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Abstract. A version of the fundamental mean-square convergence theorem is proved for stochas-
tic differential equations (SDEs) in which coefficients are allowed to grow polynomially at infinity and
which satisfy a one-sided Lipschitz condition. The theorem is illustrated on a number of particular
numerical methods, including a special balanced scheme and fully implicit methods. The proposed
special balanced scheme is explicit and its mean-square order of convergence is 1/2. Some numerical
tests are presented.
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1. Introduction. Let (2, F,P) be a complete probability space and F;* be
an increasing family of o-subalgebras of F induced by w(t) for 0 < ¢t < T, where
(w(t), F) = ((w1(t),...,wm(t))",FP) is an m-dimensional standard Wiener pro-
cess. We consider the system of Ito stochastic differential equations (SDEs)

m
(1.1) dX = a(t,X)dt + Y op(t, X)dw,(t), t€ (to,T], X(to) = Xo,

r=1
where X, a, o, are d-dimensional column-vectors and X is independent of w. We
suppose that any solution X, x,(t) of (1.1) is regular on [tg,T]. We recall [5] that a
process is called regular if it is defined for all to <t < T.

In traditional numerical analysis for SDEs [18, 12, 21] it is assumed that the SDEs
coefficients are globally Lipschitz, which is a significant limitation taking into account
that most of the models of applicable interest have coefficients which grow faster
at infinity than a linear function. If the global Lipschitz condition is violated, the
convergence of many usual numerical methods can disappear (see, e.g., [29, 6, 8, 22]).
This has been the motivation for the recent interest in both theoretical support of
existing numerical methods and developing new methods or approaches for solving
SDEs under nonglobal Lipschitz assumptions on the coeflicients.

In most SDEs applications (e.g., in molecular dynamics, financial engineering,
and other problems of mathematical physics), one is interested in simulating aver-
ages Ep(X(T)) of the solution to SDEs—the task for which the weak-sense SDEs
approximation is sufficient and effective [18, 21]. The problem with divergence of
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weak-sense schemes was addressed in [22] (see also [23]) for simulation of averages at
finite time and also of ergodic limits when ensemble averaging is used. The concept
of rejecting exploding trajectories proposed and justified in [22] allows us to use any
numerical method for solving SDEs with nonglobally Lipschitz coefficients for estimat-
ing averages. Following this concept, we do not take into account the approximate
trajectories X (¢) which leave a sufficiently large ball Sk := {z : |z| < R} during the
time T'. See other approaches for resolving this problem in the context of computing
averages, including the case of simulating ergodic limits via time averaging, e.g., in
[29, 15, 1].

In this paper we deal with mean-square (strong) approximation of SDEs with
nonglobal Lipschitz coefficients. Mean-square schemes have their own area of appli-
cability (e.g., for simulating scenarios, visualization of stochastic dynamics, filtering;
see further discussion on this in [12, 21, 9] and references therein). Furthermore,
mean-square approximation is of theoretical interest and it also provides a guidance
in constructing weak-sense schemes (see, e.g., [18, 12, 21]).

We note that in the case of weak approximation we often have to simulate large
dimensional complicated stochastic systems using the Monte Carlo technique (or time
averaging), which is typical for molecular dynamics applications, or we have to perform
calculations on a daily basis, which is usual, e.g., in financial applications. Hence the
cost per step of a weak numerical integrator should be low, which, in particular,
essentially prohibits the use of implicit methods. In contrast, areas of applicability
of mean-square schemes, as a rule, do not involve simulation of a large number of
trajectories or over very long time periods and, consequently, there are more relaxed
requirements on the cost per step of mean-square schemes and efficient and reliable
implicit schemes have practical interest. There have been a number of recent works,
including [8, 6, 10, 13, 11, 9, 14, 26, 7] (see also the references therein), where strong
schemes for SDEs with nonglobal Lipschitz coefficients were considered. An extended
literature review on this topic is available in [9].

In this paper we give a variant of the fundamental mean-square convergence
theorem in the case of SDEs with nonglobal Lipschitz coefficients, which is analogous
to Milstein’s fundamental theorem for the global Lipschitz case [17] (see also [18,
21]). More precisely, we assume that the SDEs coefficients can grow polynomially
at infinity and satisfy a one-sided Lipschitz condition. The theorem is stated in
section 2 and proved in Appendix A. Its corollary on almost sure convergence is also
given. In section 2 we start discussion on applicability of the fundamental theorem,
including its application to the drift-implicit Euler scheme, and thus establish its
order of convergence. Strong convergence (but without order) of this scheme was
proved for SDEs with nonglobal Lipschitz drift and diffusion in [13, 9] and more
recently its convergence with order 1/2 was proved in [14]. A particular balanced
method (see the class of balanced methods in [19, 21]) is proposed and its convergence
with order 1/2 in the nonglobal Lipschitz setting is proved in section 3. Apparently,
this is the first time mean-square convergence with an order has been proved for an
explicit scheme under the conditions which allow polynomial growth of both drift
and diffusion coefficients. In section 4 we revisit fully implicit (i.e., implicit both
in drift and diffusion) mean-square schemes proposed and motivated by symplectic
integration of stochastic Hamiltonian equations in [20] (see also [21]). In [20, 21] their
convergence was proved for SDEs with globally Lipschitz coefficients. Here we relax
these conditions as the drift is required to satisfy only a one-sided Lipschitz condition
and be of not faster than polynomial growth at infinity. Some numerical experiments
supporting our results are presented in section 5.
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2. Fundamental theorem. Let Xy, x,(t) = X(t), to <t < T, be a solution of
the system (1.1). We will assume the following.
Assumption 2.1. (i) The initial condition is such that

(2.1) E|Xo|? < K < oo forall p> 1.

(ii) For a sufficiently large po > 1 there is a constant ¢; > 0 such that for ¢ € [to, T,

2p0 — 1
T lor(ta) oty < erle—yP, @,y € R

r=1

(iii) There exist ¢z > 0 and > > 1 such that for ¢ € [to, T,

(2.2) (z—y,alt,z)—alt,y))+

(23)  la(t,2) —a(t,y)l* < ea(L+ |27 + [y 72)|z — g, 2,y € RY.
We note that (2.2) implies that

2]90—3

(2.4) (x,a(t,z)) + 5

m
> lor(tx))* < co+lal?, tefto,T], x € RY,
r=1

where ¢ = |a(t, 0)|2/2+(2p°73)4w S |or(t,0)|? and ¢} = ¢1+1/2. The inequal-
ity (2.4) together with (2.1) is sufficient to ensure finiteness of moments [5]: there is
K >0,

(2.5) E[Xty,x,(8)]?? < K1+ E|Xo|*?), 1<p<po—1, t€l[to,T]
Also, (2.3) implies that
(2.6) la(t, 2)|? < 3+ chlz[**, t € [to, T), = € RY,

where c3 = 2|a(t,0))]? + 2ca(3c — 1) /3¢ and ¢y = 2ca(1 + )/ .

Introduce the one-step approximation X; ,(t + h), to <t < t+ h < T, for the
solution Xy ,(t + h) of (1.1), which depends on the initial point (¢,z), a time step h,
and {w1(0) —wi(t), ..., wn(0) —wn(t), t <O < t+h}and which is defined as follows:

(2.7) Xiz(t+h)=z+ Alt,z, hywi(0) —w;(t), i=1,...,m, t <0 <t+h).

Using the one-step approximation (2.7), we recurrently construct the approximation
(Xk;]:tk), /€ = 0, . .,N, tk+1 - tk = hk+1, TN =T

(2.8) Xo = X(to), Xi+1 =Xy, x,(ter1)
=X+ A(tk,Xk, hk+1;wi(6‘) - wi(tk), i=1,....m, tp <0< tk+1).

The following theorem is a generalization of Milstein’s fundamental theorem [17]
(see also [18], [21, Chapter 1]) from the global to nonglobal Lipschitz case. It also has
similarities with a strong convergence theorem in [6] proved for the case of nonglobal
Lipschitz drift, global Lipschitz diffusion, and Euler-type schemes.

For simplicity, we will consider a uniform time step size, i.e., hy = h for all k.

THEOREM 2.1. Suppose (i) Assumption 2.1 holds.

(ii) The one-step approzimation X, .(t+h) from (2.7) has the following orders of
accuracy: for some p > 1 there are « > 1, hg > 0, and K > 0 such that for arbitrary
to<t<T—h,zeR? and all 0 < h < hg,

(2.9) [E[X oo (t + h) = Koot + )] < K(L+ [22%) /205,
(2.10) [BIX0 0t + h) — Xoolt + 0)2P] 7 < K (14 |a[20r)t/@0) pa
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with

1

y 412 q2+ <.

