomistic region described by MD, a mesoscopic region described by DPD, and a contin-
uum region represented by spectral element discretization of the incompressible NS equations.

A schematic of the domain decomposition (left) and the time progression (right) is shown in Fig. 1. Each subdomain is
subject to Dirichlet velocity boundary conditions (BCs). The integration in each region is performed independently, and cou-
pling among different subdomains is done through BC communications. As an example, in Fig. 1 BCs for the DPD region will
be provided from both MD and NS regions, and in turn, BCs for the MD and NS subdomains will be extracted from the DPD
region. The communication with necessary BCs information among subdomains is done every s in time progression as
shown in Fig. 1. Note that the time s between two successive communications may correspond to a different number of time
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Fig. 1. A schematic of the MD–DPD–NS domain decomposition (left) and the time progression (right).
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steps for the three descriptions. For instance, Fig. 1 shows the smallest timestep dtMD chosen for the MD simulation, a larger
dtDPD for DPD, and the largest time step dtNS for the Navier–Stokes formulation, which illustrates an effective temporal decou-
pling. In addition, the time interval s can be manually set and potentially changed during simulation depending on the flow
development, i.e. prescribe small s for transient flow and larger s for steady state. There are many possible communication
patterns which can be used for the simulation progressing in time. For instance, one could run all the subdomains simulta-
neously and carry out BCs communications every s. Another option is to run the subdomains sequentially in the chosen or-
der, such that one subdomain is advanced during s, BCs are passed to the second subdomain, and in turn the second
subregion is integrated during s, and so forth. The algorithm allows one to freely select subdomain dimensions (e.g. length
and width), timestep for integration and, if needed, fluid properties (e.g. viscosity for multi-layer fluid), because the subdo-
mains are integrated separately and are coupled only through BCs.

An extraction of BCs from particle subdomains such as MD and DPD involves velocity averaging. A number of cells is pres-
ent along the line of interest, where the local velocity field is sampled, and the averaging is carried out during a number of
timesteps. However, one has to be aware of the associated statistical error Ev , which depends on the number of samples Mv ,
the corresponding cell average �v and standard deviation rðvÞ of desired flow properties. Hadjiconstantinou et al. [19] ob-
tained an a priori estimate for the number of samples Mv required to measure the average of velocities in a cell of volume
V for fixed error Ev , as follows:
Mv ¼
kBT
�v2

1
�qVE2

v
; ð1Þ
where �q, T and kB are the average density, temperature and Boltzmann constant, respectively. Note that one sample
ðMv ¼ 1Þ corresponds to the averaging over �nV ¼ �q

m V particle velocities or over all particles in volume V during a single
timestep, where �n is the average number density and m is the particle mass. This formula provides the correct estimate
assuming that the samples are statistically independent, which is generally not valid for MD and DPD fluids if sampling is
performed every timestep. If the samples are correlated, the number of samples required to estimate the average of veloc-
ity is equal to
Mc
v ¼ 2

sv

dt
Mv ; ð2Þ
where sv is the autocorrelation time [20]. The autocorrelation time is proportional to the fluid self-diffusion coefficient D
because of the Green–Kubo relation: D ¼ 1

3

R1
0 Av ðtÞdt, where Av ðtÞ is the velocity autocorrelation function defined as

Av ðtÞ ¼ Ce�t=sv , where C is a constant. We have used the above equations in order to determine the number of samples re-
quired to keep the error Ev below 5%, see Section 3.

2.1. Atomistic region via molecular dynamics

The atomistic region is necessary in flow parts where the continuum formalism breaks down or where atomistic level
physics needs to be captured. We model the atomistic subdomain using MD, but in combination with the DPD thermostat
[12,13]. Next, we describe the MD method and the imposition of BCs.

