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We present an efficient computational method to model fluid flow in the presence of random wall rough-
ness. A random flow domain is represented by a stochastic indicator function having a smoothed profile
perpendicular to roughness, and the random domain is discretized with a fixed non-conformal grid. This
procedure introduces a stochastic force into the Navier–Stokes equations, and modifies the boundary
conditions at the fluid–solid interface. We employ a high-order semi-implicit splitting scheme imple-
mented in the context of a spectral/hp element method in order to discretize the physical domain. The
stochastic roughness is treated as a second-order autoregressive process that is represented by a Karhunen–
Loève expansion. A multi-element probabilistic collocation method is employed to solve the resulting
stochastic Navier–Stokes equations. This method is applied to simulate external flow past a rough cylin-
der and internal Stokes flow between two parallel plates with random wall roughness. In the first prob-
lem, we develop an analytical solution for the asymptotic behavior of the lift coefficient CL to verify the
results. In the second test-case, we compare the mean and the standard deviation of the velocity field to
those obtained from a different method called stochastic mapping approach (SMA), developed by Tarta-
kovsky and Xiu (2006).

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Topological uncertainties associated with rough surfaces are of
great scientific and engineering importance. Petroleum geology [1],
hydraulic network design [2], surface imaging [3], nano-device
manufacturing [4], biological wetting mechanisms [5], and human
physiology [6] are but a few applications in which (uncertain)
boundary roughness significantly affects the physical phenomenon
involved. This uncertainty arrises from data scarcity and/or exces-
sive measurement errors. It is ubiquitous not only in natural sys-
tems (e.g., geological materials) but also in manufactured ones
where imperfect manufacturing, mechanical and electro-chemical
corrosion, etc., introduce uncertainty into the representation of
surfaces bounding computational domains.

Approaches to quantification of the effects of geometric irregu-
larities on a system’s behavior fall into either deterministic or
probabilistic frameworks. Deterministic approaches represent sur-
face roughness through canonical shapes, such as indentations,
sinusoidal corrugations, periodic segments, or fractals [7–10]. The
probabilistic framework conceptualizes rough surfaces as a source
of uncertainty and treats them as random fields [11–13].
Consequently, it models even a deterministic physical system as
a stochastic boundary-value problem.

The probabilistic framework necessitates the development of
new approaches for analysis and solution of partial-differential
equations (PDEs) defined on uncertain (random) domains. This is
because traditional methods for uncertainty quantification in such
problems, including Monte Carlo simulations, can become compu-
tationally prohibitive [14]. Examples of analyses focusing on
uncertain domains are perturbation solutions of Laplace’s equation
in a domain bounded by a random fractal surface [10], quantifica-
tion of the effects of uncertain geometry on solutions of elliptic
boundary-value problems [15,16]. Other examples are prediction
of geometric uncertainty effects on the dynamics of fluid employ-
ing polynomial chaos and the notion of fictitious domain, where
the governing PDEs are solved on a domain different from the
physical one [17], and implementation of Karhunen-Loève expan-
sion for describing the variability in the nozzle geometry [18].

A general approach for solving PDEs on domains bounded by
fixed or moving random surfaces [19] was used to solve a number
of problems of practical importance [12,13,20,6]. The approach re-
lies on a stochastic mapping of random domain onto a determinis-
tic domain, which transforms an original (deterministic or
stochastic PDE) into a stochastic PDE. When analytical mappings
are not available, this method bears an additional computational
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Fig. 1. Schematics of the total SSPM spatial domain D, which is decomposed into
the fluid domain Df and the wall-domain Dw , where Dw is consisting of two random
wall sub-domains Dw1 and Dw2 whose random boundaries are DB1 (solid line) and
DB2 (dashed line), respectively.
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cost associated with solving a set of Laplace’s equations to obtain
the stochastic mappings.

Here, we present a stochastic smoothed profile method (SSPM) as
an efficient computational alternative to the latter approach. The
SSPM transforms a random domain into a random force-term in
the original deterministic/stochastic governing PDEs. The (deter-
ministic) smoothed profile method was developed in [21–27]. An
error analysis of a semi-implicit extension of this method, which
is implemented in the current study, can be found in [28]. The
SSPM uses a smoothly spreading interface layer to represent rough
boundaries; within this layer a transition from rigid body motion
to fluid motion takes place. Then, the velocity inside each random
domain is updated by integrating a ‘‘penalty’’ body force to ensure
the rigid presence of the geometry.