(2.11) q 2 5

N =

(iii) The approzimation Xy from (2.8) has finite moments, i.e., for some p > 1 there
are B > 1, hg >0, and K > 0 such that for all 0 < h < hg and all k=0,..., N,

(2.12) E|X.|? < K(1 + E|Xo|*").
Then for any N and k =0,1,..., N the following inequality holds:
(213)  [ElXeq.x0 () = Keouxo ()] < K1+ E|Xo[277) /P poa 12,

where K > 0 and v > 1 do not depend on h and k, i.e., the order of accuracy of the
method (2.8) is g = g2 — 1/2.

The theorem is proved in Appendix A and it uses the following lemma.

LEMMA 2.2. Suppose Assumption 2.1 holds. For the representation

(2.14) Xio(t+0) =X y(t+0) =2 —y+ Zy 5,(t+6),
we have for 1 <p < (po—1)/»

(2.15)  E|[X;.(t+h) — Xey(t+ 1) < |z —y|*(1+ Kh),
(2.16) E|Zt .yt + h)|* < K(1+ [2[*72 + |y =2)P/ 2|z — y[>PhP.

This lemma is proved in Appendix B. Theorem 2.1 has the following corollary.
COROLLARY 2.3. In the setting of Theorem 2.1 for p > 1/(2q) in (2.13), there is
0 <e<qand an a.s. finite random variable C(w) > 0 such that

| Xt0,%0 (tk) — Xi| < Cw)he,

i.e., the method (2.8) for (1.1) converges with order ¢ — ¢ a.s.

The corollary is proved using the Borel-Cantelli-type of arguments (see, e.g.,
(3, 24)).

2.1. Discussion. In this section we make a number of observations concerning
Theorem 2.1.

1. As a rule, it is not difficult to check the conditions (2.9)—(2.10) following the
usual routine calculations as in the global Lipschitz case [18, 12, 21]. We note that
in order to achieve the optimal ¢; and ¢ in (2.9)—(2.10) additional assumptions on
smoothness of a(t,z) and o, (¢, x) are usually needed.

In contrast to the conditions (2.9)—(2.10), checking the condition (2.12) on moments
of a method X}, is often rather difficult. In the case of global Lipschitz coefficients,
boundedness of moments of X, is just direct implication of the boundedness of mo-
ments of the SDEs solution and the one-step properties of the method (see [21,
Lemma 1.1.5]). There is no result of this type in the case of the nonglobal Lips-
chitz SDEs and each scheme requires a special consideration. For a number of strong
schemes boundedness of moments in nonglobal Lipschitz cases were proved (see, e.g.,
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[8, 6,10, 9, 29]). In section 3 we show boundedness of moments for a balanced method
and in section 4 for fully implicit methods.

Roughly speaking, Theorem 2.1 says that if moments of X} are bounded and the
scheme was proved to be convergent with order ¢ in the global Lipschitz case, then the
scheme has the same convergence order ¢ in the considered nonglobal Lipschitz case.

2. Assumptions and the statement of Theorem 2.1 include the famous funda-
mental theorem of Milstein [17] proved under the global conditions on the SDEs
coefficients. (Of course, as discussed in the previous point, this case does not need
the assumption (2.12).)

3. Consider the drift-implicit scheme [21, p. 30]

(2.17) X1 = Xe + alterr, Xer)h + > or(tn, Xp) &V,

r=1

where &4, = (wy (tg1)—w,(ty))/Vh are Gaussian A'(0, 1) independent and identically
distributed (i.i.d.) random variables. Assume that the coefficients a(t, x) and o, (¢, x)
have continuous first-order partial derivatives in ¢t and the coefficient a(t, x) also has
continuous first-order partial derivatives in z* and that all these derivatives and the
coefficients themselves satisfy inequalities of the form (2.3). It is not difficult to show
that the one-step approximation corresponding to (2.17) satisfies (2.9) and (2.10)
with g1 = 2 and g3 = 1, respectively. Its boundedness of moments, in particular,
under the condition (2.4) for time steps h < 1/(2c;), is proved in [9]. Then, due to
Theorem 2.1, (2.17) converges with mean-square order ¢ = 1/2. (Note that for ¢ = 1/2,
it is sufficient to have ¢; = 3/2, which can be obtained under lesser smoothness of a.)
Further, in the case of additive noise (i.e., o.(t,z) = 0,.(t), 7 =1,...,m), g1 = 2 and
g2 = 3/2 and (2.17) converges with mean-square order 1 due to Theorem 2.1. We note
that convergence of (2.17) with order 1/2 in the global Lipschitz case is well known
[18, 12, 21]; in the case of nonglobal Lipschitz drift and global Lipschitz diffusion it
was proved in [8, 6] (see also related results in [3, 29]); and under Assumption 2.1
strong convergence of (2.17) without order was proved in [13, 9] and more recently its
strong order 1/2 was independently established in [14].

4. Due to the bound (2.5) on the moments of the solution X (¢), it would be
natural to require that 8 in (2.12) be equal to 1. Indeed, (2.12) with 8 = 1 holds
for the drift-implicit method (2.17) [9] and for fully implicit methods (see section 4).
However, this is not the case for tamed-type methods (see [10]) or the balanced method
from section 3.

5. The constant K in (2.13) depends on p, tg, T as well as on the SDEs coefficients.
The constant « in (2.13) depends on «, 8, and .

6. Let us illustrate Assumption 2.1(ii) on a one-dimensional SDE: dX =
—pX| X |t + AX"2dw with g, A > 0, r1 > 1, and 79 > 1. If 11 +1 > 215 or
r1 =12 = 1, then (2.2) is valid for any pg > 1. If r; + 1 = 275 and r; > 1, then (2.2)
is valid for 1 < pg < p/A? 4+ 1/2.

3. A balanced method. In this section we propose a particular balanced scheme
from the class of balanced methods introduced in [19] (see also [21]) and prove its
mean-square convergence with order 1/2 using Theorem 2.1. As far as we know, this
variant of balanced schemes has not been considered before. In section 5 we test the
balanced scheme on a model problem and demonstrate that it is more efficient than
the tamed scheme (5.2) (see section 5) from [9]. We also note that it was mentioned in
[9] that a balanced scheme suitable for the nonglobal Lipschitz case could potentially
be derived.
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Consider the following balanced-type scheme for (1.1):

alty, Xp)h + >0 on(te, Xp)&eVh
1+ hla(te, Xe)| + VR0 oy (tr, Xi)érn|

where &, are Gaussian N'(0, 1) i.i.d. random variables.

We prove two lemmas which show that the scheme (3.1) satisfies the conditions of
Theorem 2.1. The first lemma is on boundedness of moments, which uses a stopping
time technique (see also, e.g., [22, 9]).

LEMMA 3.1. Suppose Assumption 2.1 holds with sufficiently large py. For all
natural N and all k = 0,..., N the following inequality holds for moments of the
scheme (3.1):

(31) Xk+]_ = Xk +

-1 1
(3.2) BN < KL+ EIXoP""), 1<p< gy — 3
with some constants 8 > 1 and K > 0 independent of h and k.

Proof. In the proof we shall use the letter K to denote various constants which
are independent of h and k. We note in passing that the case > =1 (i.e., when a(t, x)
is globally Lipschitz) is trivial.

The following elementary consequence of the inequalities (2.4) and (2.6) will be
used in the proof: there exits a constant K > 0 such that

(3.3) > ot @) < K1+ |z*7).
r=1
We observe from (3.1) that
(3.4) [ X | < [ Xl + 1 < [Xo| + (k + 1).