2.1.1. MD governing equations with DPD thermostat
The molecular dynamics system consists of N point particles of mass mi, position ri and velocity vi. The particles evolve

according to Newton’s second law of motion
dri ¼ vidt; ð3aÞ

dvi ¼
1

mi

X
j–i

ðFLJ
ij dt þ FD

ij dt þ FR
ij

ffiffiffiffiffi
dt
p
Þ; ð3bÞ
where FLJ
ij ¼ rUðrijÞ are Lennard–Jones interparticle forces and rij ¼ ri � rj, rij ¼ jrijj. FD

ij and FR
ij are dissipative and random

forces, which define the DPD thermostat described in the DPD method, see Section 2.2. Soddemann et al. [21] showed that
it is advantageous to use the DPD thermostat in MD as it is completely local and allows longer timesteps compared to con-
ventional thermostats without sacrificing accuracy. The Lennard–Jones potential is given by
UðrijÞ ¼ 4�
rMD

rij

� �12

� rMD

rij

� �6
" #

; ð4Þ
where � and rMD are energy and length characteristic parameters, respectively. All interactions vanish beyond a cutoff radius
rc. The equations of motion were integrated using the modified velocity-Verlet algorithm [13].

2.1.2. MD for non-periodic systems
Here we describe a model which imposes non-periodic BCs in MD. Two main issues are considered: (i) correct imposition

of local velocity at the boundary and (ii) control of local disturbance effect on density, pressure and temperature.
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The first problem is subdivided into imposition of the normal vn and the tangential v t components of velocity. The tan-
gential component of velocity at the boundary is enforced through an adaptive shear force: each particle with distance h < rc

from the boundary is subject to a tangential force Fk
t ðhÞ depending on the distance h. The force is defined as
Fk
t ðhÞ ¼ CkðDv tÞwðhÞ; ð5Þ
where k is the iteration number, CkðDv tÞ is an adaptive force strength and w(h) is a weight function defined as

wðhÞ ¼ 1� h
rc

� �4
. The adaptive force strength is calculated iteratively as Ckþ1 ¼ Ck þ aDv t , where a is a relaxation parameter

which can be set to a constant value similar to [4] or calculated adaptively as proposed in [10]. In this work we set the relax-
ation parameter to a = 1.0, but future work will incorporate a dynamic approach. Here, we define Dv t ¼ vBC

t � vest
t with vBC

t

the assigned velocity at the boundary and vest
t an estimated flow velocity at the boundary. The near-boundary velocity profile

is estimated by local cell averaging of particle velocities during every m timesteps. Next, vest
t is calculated by extrapolation

from the estimated near-boundary velocity profile, and recalculation of the adaptive shear force is performed. Here, we em-
ploy a first-order extrapolation based on two points in the near-boundary region. In general, higher order extrapolation can
be implemented, however it requires estimation of larger number of points in the near-boundary velocity profile. After a

number of iterations, we find that Dv t ’ 0, so that Ck and Fk
t ðhÞ converge to a constant value, which leads to the proper tan-

gential BC velocity v t ¼ vBC
t .

Imposition of the normal velocity component vn is carried out by particle insertions and reflections similarly to [9]. In order
to satisfy total mass conservation we need to keep the total number of particles in the system constant. Particles that strike
the boundary are specularly reflected in a frame of reference attached to the moving boundary. The collision time is calcu-
lated as t0 ¼ ðxk � xBCÞ=ðvBC � vkÞ, where xBC and vBC are the boundary position and the boundary speed, and xk and vk are the
position and the normal velocity of a particle. If a particle crosses the boundary ð0 6 t0 6 dtMDÞ during one timestep, a new
particle velocity and position are computed according to the following equations:
vkþ1 ¼ 2vBC � vk; ð6aÞ
xkþ1 ¼ xk þ t0vk þ ðdtMD � t0Þvkþ1: ð6bÞ
Note that only the normal to the boundary component is updated, while the two tangential to the boundary components (in
3D) remain unchanged. After particle reflection is completed, the average number of particles that have left the domain is
equal to the particle flux through the boundary ndtMDAvn, where n is the number density and A is the area. Particles that
have left the domain are re-inserted into near boundary layer according to the probability associated with the particle flux
through the boundary using the USHER algorithm [22]. The USHER algorithm provides numerical stability of the insertion
procedure and minimizes local disturbances in fluid properties. Inserted particle velocities are drawn from a Maxwellian dis-
tribution according to the local boundary velocity. In addition, we added an adaptive normal force of similar type as in Eq. (5).
However, we found that the insertion and reflection of particles appears to be sufficient to enforce a correct normal velocity
at the boundary, so the adaptive normal force was turned off in most of our calculations. Note that insertion and reflection of
particles does not conserve instantaneous momentum, however the total system momentum is conserved on average.