This paper is organized as follows: the representation of ran-
dom roughness is given in Section 2 using the stochastic smoothed
profile method (SSPM) in conjunction with the Karhunen–Loéve
expansions to model the rough wall-boundaries. Then, in Section
3, the SSPM formulation of stochastic Navier–Stokes equations is
obtained by introducing an extra random force-term. In Section
4, the stiffly-stable high order splitting scheme is explained
step-by-step to perform the time-integration of the stochastic
Navier–Stokes equations. We represent the spatial and the sto-
chastic discretization of the governing equations in the physical
space using the spectral/hp element method, and in the random
space by means of multi-element probabilistic collocation method
(ME-PCM). In Section 5, the numerical results are discussed. First,
an external flow i.e., flow past a cylinder with random wall-rough-
ness is considered, for which a stochastic harmonic model is ob-
tained for the corresponding asymptotic behaviour of the lift
coefficient. As an internal flow test case, Stokes flow in a channel
with rough walls is then numerically solved. The mean and the
standard deviation of the velocity field in the rough channel are
compared to those obtained by a different method, called stochas-
tic mapping approach (SMA). We end this paper by summary and
conclusions. An appendix is also included for further explanation of
SMA.

2. Representation of random domains

Consider a bounded spatial domain D ¼ Df [ Dw, where Df de-
notes the fluid domain and Dw represents the entire wall domain
of the problem. In this context, Df and Dw are disjoint, moreover,
Dw generally consists of Nw non-overlapping wall sub-domains,
i.e., Dw ¼

SNw
i¼1Dwi . The intersection of Df and each wall sub-domain

Dwi is referred to as a wall-boundary segment denoted by DBi
(lines

and surfaces in two and three spatial dimensions). Flow problems
involving random wall-roughness render Dw and, therefore, Df sto-
chastic through the common random boundary DBi

between the
fluid domain Df and each wall sub-domainDwi . For example, a
schematic external flow past two arbitrary objects is shown in
Fig. 1, where the total SSPM spatial domain D is decomposed into
the fluid domain Df and the wall-domain Dw, also Dw is consisting
of two random wall sub-domains i.e., Nw ¼ 2.

Let ðX;F ;PÞ be a complete probability space, where X is the
space of events, F � 2X denotes the r-algebra of sets in X, and P

is the probability measure. The SSPM represents the random geom-
etry of the ith wall sub-domain, Dwi

;P-almost surely (a.s.), by a
particular smoothed profile called a stochastic indicator/concen-
tration function,

/iðx;xÞ ¼ 1
2

tanh � diðx;xÞ
gi

� �
þ 1

2
; x 2 X; ð1Þ

where x 2 D represents the spatial coordinate and gi denotes the
interface thickness of the ith wall sub-domain Dwi

. Here, diðx; xÞ
is the signed distance to the ith random wall sub-domain Dwi
with

positive value outside and negative value inside Dwi
. The random-

ness of Dwi
renders di random. In general, a closest-point searching

procedure should be used to find diðx;xÞ. This technique of repre-
senting a random geometry in the context of a fixed canonical
topology follows the spirit of Level Set Method (LSM), rendered sto-
chastic (see e.g., [29]). If DBi

is a boundary of a canonical domain
(e.g., a cylinder, sphere, or plane), then one can use the following
procedure to calculate diðx;xÞ.

Suppose that a random boundary segment DBi
can be repre-

sented by a random field hðs;xÞ that has the ensemble mean
EfhðsÞg ¼ �hðsÞ, finite variance Ef½hðsÞ � �hðsÞ�2g, and covariance
Chðs1; s2Þ ¼ Ef½hðs1Þ � �hðs1Þ�½hðs2Þ � �hðs2Þ�g. Then a Karhunen–
Loève (KL) expansion of hðs;xÞ takes the form

hðs; xÞ ¼ �hðsÞ þ
X1
k¼1

ffiffiffiffiffi
kk

p
WkðsÞnkðxÞ; ð2Þ

where nkðxÞ are mutually uncorrelated random variables with zero
mean and unit variance, while wkðsÞ and kk are the eigenfunction
and eigenvalues of the covariance kernel Chðs1; s2Þ. Following [30],
we obtain the covariance kernel Ch and its eigenvalues and eigen-
functions, by solving a stochastic Helmholtz equation

Mh�m2h ¼ f ðs;xÞ; ð3Þ

where the random forcing f ðs; xÞ is a white-noise process with zero
mean and unit variance. For periodic boundary conditions, the
eigenvalues and eigenvectors of (3) form a Fourier series, so that
the KL expansion (2) is replaced with its sine Fourier series version

hðs; xÞ ¼ �hðsÞ þ
X1
k¼1

bk sin
2kps

T

� �
nkðxÞ; ð4Þ

in which the random variables nkðxÞ are chosen to be uniformly dis-
tributed, T is the length of the process along the x-axis, and

bn ¼
2ffiffiffi
T
p

‘2 1þ 2pn
T‘

� �2
" #�1

; ð5Þ

where ‘ ¼ T=A and A is the correlation length of hðx;xÞ. To ensure
that the random variables nkðxÞ have zero mean and unit variance,

we define them on nkðxÞ 2 �
ffiffiffi
3
p

;
ffiffiffi
3
ph i

.