Let R > 0 be a sufficiently large number. Introduce the events
(3.5) Qpp={w:|X)| <R, 1=0,....k}
and their compliments ]\R,k. We first prove the lemma for integer p > 1. We have

(3.6)

EXp o @) X1 < Exg, (@) Xk |*
— Bxg, , (@)(Xer1 — Xe) + Xil? < B, , (@)Xl + Bxg, , (@) X7

% [2p(Xk, X1 — X&) + p(2p — 1)[ Xpp1 — Xi|?]
2p

+ K Bxg, , (@) X [ X1 — X'
=3

Consider the second term in the right-hand side of (3.6):
(3.7)

EXay, , (@) X672 [2p(Xp, Xps1 — Xi) +p(2p — 1) Xpg1 — Xi[’]

X a’(tlﬁXk)h‘_'_E:vn:l Ur(tkan)frk\/E
ks ™
L+ hla(ty, Xi)| + VR0 low(te, Xi)érk|

= 2pE (XQRVk(w) | Xk °E

2p—1
2

alti, Xi)h + 30 o0 (b, Xi) &V
1+ h|a(tk7Xk)| + \/Ezil |0T(tk7 Xk)grk|
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Since E&, H;n:1 |€k|® = 0 for all » and any o; > 0, j = 1,...m, and & are
independent of F;, , we obtain
ftk]

=Xay, D_E [ar(tk, Xp)eVh Y (1) [ma(tk, X0
r=1 i=0

E;n:l Ur(tkan)frk\/E
1+ h|a‘(t7€7 Xk)| + \/522121 |Ur(tk7Xk)€rk|

(3.8) Xéi B

+VhY |Ur(tkan)€Tk|]
r=1

]-'tk] =0.
Using that E&x & H;nzl |€jk|* =0 for I #r and any a; >0, j =1,...,m, we
analogously get for [ # r
]—"tkl =0.

o (e Xp) &V hoy(tr, Xi) Vb
(1+ hla(ts, Xp)| + VR L, o (b, Xi)éru])?

(3.9) Xap B

Then the conditional expectation in (3.7) becomes

A:=xs E| (X a(tkﬂXk)h+Z:;1 Ur(tkan)grk\/E
ek "1+ hlate, Xi)| + VR |op (te, Xe)énkl

(3.10)

2
2p— 1 alty, Xp)h + 30 o (te, Xp)&eVh .
m ty
2|1+ hla(te, Xp)| + VR o (te, Xk)&r|
S (Xk,a(tk,Xk)h)
RN 4 hla(te, Xe)| 4+ VRIS 00 (b, Xk)Enk]

+ 2p —1 az(tk,Xk)h2+hZT:l (Ur(tk,Xk)érk)Z ba ]
2 m 2|Y
(1++ hla(tn, X0+ VAL S 0, X))
<xo E (Xk, a(tr, Xk)h)
=R 1 4 hla(te, Xi)| + VRS o (te, Xi)Er|
2p— 1 YT o (te, Xi) €2, ]:t
2 1+ hla(te, Xp)| + VEYXT or(te, Xi)érel |
2p —1
+ p2 XQRYkGQ(tk,X;@)hz
o (X, alts, Xp)h) + 2=h 3T o (e, X))
G 1 4 hla(te, Xi)| + VRS o (e Xe)Er|
2p— 1 h 32y lor(te, Xp)P(E2 — 1) 7
2 1+ ha(te, Xp)| + VR |ow(te, Xe)érnl |
2p — 1
+ pTXQR,ka’2(tk’Xk)h2'
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Using (2.4) and (2.6), we obtain

2p—1 -
(3.11) A< coh+ I XiPhg,, , + o —hxa,, 3 low(te, Xi)?

2
ftk]

(& —1)
1+ hla(tkﬂ Xk)' + \/EZ:’lel |0T(t/€7Xk)§rk|

Since E(£2, — 1) = 0, moments of &4 are bounded, and &, are independent of F3,,

we obtain for the expectation in the second term in (3.11)

r=1

+ Kh? + Kxg,, | Xi[*h*.

(€2, — 1)
(3.12) xg, E rh Fi
e 1 hlaty, Xe)| + VRS o (b, Xl |
(&, - 1)

(&% — 1)

= X, E

ftk]
f]

< X, B l|€3k — 1] <h|a(tk,X,€)| + \/EZ |0l(tkan)||flk|> ‘ —Ftk]
r=1

1+ h|a(tk7Xk)| + \/EZT:l |Ur(tka Xk)grk|

= e E|(€2 -1 hla(tk, Xi)| + Vh T ou(te, Xi)éu|
i U g hla(te, Xk)| A+ VRS o (tey Xe) €|

<X, K <h|a(’5kan)| +VRY |0T(tk7X7€)|> :

r=1

Using (2.6) and (3.3), we get from (3.11)—(3.12)

(3.13) A< coh+ C/lxﬁR,k | X% + Khxa,, Z loy (tre, Xi) |2

r=1

+ Kh® + Kxg, | X[**h*

r=1

X [h|a(tk,Xk)| + VR o (tr, X))

< X KB+ [ Xe? + | X5 PR+ | X [2#h1/?)

< XQR,kKh(l + |Xk|2 + |Xk|3%h1/2).

Now consider the last term in (3.6):

(3.14)  Exg, (@) Xl* ™" [ Xps1 — Xn|
R,k

< KExg, (@) | X" | Wa(te, X"+ 023 lop (b, Xi)€rn]

r=1

< KExq, , (@) [Xul " 072 [+ [ X0]].

where we used (2.6) and (3.3) again as well as the fact that xg  (w) and Xj are
Fi,-measurable while &, are independent of F, .
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Combining (3.6), (3.7), (3.10), (3.13), and (3.14), we obtain
(3.15)

EXQR,k+1(w)|Xk+1|2p
< Exay, (@1 Xn* + KhEXg,, , (@) X2 (L4 [ Xef? + | X h/2

2p
+ K3 Exa,, (@) [ X B2 [1+ X[
=3
2p
< Exa, , @)Xkl + KhExq, , (@) | X + K Y Exg, (@) | Xe*~ B2
=2
2p
+ KR Exg, (@) (X672 4 KR Y Exg, | (w) [ XD a2t
=3
Choosing
(3.16) R = R(h) = h= /(64

we get, for I = 3,...,2p, Exg, , () | X272 pl/2-1 < XQR(h),k(w) |X,|* and

2p+1(2—1 — 2 .
X6y (@) [ Xk pHCe=D) pr/2-1 < Xt (@) [ Xkl P and hence we rewrite (3.15) as

(3.17)

EXQR(h),k+1 (w)|Xk+1 |2;D

p
2 2(p—1
< By (I + KXy, (0 K + K Y By, (@) K000
=1
2
< EXQR(h),k (w)|Xk|2p + Kh]EXQR(h),k (w) |Xk| P+ Kh,

where in the last line we have used Young’s inequality. From here, we get by Gronwall’s
inequality that

(3.18) By, ()| Xi? < K (1+E|Xo),

where R(h) is from (3.16) and K does not depend on k and h but it depends on p.
It remains to estimate IEXAR(M i (w)| Xk |?. We have

X[\R,k =1- XQR,k =1- XQR,k—IX‘Xk‘SR = X]\R,k—l + XQR,k—IX‘XkI>R

k
== E XQp_1 XIXi|>R>
1=0

where we put x5, = 1. Then, using (3.4), (3.18), (2.1), and the Cauchy—Bunyakovsky—
Schwarz and Markov inequalities, we obtain
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(3.19)

k
EX]\R(h),k (@) [ Xk = EZ |Xk|2pXQR(h),z_1X|Xl|>R(h)
1=0

1/2

4p\ 1/2
< (E[Xo +k['7) (]E [XQR(h),l_1|XZ|>R(h)D

= ”Mk
[}

1/2
= (E| Xo + k|*#)"/? (p(XQR(h)H 1X)| > R))
0

2(2 1)(6 4 1/2
(]E(XQRUL),FJX” (2p+1) (63— )))
R(h) @ 1)(6—4)

™M=

< (E|Xo + k|*%)"/?

(=)

1/2
2 (]E(l 4 |XO|2(2p+1)(6%74))) LR2PH1

< K(1 + E| X[t r2@pr1)(6x—4)y1/2

~

< K (B|Xo + k")’

which together with (3.18) implies (3.2) for integer p > 1. Then, by Jensen’s inequal-
ity, (3.2) holds for noninteger p as well. O

The next lemma gives estimates for the one-step error of the balanced scheme (3.1).

LEMMA 3.2. Assume that (2.5) holds. Assume that the coefficients a(t,x) and
or(t,z) have continuous first-order partial derivatives in t and that these derivatives
and the coefficients satisfy inequalities of the form (2.3). Then the scheme (3.1)
satisfies the inequalities (2.9) and (2.10) with ¢1 = 3/2 and g2 = 1, respectively.

The proof of this lemma is given in Appendix C. Lemmas 3.1 and 3.2 and Theo-
rem 2.1 imply the following result.

ProPOSITION 3.3. Under the assumptions of Lemmas 3.1 and 3.2 the balanced
scheme (3.1) has mean-square order 1/2, i.e., for it the inequality (2.13) holds with
g=¢q—1/2=1/2.

Remark 3.1. In the additive noise case the mean-square order of the balanced
scheme (3.1) does not improve (g1 and g2 remain 3/2 and 1, respectively).