We now address the second issue of minimizing local disturbances in fluid properties. As we mentioned before, the USHER
algorithm works well for the particle insertion. However, another problem is erroneous density fluctuations near the bound-
ary, which appear due to an imbalance of forces from the surrounding fluid (a particle near the boundary interacts with a
not-fully spherical region of fluid particles). In order to compensate for the force imbalance, we apply the following pressure
force in the near-boundary region similarly to [9,23]:
FpðhÞ ¼ �n
Z

VsnVexðhÞ

@U
@r

gðrÞdV ; ð7Þ
where Vs is the sphere volume, VexðhÞ is a volume excluded from the sphere by the boundaries, and g(r) is the radial distri-
bution function. The calculation of the above integral requires computing the radial distribution function for the specific fluid
used in the simulations. Note that the pressure force FpðhÞ can be also calculated directly from an equilibrium simulation for
a fictitious boundary.

2.2. Mesoscopic region via dissipative particle dynamics

The mesoscopic region might cover the flow region where the continuum formalism is not valid while a fully atomistic
simulation is not feasible due to computational cost. The mesoscopic subdomain is modeled through the DPD method de-
scribed next.

2.2.1. DPD governing equations
DPD is a mesoscopic particle method and, unlike MD, each DPD particle represents a molecular cluster rather than an indi-

vidual atom, and can be thought of as a soft lump of fluid. Similarly to MD, the DPD system consists of N point particles of
mass mi, position ri and velocity vi. DPD particles interact through three forces: conservative, dissipative and random forces
given by
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FC
ij ¼ FC

ijðrijÞr̂ij; ð8aÞ
FD

ij ¼ �cxDðrijÞðvij � r̂ijÞr̂ij; ð8bÞ
FR

ij ¼ rxRðrijÞnijr̂ij; ð8cÞ
where r̂ij ¼ rij=rij, and vij ¼ vi � vj. The coefficients c and r define the strength of dissipative and random forces, respectively.
In addition, xD and xR are weight functions, and nij is a normally distributed random variable with zero mean, unit variance,
and nij ¼ nji. All forces are truncated beyond the cutoff radius rc , which defines the length scale in the DPD system. The con-
servative force is given by
FC
ijðrijÞ ¼

aijð1� rij=rcÞ for rij 6 rc;

0 for rij > rc;

�
ð9Þ
where aij ¼
ffiffiffiffiffiffiffiffi
aiaj
p

and ai, aj are conservative force coefficients for particles i and j, respectively.
The random and dissipative forces form a thermostat and must satisfy the fluctuation–dissipation theorem in order for

the DPD system to maintain equilibrium temperature T [24]. This leads to:
xDðrijÞ ¼ ½xRðrijÞ�2; ð10aÞ
r2 ¼ 2ckBT; ð10bÞ
where kB is the Boltzmann constant. The choice for the weight functions is as follows
xRðrijÞ ¼
ð1� rij=rcÞk for rij 6 rc;

0 for rij > rc;

(
ð11Þ
where k = 1 for the original DPD method. However, other choices (e.g. k = 0.25) for these envelopes have been used [23,25,26]
in order to increase the viscosity of the DPD fluid.

The time evolution of velocities and positions of particles is determined by Newton’s second law of motion similarly to
MD method, which is integrated using the modified velocity-Verlet algorithm [13].

2.2.2. Boundary conditions in DPD
Non-periodic boundary conditions in the DPD region are imposed analogously to the MD region. The tangential compo-

nent of velocity is enforced through the adaptive shear force Fk
t ðhÞ. Imposition of normal velocity component is performed by

insertion and reflection of particles as described in Section 2.1. However, here the USHER algorithm is omitted. We found that
the system remains stable with random insertions. Moreover, a disturbance to the local properties appears to be on the order
of several percent which is similar to deviations introduced by the thermostat. No special algorithm is required for insertions
because of soft particle interactions in DPD compared to hard MD particle interactions. In order to minimize near-boundary
density fluctuations we use a similar pressure force FpðhÞ as for the MD subdomain, see also [27].