To render (4) computable, we truncate the infinite series with a
prescribed fraction of the energy of the process. Let hm denote the
truncated expansion, and assume that �hmðxÞ ¼ 0. Furthermore, we
introduce a non-dimensional roughness height

yðs;xÞ ¼ �hm

l
; l ¼max

s
½rhm �; ð6Þ
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where � is the amplitude of the roughness height, and rhm is the
standard deviation of hm.

In lieu of example, we demonstrate how the random signed dis-
tance diðx;xÞ can be constructed for a stationary rough cylinder. In
this case, the deterministic signed distance is diðxÞ ¼j x� Ri j �ai,
where ai is the cylinder’s radius, and Ri is the position vector of
the cylinder’s center. Let us assume that the roughness exhibits
no variation along the length of the cylinder. Then, using the KL
expansion (4) to represent the random roughness of the cylinder’s
surface in the radial direction (i.e., s in (2)), we express the stochas-
tic indicator function (1) as

/iðx;xÞ ¼ 1
2

tanh
ai þ yðs;xÞ� j x� Ri j

gi

� �
þ 1

2
: ð7Þ

By construction, /iðx;xÞ ¼ 1 inside the wall-geometry (x 2 Dwi
)

and = 0 inside the fluid field (x 2 Df ). The transitional zone, where-
in /iðx;xÞ varies smoothly between 1 and 0, defines the rough seg-
ments DBi

. For each of Nw rough domains Dwi
(i ¼ 1; . . . ;Nw), we

compute an indicator function /i and obtain the total concentration
field as

/ðx; xÞ ¼
XNw

i¼1

/iðx; xÞ: ð8Þ
3. SSPM formulation of stochastic Navier–Stokes equations

Inside the random domain Df , we consider flow of an incom-
pressible Newtonian fluid with density q and kinematic viscosity
m. The flow is described by a combination of the continuity and
Navier–Stokes (NS) equations,

r � uf ¼ 0 ðx; t; xÞ 2 Df � Rþ �X; ð9aÞ
@uf

@t
þ ðuf � rÞuf ¼ �

1
q
rpþ gþ mr2uf ðx; t; xÞ 2 Df � Rþ �X; ð9bÞ

where g is an external force (e.g., gravity), pðx; t;xÞ is the fluid pres-
sure, and uf ðx; t;xÞ is the fluid velocity. Randomness of the state
variables p and uf stems from uncertainty in the flow domain
DðxÞ. For the sake of generality, we allow the random domain
Dwðt;xÞ ¼

SNw
k¼1 DBk

ðt; xÞ of the flow domain Df ðt; xÞ to vary with
time t.

Let Vi and Wi denote the translational and angular velocities of
Dwi
ðt;xÞ, respectively. Then uwðx; t;xÞ, the velocity of the entire

wall-domain with random boundariesDBðt;xÞ, is constructed from
rigid motion of the Nw bodies as

/ðx; t; xÞuwðx; t;xÞ ¼
XNw

i¼1

ViðtÞ þWiðtÞ � x� RiðtÞ½ �f g/iðx; t;xÞ;

ð10Þ

where Ri (i ¼ 1; . . . ;Nw) is the position vector of the centroid of the
ith sub-domain with random boundaries. Assuming that envelopes
of the boundary segments Dwi

ðt;xÞ (i ¼ 1; . . . ;Nw) do not overlap,
one can show that /ir/j ¼ 0 for 8i – j. This condition is translated
into the impermeability of wall-boundaries. Consequently,
r � ð/uwÞ � 0, which ensures the incompressibility of the velocity
field inside the wall-domain.

Finally, the total velocity uðx; t;xÞ is defined as a superposition
of the wall-domain velocity uw and the fluid velocity uf ,

uðx; t; xÞ ¼ /ðx; t; xÞuwðx; t;xÞ þ ½1� /ðx; t; xÞ�uf ðx; t;xÞ: ð11Þ

Inside the random wall domain (/ ¼ 1), u ¼ uw, i.e., the total veloc-
ity equals the wall velocity. In the interfacial domain (0 < / < 1),
the total velocity changes smoothly from uw to uf . This approach
implicitly imposes the no-slip and no-penetration boundary
conditions along the random wall domains presented by the indica-
tor function (1), see also [28].