4. Fully implicit schemes. Fully implicit (i.e., implicit in both drift and diffu-
sion coefficients) mean-square schemes were proposed in [20] (see also [21, Chapter 1]),
where their convergence was proved under global Lipschitz conditions. We recall that
in [20, 21] introduction of fully implicit methods was motivated by consideration of
Hamiltonian equations with multiplicative noise since in the case of a general Hamil-
tonian system only implicit schemes can be symplectic. (We also note that in the
case of deterministic general Hamiltonian systems symplectic Runge—Kutta methods
are all implicit [28].) They have other interesting features too. The most remark-
able scheme of fully implicit methods is the midpoint scheme, which complies with
the Stratonovich calculus without any need for differentiating the diffusion coefficient
and which is of the first mean-square order for Stratonovich SDEs with commutative
noise (see [20, 21] and also Remark 4.2 below). The midpoint scheme is known for
its good geometric integration features not only in the context of Hamiltonian sys-
tems but also, e.g., in the case of stochastic Landau-Lifshitz equations (see [16] and
references therein).

Here we analyze fully implicit schemes under the following assumptions, which
are stronger with respect to the diffusion coefficient than Assumption 2.1 used in
sections 2 and 3.
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Assumption 4.1. (i) The initial condition is such that

(4.1) E|Xo|? < K < oo forall p> 1.
(ii) There exists a constant ¢; > 0 such that
(4.2) (x —y,a(t,x) —al(t,y)) < cilz —y|?, t€[to,T], z,y € RL
(iii) There exist co > 0 and » > 1 such that
(4.3) la(t,z) —a(t,y)]* < ea(L+ |27 + [y 7?)|z — y, te[to, T], 2,y €R™.

(iv) The coefficients o, (¢, z) have continuous bounded first-order spatial deriva-
tives so that for ¢t € [tg, T, there are constants Ly > 0 and Ls > 0:

(4.4) |Vo.(t,z)] < Li, r=1,...,m, = € RY,
and
(4.5) |Vor(t,z)or(t,x) — Vo.(t,y)or(t,y)| < Lolz —y|, r=1,...,m, x,y € R%.

In proofs which follow we will need some implications of Assumption 4.1. The
condition (4.2) implies that there is ¢ > 0

(4.6) (z,a(t,2)) < c(1+ |z}, t€to,T], v € R

It follows from (4.4) that

(4.7) lor(t, ) —or(t,y)| < Lilz —y|, tE€ [to,T], 2,y € R,
and hence
(48) |0T(t,x)| < L1|x| + Lo,

where Lo = max;c[s, 1) |0+(t,0)]. Further, there is L > 0:

(4.9) Vo, (t,x)o(t,z)| < L1+ |z|), t€ [to,T], x € RY,
and
(4.10) lon(t,2)|> < L(1+ |z]?), t€[to,T], = € R

For definiteness, we consider the following one-parametric family of methods for
(1.1) from the broader class of fully implicit schemes of [20, 21]:

(4.11)

Xiy1 = X + a(thM, (1 — )\)Xk + /\X}H_l)h

90, |
Y Z Z ooty (1= V)X + X 1) (b, (1= V)X + AXii1 )

r=1j=1

+ 3 or(tras (1= N X5 + AXp1) Gy Vi,

r=1
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where 0 < A <1, tgqn =t + Ah, and (), are i.i.d. random variables so that

ga |€| < Ah,
(412) Ch = Aha 5 > Ah7
_Aha 5 < _Aha

with &€ ~ N (0,1) and Ay, = /2[|Inh| with [ > 1. We recall [21, Lemma 1.3.4] that
(4.13) E(€% — ) = (1+2y/2l|Inh])h.

Remark 4.1. Three choices of A are most notable: A = 0 gives the explicit
Euler scheme which is divergent [6, 11] in the considered setting; A = 1 gives the
fully implicit Euler scheme; and A = 1/2 corresponds to the midpoint rule, which in
application to a system of Stratonovich SDEs is derivative free [21, p. 45].

Now we will study properties of the method (4.11). Consider the one-step ap-
proximations corresponding to (4.11),

(4.14) X =X =z +a(t + \,UNh — Azzaa’”

r=1j=1

t+ X, UNad (t + Ah, UMh

+ Z O (t =+ Ahv U)\)Crh\/ﬁv

r=1
where

(4.15) U=U":=(1-Nz+ X"
Note that

(4.16) U =z + Xa(t +\h,U*) — /\QZZ 8”’” (t 4+ Xh, UMad (t + Ah, UM)h
r=1j=1

+ A ot + Ab, UG V.

r=1

LEMMA 4.1. Let 0 < A < 1. Assume that Assumption 4.1 holds. For an arbitrary
0 <e <1, find hog > 0 such that

(4.17) A [hocl + mALahg +mLyy/20ho| In hoﬂ —1-c.

Then (4.14) for any 0 < h < hg has the unique solution X which satisfies the inequal-
ities for some K > 0:

(4.18) X — 2| < K(1+ |2)*)h+ K(1 + |2])y/A[In 7]

and

_ 16 4
(4.19) |X|* < 38—2)\(L0+1)s/2lh|1nh| {(1 2?2 382]|a:|2, t € [to, T], = € RY.

Proof. Let

m d
(4.20) a(t,z) = a(t, =) ZZ

ol(t, x).
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For any fixed A, t, {;x, and h, we introduce the function

V(2) = 2 — Aa(t + Ah, 2)h — A i or(t+ Ah, 2)CnVh,
r=1
which is continuous in z due to our assumptions. Equation (4.14) can be written as
(4.21) YU = .
Using (4.2), (4.5), and (4.7), we obtain
(4.22)  (z—y,9(2) = ¥(y))
> |z = y|> — hAei|z — y[> = hmA*Lo|z — y|> — mAL1/20h[ nh]|z — y?

= (1 - A [hcl + mALgh + mLy+/20h]| 1nh|] )|z —yl*>elz—y* >0,

i.e., ¥(z) is a uniformly monotone function for h < hg. This implies (see, e.g., [27,
Theorem 6.4.4, p. 167]) that (4.14) has a unique solution.
We obtain from (4.21) and (4.22)

elUI? < (U, 4(U) = %(0)) = (U,x — %(0))

€ 2 2 € 2 2A(Lo + 1)+/2lh|1Inh

< S|UP + =22+ =|wO) < =|U* + =|z* + (Lo )m7
4 c € 1 8 -

and hence

(4.23) |U)? < i()\(LO + 1)\/2lh|In k| + |z|?),

3e2

which implies (4.19).
Further, it follows from (4.15), (4.21), and (4.22) that

Ae|X — a2 = e|U — 2> < (U — 2, = Xa(t + Mo, 2)h — A 00 (t + A, 2)Gn V)

r=1
< AX -z <h|d(t + Ay )| 4+ /2lh|Inh| Z lor (¢ + /\h,x)|> .
r=1

Then, using (4.3) and (4.8), we obtain (4.18), which completes the proof of Lemma 4.1
for the implicit method (4.11). O

Now we consider boundedness of moments of (4.11).

LEMMA 4.2. Let 1/2 < XA < 1. Assume that Assumption 4.1 holds. Then for all
0 < h < hg with hg from (4.17) and for all k =0, ..., N the following inequality holds
for the fully implicit scheme (4.11) for p > 1:

(4.24) E|Xx[* < K (14 E[X,|*),

where K > 0 is a constant.
Proof. We note that (4.6) and (4.9) imply

(4.25) (z,a(t,x)) < (c+3mAL/2)(1 + |z, t€ [to,T], z € R,

which together with (4.4) ensures that the solution of (1.1) has all moments (2.5),
p>115.
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Let Ugp1 = (1 — M) X + AXpy1 (cf. (4.15)). We have
(4.26)

Vi1 = [Xp1? — [Xel* = 2(Usg1, X1 — Xi) — (A — 1) Xpy1 — Xi|?