2.3. Continuum model

The continuum part of the hybrid system is governed by the incompressible NS equations in the form
@u
@t
þ ðu � rÞu ¼ � 1

q
rpþ mr2u; ð12aÞ

r � u ¼ 0; ð12bÞ
where u is the fluid velocity, q is the density, p is the pressure and m is the kinematic viscosity. At the boundary we specify
Dirichlet velocity boundary conditions. The NS equations are solved using the spectral/hp element discretization imple-
mented in the parallel solver NEKTAR [28].

3. Simulation results

We test the triple-decker algorithm for three flows: Couette, Poiseuille and lid-driven cavity flow. We compare the hybrid
simulation results with an exact solution for the Couette and Poiseuille flows, and with numerical solution for the cavity flow
obtained by a highly resolved spectral element discretization of the NS equations.

3.1. Couette and Poiseuille flows

We apply the MD–DPD–NS algorithm to the cases of Couette and Poiseuille flows. Fig. 2 shows a sketch of the domain
used in both simulations. The fluid is confined between two parallel walls placed at y = 0 and y = H = 20 with velocities v0

and v1, respectively. For the case of Couette flow we set v0 = 0, v1 = 5, and for Poiseuille flow v0 = v1 = 0. Table 1 presents
the parameters used in the MD and DPD regions. The domain is assumed to be periodic in x direction, and for MD and
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Table 1
MD and DPD simulation parameters.

Region � rMD a n rc c r kBT k (Eq. (11))

MD 0.3 0.6 N/A 3 1 4.5 3 1 1.0
DPD N/A N/A 25 3 1 4.5 3 1 0.221
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DPD also in z direction. The width of MD, DPD and NS layers was set to 13:3� rMD, 8� rc and 0:4� H, respectively. The time-
step in all regions was chosen to be 0.005 and the kinematic viscosity m was equal to 0.576 in common (for all three descrip-
tions) non-dimensional units. The viscosity in case of MD and DPD was calculated using the periodic Poiseuille flow method
of [29]. In the case of Poiseuille flow the fluid is driven by a constant pressure gradient equal to 0.03 (non-dimensional units).
The overlapping regions have thickness d = 2. The thickness of overlap is a free parameter, however it may have a strong ef-
fect on the flow convergence. While it is desirable to have a minimal overlap due to the computational expense, d must be
greater than zero because the overlapping region is responsible for the propagation of information among regions with dif-
ferent formulations. For instance, in case of the Couette flow (Fig. 2) the flow development is initiated at the upper wall and
propagates downwards through the NS region. Having d = 0 would not allow propagation of flow development in the DPD
region. In addition, d � 0 might provide an extremely slow flow development. Several tests we performed suggest that
the overlapping region should approximately have a thickness on the order of 10% of the flow characteristic length.

The coupling process was performed every time s = 0.5 which corresponds to 100 timesteps. The coupling time s was cho-
sen according to Eqs. (1) and (2) as follows: here kBT ¼ 1, �v ¼ 2:5, �q ¼ 3:0, V ¼ 10� 10� 0:5 ¼ 50 and Ev ¼ 0:05 lead to
Mv ¼ 0:427, which corresponds to averaging over approximately 64 particle velocities. The autocorrelation time sv ¼ 0:45
yields Mc