= 2/\h(Uk+1, EL(tk+A, Uk+1)) + 2/\\/E <Uk+17 Z Or (tk+)\a U/H—l) (CTh)]g>

r=1
2

— @A = D% alteer, Usrn)|” = @A = DR D~ or (i, Ukr) (G

r=1
— 221 — 1)h%/? ({i(b‘m,\, Ukt1), Z o (thtn, Ukt1) (Crh)k>
r=1
= 2A\(Upt1, haltirr, Uptr)) + 20Wh (Xk, Z or(thax, Ups1) (Crh)k>
r=1
m 2
+ 2N =20+ DAY o (thins Unrr) (Gron)py | — (23 = DB altisa, Urgr)]?
r=1
+2(1 — \)2n%/? (d(thr,\, Uk+1), Z or(teer, Ups1) (Crh)k) :
r=1

Expanding o, (tx+x, Uk+1) at (tg4+x, Xi), we obtain
(4.27)

Vis1 = 2MUgy1, ha(tesr, Uss1)) + 20Vh (Xk, Zar(tm,\, Xk) (Crh)k>

r=1

+ 2/\\/E (Xk7 Z VUT(thr)\v 9)(U1€+1 - Xk) (Crh)k)

r=1
2

— (2A = DA |atprr, U

m

Z Ur(thr)\, Uk+1) (Crh)k

r=1

+2(A = 1)%h%/? (@(b‘m,\, Ut1), Y 0r(trir, Untr) (Crh)k>

r=1

+ (2 2 = 2X + 1A

= 2A\(Up11, haltyrr, Upr)) + 20Vh (Xk, Z or(tesr, Xk) (Crh)k>

r=1

+2X%0°/ (Xk, > Vo (trir, 0)altesr, Urta) (Crh)k>

r=1

r=1

+20%1 (ka D Vo (trin,0) Y oulthin, Xe) (Gin)y (Crh)k>
=1

2

> orltern Unn) Gn) | — (X = DR%|a(thin, Upia)|?

r=1

+2(1 - )\)2h3/2 (&(tmx, Uk+1), Z o (trax, Ups1) (Crh)k> )

r=1

+ 2\ =22+ 1)h
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where 0 = vUp41 — (1 —v) Xy, v € [0, 1], is an intermediate point. Using (4.25), (4.10),
Young’s inequality, (4.4), and (4.19), we obtain

(4.28)

Vier1 < Ah(2¢+ 3dmL)(1 + |Uk+1|2) + 2/\\/% <Xk, Z or(ttn, Xk) (Crh)k>
r=1

22X\ —

1 5.
+ h*|a(tex, Ups1)? +

h|X |QmZ|VUT (tr2, O) ] (Grn)y, 2

22X —

+ Nhm| Xe[? D Vo (tepn, )] (Gon)i P + ,\thz |01 (tens X) 2] (G 12
r=1 =1

+ (20 =22+ D)hm Y ow(trer, Unr) PPl (Gon) i 12

r=1
= (2A = DA |a(terr, Upsr) |
2A—1 .. 2(1 — N4 i
+ h?|a(ten, Ups1) > + 20 A7

X —1 hmz |0 (teaxs Uk 1) 2] (Grn) 12
r=1

<)\h(20+3/\mL)(1+|Uk+1| )+2/\\/—<Xk,ZUT (tetx, X&) (Grn) )

r=1
2| 2N 20y (2 2 2 -
+ AT g L ALl mZ|Crh *+ XhmL(1+ [ Xe*) D 1 (Gn)y |
r=1 =1
2(1 - =

227 — 2/\+1+%1h L(1 + |Ug41]?) ;l Gin )y
Then using (4.23), we arrive at
(4.29)
Vierr < Kh(1 + X3 ]?) <1+Z| Cri) >+2>\\/E<Xk,zar(tk+A,Xk) (Crh)k>,

r=1

where K > 0 is independent of h and k while it depends on A and on constants
appearing in (4.2)—(4.10). Using (4.29), we get for integer p > 1

(14 Xer1 )" = (L+ Xk + Vieyn)”

< (L+]X6)" + K (1+ | X]?) Zhl

l
1+Z|Crh ‘|

+p (1 + |Xk|2)p*1 2\R1/2 <Xk, Zar(tk_;.)\, Xk) (Crh)k>

r=1

P
+ K> (14 X2 nir?
=2

. !
(Xk, ZUT(tk+)\7Xk) (Crm)g ) ‘ ,

r=1

whence, observing that X, are F, -measurable while ({.1), are independent of F;,,
it is not difficult to obtain
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E(1+|X1]?)” <E(1+|Xe?)” + KhE (1 + | Xi)?)”

<Xk, Z or (e, Xi) (Crh)k>

r=1

l
p

FEYE(L+ |
=2

<E(1+|X2)” + KhE (1 +|X:2)",

which together with Gronwall’s inequality completes the proof of the lemma for integer
p > 1, and then by Jensen’s inequality for noninteger p > 1 as well. d

We have not succeeded in proving boundedness of moments for the midpoint
scheme, i.e., (4.11) with A = 1/2 under Assumption 4.1. One can observe that the
proof of Lemma 4.2 is not applicable to this choice of A as the estimate in (4.28) blows
up when A — 1/2 and it is clear that the midpoint scheme is the boundary case. We
also know [4] that for o, = 0 (4.11) is B-stable for A > 1/2 and not B-stable (in
fact, not A-stable) for A < 1/2. It is natural to expect that for A < 1/2 the moments
of (4.11) are not bounded and hence the method with A < 1/2 is divergent under
Assumption 4.1. (See also such a conclusion for the drift-implicit §-method in [13].)
In our experiments (section 5) the midpoint method produced accurate results.

At the same time, we proved boundedness of moments for the midpoint scheme
if in addition to Assumption 4.1 we require that the diffusion coefficients o, (¢, x) are
bounded. The proof is similar to the proof of Lemma 3.1 and is omitted here.

LEMMA 4.3. Let the assumptions of Lemma 4.2 hold and in addition assume that
the diffusion coefficients o,.(t,x) are uniformly bounded. Then the moments of the
midpoint method (4.11) with A = 1/2 have bounded moments: forp > 1,

(4.30) E| X3P < K(1+ E|Xo[*P+)=—4)1/2,

where K > 0 is a constant.

The next lemma gives estimates for the one-step error of the method (4.11).

LEMMA 4.4. Let 0 < X\ < 1. Assume that (2.5) holds. Assume that the co-
efficient a(t,x) has continuous first-order partial derivative in t and in x* and that
the derivatives and the coefficient satisfy inequalities of the form (4.3); the functions
or(t,x) have continuous first-order partial derivatives in t and that the derivatives
and the coefficients satisfy inequalities of the form (4.4)—(4.5); and the functions
Vo, (t,r)o.(t,x) have continuous first partial derivatives in t and in x* which sat-
isfy inequalities of the form (4.5). Then the method (4.11) satisfies the inequalities
(2.9) and (2.10) with ¢1 = 2 and q2 = 1, respectively.

Proof of this lemma is rather routine and is similar to the global Lipschitz case
[20, 21] and so is omitted here. Using Lemmas 4.1-4.4, the next proposition follows
from Theorem 2.1.

PROPOSITION 4.5. Let for 1/2 < X\ <1 the assumptions of Lemmas 4.2 and 4.4
hold, and for X\ = 1/2 in addition assume that the diffusion coefficients o,.(t,x) are
uniformly bounded. Then the fully implicit method (4.11) has mean-square order 1/2,
i.e., for it the inequality (2.13) holds with ¢ = 1/2.

Remark 4.2. Consider the commutative case, i.e., when A;o, = A,0; (here the
operator A, := (o,,0/0z)) or in the case of a system with one noise (i.e., m = 1).
Then in the setting of Lemma 4.4, the midpoint method, i.e., (4.11) with A = 1/2,
satisfies the inequalities (2.9) and (2.10) with ¢; = 2 and g2 = 3/2, respectively. (See
such a result in the global Lipschitz case in [20, 21].) Therefore, it converges in this
case with mean-square order 1 when its moments are bounded.
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5. Numerical examples. In this section we will test the following schemes:
the balanced method (3.1) from section 3; the drift-implicit scheme (2.17); the fully
implicit Euler scheme (4.11) with A = 1; the midpoint method (4.11) with A = 1/2;
the drift-tamed Euler scheme (a modified balanced method) [10],

a(Xk) - ,
m + Z Ur(tk, Xk)f?“k\/ﬁa

r=1

the fully tamed scheme [9],

a(Xk)h + ZT:l Ur(tka Xk)grk\/ﬁ

(5.2) K1 = Xi + m ;
max (1, h ‘ha(Xk) + > o (te, Xk)frk\/ﬁ‘)

and the trapezoidal scheme [21, p. 30],

63)  Xeo=Xat 5 a(Xew) +o(X0)] + Y o ltn, Xa VR

r=1

As before, &1, = (wr (tpy1) —wr(tr))/Vh are Gaussian (0, 1) i.i.d. random variables.
Strong convergence with order 1/2 of (5.1) under Assumption 4.1 is proved in [10].
Strong convergence of (5.2) without order under Assumption 2.1 is proved in [9].

In all the experiments with fully implicit schemes, where the truncated random
variables ¢ are used, we took I = 2 (see (4.13)). The experiments were performed
using MATLAB R2012a on a Macintosh desktop computer with an Intel Xeon CPU
E5462 (quad-core, 2.80 GHz). In simulations we used the Mersenne twister random
generator with seed 100. Newton’s method was used to solve the nonlinear algebraic
equations at each step of the implicit schemes.

We test the methods on two model problems. The first one satisfies Assump-
tion 4.1 (nonglobal Lipschitz drift, global Lipschitz diffusion) and has two noncom-
mutative noises. The second example satisfies Assumption 2.1 (nonglobal Lipschitz
both drift and diffusion). The aim of the tests is to compare performance of the meth-
ods: their accuracy (i.e., roughly speaking, size of prefactors at a power of h) and
computational costs. We note that experiments cannot prove or disprove boundedness
of moments of the schemes since experiments rely on a finite sample of trajectories
run over a finite time interval, while blow-up of moments in divergent methods (e.g.,
explicit Euler scheme) is, in general, a result of large deviations [15, 22].

Example 5.1. Our first test model is the Stratonovich SDE of the form

(5.4) dX = (1 — X%)dt + X o dw;y + dws, X(0)=0.

In Ito’s sense, the drift of the equation becomes a(t,r) = 1 — 2° + x/2. Here we
tested the balanced method (3.1), the drift-tamed scheme (5.1), the fully implicit
Euler scheme (4.11) with A = 1, and the midpoint method (4.11) with A = 1/2. We
note that for all the methods tested on this example except the midpoint rule mean-
square convergence with order 1/2 is proved either in earlier papers [10, 9, 14] or here
as described before.

To compute the mean-square error, we run M independent trajectories X (*) (1),

X,gi):

1/2

) M 1/2
(5.5) (Blx(m) - xy?) " = (M S IxXOT) - X§é>12> .
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TABLE 5.1
Ezxzample 5.1. Mean-square errors of the selected schemes. See further details in the text.

h |(4.11), A =1 Rate|(4.11), A=1/2 Rate| (5.1) Rate| (3.1) Rate
0.1 1.712e-01 - 1.443e-01 — |3.748e-01 — [3.594e-01 -
0.05 | 1.234e-01 0.47 9.224e-02 0.65 [2.103e-01 0.83|3.017e-01 0.25
0.02 | 7.692e-02 0.52 5.261e-02 0.61 [9.472e-02 0.87|2.297e-01 0.30
0.01 | 5.478e-02 0.49 3.549e-02 0.57 [6.104e-02 0.63|1.778e-01 0.37
0.005| 3.935e-02  0.48 2.487e-02 0.51 [3.959e-02 0.62|1.354e-01 0.39

We took time T = 50 and M = 10*. The reference solution was computed by the mid-
point method with small time step h = 10~%. It was verified that using a different
implicit scheme for simulating a reference solution does not affect the outcome of the
tests. We chose the mid-point scheme as a reference since in all the experiments it
produced the most accurate results.

Table 5.1 gives the mean-square errors and experimentally observed convergence
rates for the corresponding methods. We checked that the number of trajectories
M = 10* was sufficiently large for the statistical errors not to significantly hinder
the mean-square errors. (The Monte Carlo error computed with 95% confidence was
at least 10 times smaller than the reported mean-square errors except values for
(5.1) at h = 0.1 and 0.05, where it was at least 5 times smaller than the mean-
square errors.) In addition to the data in the table, we evaluated errors for (3.1)
for smaller time steps: h = 0.002—the error is 9.27e-02 (rate 0.41); 0.001—the error
is 6.86e-02 (0.44). The observed rates of convergence of all the tested methods are
close to the predicted 1/2. For a fixed time step h, the most accurate scheme is
the midpoint one, and the less accurate scheme is the new balanced method (3.1).
To produce the result with accuracy ~ 0.06 — 0.07, in our experiment of running
M = 10* trajectories the scheme (5.1) required 170 sec, the midpoint (4.11) with
A = 1/2 required 329 sec, (4.11) with A = 1 required 723 sec, and (3.1) required 1870
sec. That is, our experiments confirmed the conclusion of [10] that the drift-tamed
(modified balance) method (5.1) from [10] is highly competitive. We note that (5.1)
is not applicable when diffusion grows faster than a linear function and that in this
case the balanced method (3.1) can outcompete implicit schemes, as shown in the
next example.

Ezxample 5.2. Consider the SDE in the Stratonovich sense:

(5.6) dX = (1 — X%)dt + X?o dw, X(0)=0.

In Ito’s sense, the drift of the equation becomes a(t,r) =1 — 2° + 3.

Here we tested the balanced method (3.1), the fully tamed Euler scheme (5.2),
the drift-implicit scheme (2.17), the fully implicit Euler scheme (4.11) with A = 1,
the midpoint method (4.11) with A = 1/2, and the trapezoidal scheme (5.3). We
recall that in the case of nonglobal Lipschitz drift and diffusion, for the drift-implicit
scheme (2.17) and the balanced method (3.1) mean-square convergence with order 1/2
is shown earlier in this paper and for (2.17) it is also shown in [14]; it is not difficult to
generalize the results of [13] to show boundedness of higher moments of the trapezoidal
scheme (5.3) and then, using Theorem 2.1, to prove its mean-square convergence with
order 1/2 (see also [14]), which is supported by the experiments. Strong convergence
of (5.2) without order is proved in [9]. We note that it can be proved directly that
implicit algebraic equations arising from application of the midpoint and fully implicit
Euler schemes to (5.6) have unique solutions under a sufficiently small time step.
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Fic. 5.1. Ezample 5.2. Trajectories of the fully tamed scheme (5.2) and the balanced scheme
(8.1) for h = 0.1. The reference trajectory is simulated by the midpoint scheme (see (4.11) with
A =1/2) using a small time step.

The reference solution was computed by the midpoint method with small time
step h = 10~%. The time T = 50 and M = 10* in (5.5).

The fully tamed scheme (5.2) did not produce accurate results until the time step
size was at least h = 0.005, and we do not report its errors here, but see the remark
below.

Remark 5.1. In contrast to the explicit balance scheme (3.1), the nature of
the explicit fully tamed scheme (5.2) can lead to spurious oscillations, which sig-
nificantly reduces its practical usefulness. Indeed, if at a step k., the event O :=
|ha(Xy) + oM 04 (tr, Xi)&x V| > 1/h happens, then in the case of (5.6) the tra-
jectory Xk, k > ki, oscillates approximately between X, and Xj, — sgn(Xg,)/h.
Since the probability of the event O is positive for any step size h > 0 and grows with
integration time, it is unavoidable that in some scenarios (i.e., on some trajectories)
such oscillatory behavior will appear. For instance, in this experiment for h = 0.1 we
observed 305 out of 1000 paths for which O happened over the time interval [0, 5],
582 for over [0, 10], and 989 for over [0, 50]; for 1 = 0.05 we observed 866 out of 1000
paths over the time interval [0,50]. Typical trajectories of the balance scheme (3.1)
and the fully tamed scheme (5.2) are presented in Figure 5.1, where the reference
solution is computed by the midpoint scheme with a small time step A = 0.0001.
From the practical point of view, (5.2) works as long as the explicit Euler scheme
works (cf. [15] and also [21, p. 17]). The strong convergence (without order) of (5.2)
[9] in comparison with the explicit Euler scheme is due to the following fact. When
event O happens for the Euler scheme its sequence Xy, starts oscillating with growing
amplitude, which leads to unboundedness of its moments and, consequently, its di-
vergence in the mean-square sense. For (5.2), the oscillations are bounded by ~ 1/h
and since the probability of O over a finite time interval is rapidly decreasing with
a decrease of h, then the moments are bounded uniformly in h. At the same time,
the one-step approximation of (5.2) does not satisfy the conditions (2.9) and (2.10)
of Theorem 2.1. We note that the explicit balanced-type scheme (3.1) does not have
such drawbacks as (5.2).