v ¼ 77. Taking into account that some estimated velocities are below 2.5 we set the number of samples to 100 time-
steps. One iteration of the algorithm corresponds to the flow integration during time s and is performed as follows: the NS
solver is advanced during the time s and BCs are extracted and passed to the DPD subdomain. Then, DPD is advanced during
s and BCs are passed to the MD and NS regions (see Fig. 2). Next, the MD subdomain is integrated during time s and BCs for
the DPD region are extracted. Thus, a single iteration of the triple-decker algorithm corresponds to the sequence of region
integrations NS ? DPD ? MD. The choice of the sequence is solely based on the type of flow, such that the flow development
propagates from the moving wall downwards through the NS ? DPD ? MD regions to the stationary lower wall. Note that
for the case of Poiseuille flow an analogous sequence MD ? DPD ? NS can be selected due to symmetry. This type of iter-
ation is performed until the system relaxes to a steady state solution. The number of iterations required to reach steady state
depend on many factors, such as flow and fluid properties (e.g. viscosity, Reynolds number and geometry), the relative geo-
metric complexity of different domains, the overlapping regions (e.g. thickness and complexity), the BC relaxation technique,
etc. Here the number of iterations to reach steady state was on the order of O(102). After the steady state was reached, we
carried out averaging of the flow field over 105 timesteps.

Fig. 3 presents hybrid simulation results of Couette and Poiseuille flows. We find an excellent agreement of the triple-
decker method results with the exact solution. In addition, we have observed no density fluctuations across the channel. How-
ever, this system corresponds to a relatively simple coupling among regions. It only requires to impose a tangential velocity
at the boundary while the normal velocity component remains zero. Note that no particle insertions are performed in the
above simulations. Nevertheless, these results verify the correctness of the adaptive shear forcing for imposing the proper
tangential velocity at the boundary.
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3.2. Lid-driven square cavity flow

We selected the well-known lid-driven square cavity flow to test the more general hybrid model system. The Reynolds
number of this flow is defined as Re ¼ VL

m , where V is the velocity of the moving lid and L is the height of the cavity. Fig. 4
shows a sketch of the simulation domain. The MD and DPD parameters are the same as in Table 1. The MD computational
subdomain was set to 83:3rMD � 25:0rMD � 16:7rMD, the DPD subdomain to 50rc � 25rc � 10rc , and the NS subdomain to
L � 0.6 L, where L = 50 is the characteristic length. In terms of common non-dimensional units the MD subdomain covers
the region ½0;50�

T
½35;50�, the DPD subdomain is ½0;50�

T
½20;45� and the NS subdomain is ½0;50�

T
½0;30�, respectively

(see Fig. 4). The overlapping regions were set with a thickness of 20% of the characteristic length L. The MD and DPD regions
were assumed to be periodic in the z direction. The parameters described next are in common non-dimensional units: The
kinematic viscosity was 0.576, and the velocity of the moving lid was set to V = 0.576, which corresponds to Re = 50. The
timestep in the MD and DPD regions was set to 0.005, and in the NS region to 0.015.

Here, the sequence of one iteration was MD ? DPD ? NS due to the flow propagation from the moving lid to the bottom
of the cavity. The inter-region communication was done every time s = 2.25, which corresponds to 450 timesteps in case of
the MD and DPD regions, but to 150 timesteps for the NS subdomain. Similarly to the Couette and Poiseuille flow system, we
V
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DPD

NS

DPD-NS overlapping

MD-DPD overlapping

DD’VV ’y

x

L

L

Fig. 4. Lid-driven square cavity flow domain sketch. Comparison of results is performed along the cuts VV0 and DD0 .
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estimate here Mv ¼ 48:225 (Eq. (1)) with �v ¼ 0:576, Ev ¼ 0:05 and V ¼ 1:66� 0:5� 10 ¼ 8:33, and therefore Mc
v ¼ 8680 (Eq.

(2)) with the autocorrelation time sv ¼ 0:45. Our choice of s = 2.25 or 450 timesteps corresponds to the error of approxi-
mately 22%, which was done for the purpose of a faster flow convergence to a steady state. However, after steady state
was reached, we performed several iterations of the algorithm with each iteration of 9000 timesteps and set the error level
below 5% in order to refine the steady state solution. The number of iterations to reach steady state was considerably in-
creased compared to the case of Couette and Poiseuille flows due to the flow complexity and was approximately 500. Also,
having the overlapping region thickness less than 10% of the characteristic length yielded a slightly under-developed flow
comparable with the flow at a lower Reynolds number (e.g. Re = 45). We attribute this to the flow complexity at the inter-
faces which can be affected by an artificially reduced propagation of the information through a thin overlapping region. In
addition, we applied a correction to the boundary velocities extracted from the MD and DPD regions in order to set the total
mass flux through the interface to zero (total domain mass conservation). The correction is found to be on the order of sev-
eral percent of the velocity magnitudes.

Fig. 5 shows hybrid simulation results of the Re ¼ 50 square cavity flow extracted along the VV0 (at the half of the domain)
and DD0 lines (see Fig. 4). Results obtained by employing only the full NS equations are plotted with the solid lines, MD re-
sults by square symbols, DPD by circles and NS by triangles. The hybrid model solution agrees very well with the highly accu-
rate spectral element solution. Here, velocities at the boundaries contain non-zero tangential as well as normal components.
This simulation serves as a rigorous verification of the proposed triple-decker algorithm. In addition, Fig. 6 presents the num-
ber density profiles extracted along the VV0 and DD0 lines. The number density in the MD and DPD regions is normalized by
the bulk density. In the NS region we assume it to be constant and equal to 1 as we solve the incompressible NS equations.
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Note that the number density is uniform along the VV0 cut, however we observe a slight density increase in the upper right
corner in case of the DD0 cut, where there is particle accumulation in the corner due to the MD fluid being slightly compress-
ible at sufficiently high flow velocity [30]. The influence of the particle accumulation in a wall-bounded geometry on the flow
solution was thoroughly studied in the case of the DPD method in [23], where an empirical criterion was established that
identifies the maximum allowed flow velocity below which an accurate DPD solution can be obtained. Here, an analogous
criterion suggests that the maximum density in the corner normalized by the bulk density should be bounded by 2.0, which
corresponds to the maximum lid velocity of approximately 5.0. The values in our simulation are far below the above limits,
which justifies why the particle accumulation in the corner has a negligible effect on the flow solution.

Next, we present simulation results of the square cavity flow where the MD, DPD and NS subdomains utilize different
non-dimensional characteristic lengths and contain immiscible fluids with different viscosity. However, the Reynolds num-
ber of 50 was matched in all regions by scaling the boundary velocities during inter-region communications. For example to
scale the velocities for DPD extracted from the MD region, we use the following formula:
Table 2
MD and

Region

MD
DPD

Fig. 7.
velocity
vBC
DPD ¼ vBC

MD
LMD

LDPD

mDPD

mMD
; ð13Þ
where LMD and LDPD are the characteristic lengths of the MD and DPD regions, and mMD, mDPD are the fluid viscosities. Table 2
summarizes the simulation parameters used in the MD and DPD regions. The MD computational subdomain was set to
100rMD � 30rMD � 10rMD, the DPD subdomain to 40rc � 20rc � 10rc and the NS to L� 0:6L with the characteristic lengths
LMD ¼ 100rMD, LDPD ¼ 40rc and LNS ¼ L ¼ 10. In non-dimensional units the aforementioned regions correspond to
100� 30� 10 (MD), 40� 20� 10 (DPD) and 10� 6 (NS), respectively. The simulation domain was similar to that in the
Fig. 4 with the overlapping regions having thickness of 20% of the characteristic length, and the MD and DPD regions were
set to be periodic in the z direction. The fluid viscosities were mMD ¼ 2:44, mDPD ¼ 0:54 and mNS ¼ 0:2, and the velocity of the
moving lid in the MD subdomain was set to V = 1.22, which corresponds to Re = 50. The timestep in the MD and DPD regions
was set to 0.00375, and in the NS region to 0.015.

The sequence of one iteration was MD ? DPD ? NS similar to the previous cavity flow simulation. The inter-region com-
munication was done after the state of the system advances past time s = 0.75, which corresponds to 200 timesteps in case of
the MD and DPD regions, but to 50 timesteps for the NS subdomain. Here, Mv ¼ 24:28 (Eq. (1)) with �v ¼ 1:22, Ev ¼ 0:05 and
V ¼ 3:32� 1:0� 10 ¼ 33:2, and therefore Mc

v ¼ 3237 (Eq. (2)) with the autocorrelation time sv ¼ 0:25. After steady state
was reached with initial inter-communication time s = 0.75, similarly to the previous cavity flow case, in order to refine
the steady state solution we performed several iterations with inter-communication time s = 15 and set the error below 5%.