Table 5.2 gives the mean-square errors and experimentally observed convergence
rates for the corresponding methods. We checked that the number of trajectories
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TABLE 5.2
Ezample 5.2. Mean-square errors of the selected schemes. See further details in the text.

h (2.17) Rate | (4.11), A=1 Rate| (4.11), A =1/2 Rate (5.3) Rate (3.1) Rate
0.2 3.449e-01 — 1.816e-01 — 1.378e-01 — 4.920e-01 — 2.102e-01 —
0.1 2.441e-01  0.50 1.331e-01 0.45 8.723e-02 0.66 | 3.526e-01 0.48 | 1.637e-01  0.36
0.05 | 1.592e-01 0.62 9.619e-02 0.47 5.344e-02 0.71 | 2.230e-01  0.66 | 1.270e-01  0.37
0.02 | 8.360e-02 0.70 6.599e-02 0.41 2.242e-02 0.95 | 1.048e-01  0.82 | 9.170e-02  0.36
0.01 | 5.460e-02 0.61 | 4.919e-02 0.42 1.145e-02 0.97 | 5.990e-02 0.81 | 7.065e-02  0.38

0.005 | 3.682e-02  0.57 3.522e-02 0.48 5.945e-03 0.95 | 3.784e-02 0.66 | 5.393e-02 0.39

TABLE 5.3
Ezxample 5.2. Computational times for the selected schemes. See further details in the text.

h (2.17) (411), A=1 (4.11),A=1/2 (5.3) (3.1)
0.2 9.25e+00 1.10e+01 9.33e+00 1.20e+01 3.98e+00
0.1 1.77e+01 2.17e+01 1.80e+01 2.30e+01 7.49e+00
0.05 3.42e+01 4.26e+01 3.51e+01 4.48e+01 1.41e+401
0.02 8.33e+01 1.04e+02 8.69e+01 1.10e+02 3.37e+01
0.01 1.64e+02 2.05e+402 1.73e+02 2.19e+402 6.62e+01

0.005 3.25e4-02 4.07e402 3.47e+4-02 4.37e4+02 1.32e+02

M = 10* was sufficiently large for the statistical errors not to significantly hinder
the mean-square errors. (The Monte Carlo error computed with 95% confidence was
at least 10 times smaller than the reported mean-square errors.) In addition to the
data in the table, we evaluated errors for (3.1) for smaller time steps: for h = 0.002
the error is 3.70e-02 (rate 0.41), for 0.001 it is 2.73e-02 (0.44), and for 0.0005 it is
2.00e-02 (0.45), i.e., for smaller h the observed convergence rate of (3.1) becomes closer
to the theoretically predicted order 1/2. Since (5.6) is with single noise, Remark 4.2
is valid here, which explains why the midpoint scheme demonstrates the first order of
convergence. The other implicit schemes show the order 1/2 as expected.

Table 5.3 presents the time costs in seconds. Let us fix the tolerance level at
0.05 — 0.06. We highlight in bold the corresponding values in both tables. We see
that in this example the midpoint scheme is the most efficient, which is due to its
first-order convergence in the commutative case. Among methods of order 1/2, the
balanced method (3.1) is the fastest and one can expect that for multidimensional
SDEs the explicit scheme (3.1) can considerably outperform implicit methods. (See a
similar outcome for the drift-tamed method (5.1) supported by experiments in [10];
note that (5.1), in comparison with (3.1), is, as a rule, divergent when diffusion is
growing faster than a linear function on infinity.)

Appendix A. Proof of the fundamental theorem. Note that in this and
the next two sections we shall use the letter K to denote various constants which are
independent of h and k. The proof exploits the idea of the proof of this theorem in
the global Lipschitz case [17].

Consider the error of the method Xy, x,(tx+1) at the (k + 1)-step:

(A1) prtr = Ko, xo (trer1) — Koo, X0 (te1) = Xy x(t0) (tt1) — X, x (B1)
= (Xt x (1) (Pe1) — Xeg,x (Bt 1)) + (Xt x (1) — Xy x (Beg1))-
The first difference in the right-hand side of (A.1) is the error of the solution

arising due to the error in the initial data at time t;, accumulated at the kth step,
which we can rewrite as
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St X (0), X (tet1) = Sk = Xpp x(0) (Err1) — X x (Thg1)
= pk + Zi, x(t0), x5 (tht1) = P&+ Zpy1,

where Z is as in (2.14). The second difference in (A.1) is the one-step error at the
(k + 1)-step and we denote it as ryy1:

a1 = X, x, (beg1) — Koo, x (Brg1)-
Let p > 1 be an integer. We have
(A.2) Elpit1]? = E[Sps1 + res1]
= E[(Sk+1, Skt1) + 2(Sk41, Tkt 1) + (g1, 1))
< E|Sks1 [ + 20E [Sk1) 772 (o + Zit1,7r41)

2p

+ K ElSin PP e |
1=2

Due to (2.15) of Lemma 2.2, the first term on the right-hand side of (A.2) is esti-
mated as

(A.3) E[Ski1[* < Elpl*(1+ Kh),
Consider the second term on the right-hand side of (A.2):
(A.4) E Sk 72 (o + Zis1, k1)
=Elpl” " (o i) + B (1172 = [pul ) (ors i)
+ B |Ski1 [ (Ziga, mig)-

Due to F3,-measurability of pi, and due to the conditional variant of (2.9), we get for
the first term on the right-hand side of (A.4)

(A.5) E |pul”" ™2 (o, ris1) < KE|pg 7 (1 + | Xg|?) /202

Consider the second term on the right-hand side of (A.4) and first note that it is equal
to zero for p = 1. We have for integer p > 2

2p—3

2p—2 2p—2 4
E (|Sk+1| P75 — k| ) (P, Tit1) < KE | Zyia| | pl|Te41] E |Sk1?P 3 i
=0

Further, using F3, -measurability of p; and the conditional variants of (2.10), (2.15),
and (2.16) and the Cauchy—Bunyakovsky—Schwarz inequality (twice), we get for p > 2

(A6) E (|Sk+1|2p72 - |pk|2p72) (Pry Tt 1)
< KE |pe)™ 7" (1 + [ X (t) P72 4 | X3 |2 2) V4B HY2(1 4 | X [2) 12

Due to F, -measurability of p, the conditional variants of (2.10) and (2.16), and
the Cauchy—-Bunyakovsky—Schwarz inequality (twice), we obtain for the third term
on the right-hand side of (A.4)

(A7) E |Sk+1|2p72 (Zit1,Th+1)
<E[E (Sk [ 4 F0) P B (1 Zksal1F) U E (I [ F)
< KE |pe)™ 7" (1 + [ X (t) 2772 4 | X3 |2 2) V4B H2(1 4 | X [2) V4

1/4
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Due to Fy, -measurability of pi, and due to the conditional variants of (2.10) and
(2.15) and the Cauchy-Bunyakovsky—Schwarz inequality, we estimate the third term
on the right-hand side of (A.2):

2p
(A8) Ky E[Supa|™ " [rsa] <KZE E(|Sks1 |72 | Fip ) V2B [ Fe )]
=2 =2
2p
< KOS E[peP Rl (14 X5 [2) ),
=2

Substituting (A.3)—(A.8) into (A.2) and recalling that ¢1 > ¢2 + 1/2, we obtain

Elprs1]? < Elpp|*P(1 + Kh) + KE |pp |71 (1 + | X [2*) /2 pa211/2

+KE |pk|2p71 (1 + |X(tk)|2%—2 + |Xk|2n—2)l/4hq2+l/2(1 + |Xk|2o¢)l/2

+ KE i7" (14 | X (80))2% 72 4 | X5 [P 2)VARBT2(1 4 | X [20) /4
2p

+ KZE[kalz”’lhlqz(l + | X))
=2

< E|pp|*(1 + Kh)

+ KE|pp? " (14 | X (80))2% 72 4 | Xp [ 2) VA2 T12(1 4 | X [2) /2

2p

+ Kl R (1 | X F)2),
=2

Then using Young’s inequality and the conditions (2.5) and (2.12), we obtain
E|prr1|? < Elpr|? + KhE|pp|? + K(1 + E|XO|Bp(”*1)+2po"8)h2p(q2’1/2)“
whence (2.13) with integer p > 1 follows by application of Gronwall’s inequality. Then

by Jensen’s inequality (2.13) holds for noninteger p as well. O

Appendix B. Proof of Lemma 2.2. Lemma 2.2 is an analogue of Lemma 1.1.3
in [21].