Fig. 7 shows hybrid simulation results of the Re = 50 square cavity flow with immiscible fluids extracted along the VV0 and
DD0 lines. The hybrid model solution agrees very well with the highly accurate spectral element solution. In addition, Fig. 8
presents the number density profiles extracted along the VV0 and DD0 lines. The number density is nearly constant along the
DPD simulation parameters for the cavity flow. Immiscible fluids.

� rMD a n rc c r kBT k (Eq. (11))
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VV0 cut, however we observe a density increase in the corner in case of the DD0 cut. The MD fluid is slightly compressible
which permits the particle accumulation in the corner. Here, the normalized density in the corner is higher compared to
the cavity flow described above due to a higher velocity of the moving lid. To illustrate the density increase in the corner
we provide a normalized density contour plot in Fig. 9. Using our empirical criterion [23] we estimate that the maximum
allowed flow velocity below which an accurate solution can be obtained is 6 or the maximum density in the corner is
2.5. Our values are within the stated limits, and therefore particle accumulation in the corner has a negligible effect on
the flow solution.

Next, we present an additional cavity test that employs only DPD and NS regions; Fig. 10 shows the domain sketch. We
place the DPD subdomain in the right upper corner where we have discontinuous velocity at the boundary. The cavity corner
singularity was studied systematically in [31–33] for the case of MD and NS methods. In general, the NS numerical solution
in the small neighborhood of such singularity is erroneous and it often gives rise to numerical instability [34]. However, the
DPD method does not have such a problem. Note that the left upper corner could be done analogously.

Here the DPD region covers the area of f35 6 � 6 50g
T
f35 6 y 6 50g in the right upper corner of the cavity. The NS re-

gion is 50� 50 excluding the f40 6 � 6 50g
T
f40 6 y 6 50g subregion. The overlapping region thickness is equal to 5,

which corresponds to the aforementioned 10% of the characteristic length L = 50. The DPD parameters used in this simulation
were the same as outlined in Table 2. The kinematic viscosity for both descriptions was m = 0.54 and the timestep was set to
0.01 in non-dimensional units. The inter-region communication was carried out every s = 1.0. Fig. 11 shows velocity profiles
extracted along the VV0 (x = 42.5) and DD0 lines for the flow at Re = 100. Results obtained by the full NS description are plot-
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ted with solid lines, DPD results with circles and NS with triangles. We find an excellent agreement of the hybrid model re-
sults with the highly accurate full NS simulation results. Fig. 12 presents the number density profiles extracted along the VV0

and DD0 lines. The number density in the DPD region is normalized by the bulk density, and in the NS region is assumed to be
1. The number density in the domain is nearly uniform, and has only a small deviation in the corner due to the reasons men-
tioned before. Finally, to illustrate that in the case of the full NS simulation the incompressibility constraint is not satisfied in
the small neighborhood of velocity discontinuity point (in the corner) we calculate the divergence of the velocity field. Fig. 13
presents the divergence of velocity extracted along the DD0 line. Nevertheless, we find that for the DPD case the mass in the
corner is nearly conserved. The slightly non-zero value of the divergence of velocity is probably due to the particle accumu-
lation effect in the corner described in detail in [23].

3.3. Zero overlapping thickness

The triple-decker algorithm presented above requires a non-zero overlapping thickness of the subdomains with different
formulations. However, a slight modification of the algorithm enables us to employ zero overlapping thickness, which can be
thought of as an interface. Fig. 14 shows the Couette flow domain (left) and the time progression (right) sketch with zero
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overlapping thickness. The two walls are placed at y = 0 and y = H = 20 with velocities v0 = 0 and v1 = 5, respectively. The low-
er half of the domain contains MD fluid and the upper half DPD fluid, and corresponding parameters are described in Table 1.
The domain is assumed to be periodic in the x and z directions. The boundary conditions at the walls are enforced similarly
through the aforementioned adaptive shear force, the pressure force and the specular reflection. However, at the interface
we employ the adaptive shear forcing, the definition of which is modified in order to enforce continuous velocity across
the interface. Hence, Dv t in Eq. (5) is defined as Dv t ¼ vMD