Proof. Introduce the process Stz (s) = S(s) := Xt 4(s) — X¢,y(s) and note that
Z(s) = S(s) — (x —y). We first prove (2.15). Using the Ito formula and the condition
(2.2) (recall that (2.2) implies (2.5)), we obtain for § > 0

E|S(t + 6)[*

t4+60
— o~y + 2 / EIS272 | ST(a(t, X1.0(s)) — at, Xuy(5)))
t

+% > ow(t, Xi(s) — on(t, Xt,y(s))|2] ds
r=1

t+0 m
+2p(p — 1)/ E|S|?P~4|ST(s Z or(t, Xt.2(8)) — 0r(t, Xp,4(5))]| ds
t r=1

t+0
<z -yl + 2p/t E|S[*P~* [ST(a(taXm(S)) —a(t, Xiy(s)))

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/28/14 to 128.148.231.12. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SDEs WITH LOCALLY LIPSCHITZ COEFFICIENTS 3157

2p—1 [T
A2 [ o X)) = o (8 Xy ()P s
t r=1

t+0
st—m%+awn/ E|S(s)[?* ds
t

from which (2.15) follows after applying Gronwall’s inequality.
Now we prove (2.16). Using the Ito formula and the condition (2.2), we obtain
for 6 >0

(B.1)

t+0
E|Z(t+0)[" = 2p/t E|Z[P72| Z7(a(t, Xeo(s)) = alt, Xey(s)))

+% Z |or(t, Xt,a(s)) — on(t, Xt7y(5))|21 ds
r=1

2
ds

m

Al Z[UT (t; Xt,w(s)) — Oy (ta Xt,y(s))]

r=1

t+0
+m@—w/ E| 2
t

t4+60
SQPK E|Z[20-2(5) | ST(alt, Xi.a(5)) — alt, X1y(5)))

2p _ 1 t+6 m 9
+= t > loe(t, Xea(s)) — o0 lt, Xey(s)))? | ds
r=1
t+0
— 2p/ E|Z|2p—2(x —y,a(t, Xt2(s)) —alt, Xt4(s)))ds
t
t+0
§2pcl/ E|Z|-2|S]2 ds
t

t+0
_ 2p/t E|Z|*2(z — y, alt, Xt ,2(8)) —a(t, Xy ,y(s)))ds.

Using Young’s inequality, we get for the first term in the right-hand side of (B.1)
t+0 t+6
(B.2) 2pcl/ E|Z|*72|S|?ds < 4pcl/ E|Z*2(|Z* + |z — y|?) ds
t t
t+6 t+0
< K/ E|Z|*Pds + K|z — y|2/ E|Z|*P~2ds.
t t

Consider the second term in the right-hand side of (B.1). Using Hélder’s inequal-
ity (twice), (2.3), (2.15), and (2.5), we obtain

(B.3)

t+60
—%/' EIZP2(x — y, a(t, Xo o (5)) — alt, Xoy(s)))ds
t
t+0
<2p [ BIZPPalt, Xoa(s) — alt Xey (5))Jo - ylds
t

t+0
< Kz —yl / [E127) ™7 [Bla(t, X (5)) — alt, Xy (s)1P]7 ds
t
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t+0
< Klz—y / [E|z[2)" /"
t
X (E[(L+ [X0.2(8)/22 + [ X0y (8) 2272 X, 0 (5) — Xy (5)P])V/7 dis
o 1-1/p 1/2p
< Klz—y| / [E1Z[2) ™7 (B[(1 + | X0 ()2 + | X0y (3) %))
x (B[ Xp2(5) — Xpy(s)2])"/*" ds

t+60
2 e e 1-1/
<Ko=yl (L a2 P2 [ (B2 as
t

Substituting (B.2) and (B.3) into (B.1) and applying Hoélder’s inequality to
E|Z|?~2, we get

t+6
E|Z(t+0)* < K/ E|Z|*ds
t
2 25—2 2:—2\1/2 o 2p11-1/p
+ Ko —y[" (L 2777 + [y[7777) [E|Z]*"] ds,
t

whence we obtain (2.16) for integer p > 1 using Gronwall’s inequality as, e.g., in [25,
p. 360], and then by Jensen’s inequality for noninteger p > 1 as well. O

Appendix C. Proof of Lemma 3.2. As in the global Lipschitz case [19, 21],
the proof of Lemma 3.2 is routine one-step error analysis.

Proof. We start with proving an auxiliary result. Let a function ¢(t,z) have
continuous first-order partial derivative in ¢ and the derivative and the function satisfy
inequalities of the form (2.3). For @ > 1 and s > ¢, we have

Ele(s, Xex(s)) — o(t, )"
< KElp(s, Xi.2(s)) — o(s,2)[" + K |o(s, ) — o(t, z)|

[e3

o 50
< KE [(1 + |Xt)m(8)|%7l + |$|”71)|Xt,z(3) — x|] + K ‘/ %go(sl,x)dsl
t

(e

< KE(L+ [ Xt 2(s)) 7t + 2 He / a(s', Xi..(s"))ds
¢

q @
+ KDY B+ [ Xea(s))* 4 |21
r=1

+ K(1+ |z]*)(s — t)“.

/t (s, X () dun ()

Then, using the Cauchy-Bunyakovsky—Schwarz inequality, (2.5), and (2.3), we get

(C.1) Elp(s, Xt.a(s)) — o(t, )|

“(

S

< K (1 [a]*™Y)

—

901 1/2
(1+ |Xt7z(s')|”)ds') ]

. . 901 1/2

FRUH )Y B [ o X)) ) ]
r=1 t

+ K(1+ |z]*")(s — t)~.
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By the inequality for powers of Ito integrals from [2, p. 26], we obtain that

2c

(C2) E

[m@&wWMm

< K(s—t)* ! / Elo(s', Xt (") [**ds’.
¢

And, by the same recipe as in [2, p. 26] which exploits Holder’s inequality, it is not
difficult to get

s 2a s
(C.3) E [/ 1+ Xt,m(s’)|”ds’] < K(s—t)* ! / E|1 + X .(s))|***ds’.
t t

It follows from (C.1)—(C.3), from the assumption that o, satisty (2.3), and from (2.5)
that

(C4) E |(s, Xt.a(5)) = o(t,2)|" < K(1+ [277)[(s = )/ + (s —)°],

which, in particular, holds for the functions a(t,z) and o, (¢, z) under the conditions
of the lemma.

Now consider the one-step approximation of the SDEs (1.1), which corresponds
to the balanced method (3.1),

a(t,2)h + 31 on(t, )6V

C5 X - )
(©5) T hatt o) - VAT o (L) ]

and the one-step approximation corresponding to the explicit Euler scheme:
m

(C.6) X =z+a(t,2)h+ Y op(t,2)&Vh.
r=1

We start with analysis of the one-step error of the Euler scheme:
p(t, @) == Xy a(t +h) — X.
Using (C.4), we obtain
(C.7)
Ep(t, 2)| =

t+h t+h
E/t (a(s, Xi2(s)) —a(t,x))ds| < E/t la(s, Xt 5(s)) — a(t, z)|ds

< Kh32(1 4 |27 1),

(We remark that assuming additional smoothness of a(t,x), we can get an estimate
for Ej(t, z) of order O(h?), but this will not improve the result of this lemma for the
balanced scheme (3.1).) Further,

2p

t+h
(C.8) Ep? (t,z) < KE /t (a(s, Xt.4(s)) —a(t,x))ds

r=1

2p

t+h
/t (01(5, X1.0(5)) — o0 (t, 2)) duwy ()
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Using the same recipe as in (C.3) and then applying (C.4), we get for the first term
in (C.8)
(C.9
2p
E

)
t+h t+h
/t (a(s, Xt.4(s)) —a(t,z))ds| < Kh2r—1 /t Ela(s, X¢,2(s)) — al(t, x)|2pds

< Kh3P(1 + |z|'P7=2P),
Using an inequality of the form (C.2) and then applying (C.4), we obtain

2p

t+h
(C.10) E /t (o7 (8, Xt.2(s)) — or(t, z)) dw,(s)

t+h
< th—lf E |0 (s, Xt (s)) — 00 (t, 2)[ ds < Kh?P(1 + |2]"P==2P).
t

It follows from (C.8)—(C.10) that
(C.11) Ep?P(t,x) < Kh?P(1 + |z|*P*~2P).

Now we compare the one-step approximations (C.5) of the balanced scheme and
(C.6) of the Euler scheme:

- at,r)h+ 30 ot 0)eVh o
(C.12) A SRS VS S s A

where

z) = [ a(t,2)h “ ot @ r\/ﬁ h|a(t,x)|+\/Ezln:1|ar(t,a:)§r| .
i <(t ) +7; (o )1+hla<taw>l+¢52?_1Icnn(t,a:)&rl

Using the equality (3.8) and the assumptions made on the coefficients (see (2.3)), we
obtain

hla(t, )| + VRS o (t, 2)& |
1+ hla(t, z)| + \/EZ:;1 lo(t, 2)&r

|Ep(t,z)| = |a(t,z)hE < KR32(1 + |2]?),

which together with (C.12) and (C.7) implies that (C.5) satisfies (2.9) with ¢; = 3/2.
Further,

m 4p
Ep* (t, ) < h*'E |Vhla(t,z)| + ) |Ur(t,$)£r|‘| < Kh*P(1 4 [2]'P),

r=1

which together with (C.12) and (C.11) implies that (C.5) satisfies (2.10) with
g2 = 1. ]
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