t � vDPD
t , where vMD

t and vDPD
t are the estimated flow velocities

at the interface from the MD and DPD regions, respectively. The same iterative procedure (Eq. (5)) is performed until Dv t

converges to zero, which leads to the continuous velocity across the interface. The adaptive shear force Fk
t ðhÞ is applied in

both regions near the interface in counter directions (for instance, positive x direction in the MD near-interface layer and
negative x direction in the DPD region).

Fig. 15 presents simulation results of Couette flow for the case of zero overlapping thickness. We find an excellent agree-
ment of the results (MD is represented by squares and DPD by circles) with the exact solution (solid line). In this case, the MD
and DPD fluids have the same viscosity, and therefore yield the expected linear velocity profile across the channel. In Fig. 15
we also plot Couette flow results with the MD fluid (triangles) having a lower viscosity compared to that of the DPD fluid
(stars), which approximates Couette flow for immiscible fluid layers. This test verifies that the adaptive shear force leads
to the continuous velocity and shear stress across the interface. In addition, we have observed a uniform density across
the channel.

Having zero overlapping thickness among the subdomains is computationally more advantageous compared to the sys-
tem having non-zero overlaps. However, the example shown above corresponds to zero velocity flux through the MD–DPD
interface, and it is not yet clear how to properly impose non-zero normal velocity at the interface in case of arbitrary flow. To
this end, the algorithm with zero overlapping thickness is limited at present to simple flows having an interface along the
streamlines.

4. Summary

In this paper we have presented a hybrid multiscale method, which is able to cover a broad range of spatiotemporal scales
starting from molecular to mesoscopic and to continuum. The molecular region employs the MD method, the mesoscopic
utilizes the DPD method, and the continuum is described by the incompressible NS equations.

The scheme is based on the domain decomposition used in the Schwarz alternating method. The corresponding subdo-
mains communicate by passing velocity boundary conditions, which are extracted from one region and subsequently im-
posed in a receiving region. The choice of a communication pattern among regions with different formulations can be set
by a user depending on geometry and flow type. In order to extract flowfield information from particle-based formulations
we need to perform averaging during a number of timesteps, which can be varied depending on the characteristic flow veloc-
ity and temperature. Imposition of non-periodic boundary conditions involves particle insertion and deletion, specular wall
reflection and body force terms. Particles are inserted according to the USHER algorithm in MD region and randomly in near-
boundary layer in DPD region. The number of inserted particles is equal to the number of deleted particles in order to ensure
mass conservation. The velocities are drawn from an equilibrium Maxwellian distribution. Body forcing includes a boundary
pressure force in order to minimize near-boundary density fluctuations, and an adaptive shear force which enforces the tan-
gential velocity component of boundary conditions.
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The algorithm is verified for the Couette, Poiseuille and lid-driven cavity flow simulations. The results show very good
agreement with analytic and reference solutions. In addition, we showed that the hybrid algorithm can be applied in singu-
larity regions for the NS formulation such as corners in the lid-driven square cavity. Moreover, we presented a spatiotem-
poral decoupling by utilizing different region dimensions and timesteps in simulations. Finally, we discussed a minimal
modification of the algorithm which allowed us to have zero overlapping thickness among the regions with different
formulations.

Even though the simulation results presented in this paper were done for two-dimensional flows, we do not see any
restrictions to extend the hybrid algorithm to three-dimensional flow cases. Furthermore, future work should consider an
extension of algorithm to more complex fluids such as polymeric and biological fluids and suspensions. This type of prob-
lems might require more sophisticated particle insertion and body forcing algorithms and potentially the inclusion of addi-
tional intra- and inter-molecular, electrostatic and excluded volume interactions. In addition, such systems might need an
inter-exchange with more detailed information, for instance polymeric stresses. In turn, in the continuum region the incom-
pressible NS equations might need to be substituted by more appropriate visco-elastic continuum non-Newtonian fluid
models.
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