SSPM solves the NS equations for the total velocity uðx; t;xÞ in a
deterministic domain D � Rd (d ¼ 2 or 3, and Df � D),

r � u ¼ 0 ðx; t;xÞ 2 D� Rþ �X; ð12aÞ

@u
@t
þ ðu � rÞu ¼ � 1

q
rpþ gþ mr2uþ f ðx; t;xÞ 2 D� Rþ �X;

ð12bÞ

where fðx; t;xÞ is a random force density term that represents
interactions between the random boundaries and the fluid. We
postpone the precise definition of fðx; t;xÞ till the following section.
Here it suffices to say that fðx; t;xÞ is required to satisfy the finite-
dimensional noise assumption [31]. In other words, the random force
term f must be represented in a finite-dimensional probability
space by truncation of the KL expansion as discussed in Section 2.

Key advantages of SSPM now become apparent. First, it replaces
the task of solving PDEs on complex (possibly evolving in time)
random domains Dðx; tÞ with a more tractable problem of solving
stochastic PDEs on canonical deterministic domains D. In the case
of flow past an obstacle (e.g., cylinder) with random roughness, the
free space Rd might play the role of D. Second, unlike mapping-
based approaches [12,13,20,6], SSPM does not involve a domain
transformation that can be computationally demanding. A compar-
ison of SSPM and the mapping-based approach [6] is provided in
Section 5.3.

4. Discretization of stochastic Navier–Stokes equations

4.1. Time integration

Let s denote the length of the simulation time. In order to en-
hance the stability and temporal accuracy, we use a semi-implicit
method with a stiffly-stable high-order splitting scheme [32] that
was implemented in the context of the smoothed profile method
in [28]. In this velocity-correction splitting scheme, the fields at
time level n are advanced over a time step Dt through the four
sequential sub-steps outlined below.

4.1.1. Advection step
An intermediate velocity field us is computed by using a stan-

dard stiffly-stable scheme to integrate the non-linear term and
the body force,

us ¼
XJe�1

m¼0

amun�m þ Dt
XJe�1

m¼0

bm½�ðu � rÞuþ g�n�m in D�X: ð13Þ

Here am and bm are the coefficients of the integration method [33, p.
264], un�m and gn�m denote the values of u and g at the previous
time steps, and Je is the order of integration.

4.1.2. Pressure step
An intermediate pressure ~pðx; t;xÞ is computed by solving

r2~p ¼ q
Dt
r � ðusÞ D�X; ð14Þ

subject to the Neumann boundary condition

n � r~p ¼
XJe�1

m¼0

bmn � ½�ðu � rÞuþ g� mr� ðr� uÞ�n�m
; ð15Þ

on all velocity Dirichlet boundaries defined on D. Then the velocity
is updated from us to uss by accounting for the contribution of the
pressure term,
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uss ¼ us � Dt
q
r~p in D�X: ð16Þ

Eqs. (14)–(16) are derived as follows. Following the velocity-
correction splitting scheme [33], (14) is derived from (16) by
accounting for the continuity equation r � uss ¼ 0. The boundary
condition (15) is not defined on the random boundary segments
because in the view of the SSPM they are treated indirectly by
means of the random force f.

4.1.3. Viscous step
Treating the viscous term implicitly, we obtain the intermediate

velocity u� from uss by solving

r2 � c0

mDt

� �
u� ¼ � uss

mDt
in D�X; ð17Þ

where c0 ¼
PJe�1

m¼0am is the scaled coefficient of the stiffly-stable
scheme.

4.1.4. Velocity update due to rigid-body motion constraint
The momentum change of a rigid body (and its interfacial do-

main) equals the time integral of both the hydrodynamic force
and the external force, i.e.,Z tnþ1

tn
fdt ¼ /ðuw � u�Þ; ð18Þ

where u� denotes the velocity field obtained in the previous step
without considering the presence of the wall-domain forcing term.
This is the key to our stochastic transformation of a random bound-
ary (rigid-body wall) into an additional random force density term
in the NS Eqs. (12b). The hydrodynamic force (F) and torque (N) on
the random domain exerted by the ambient fluid are derived from
the momentum conservation between the wall Dwi and the fluid
Df as

Fnþ1
i ¼ 1

Dt

Z
D
q/nþ1

i ðu� � un
wÞdx�

Z
D

/nþ1
i qgnþ1dx ð19aÞ

Nnþ1
i ¼ 1

Dt

Z
D

rnþ1
i � ½q/nþ1

i ðu� � un
wÞ�dx�

Z
D

/nþ1
i rnþ1

i � ðqgnþ1Þdx; ð19bÞ

where rnþ1
i is the distance vector from the instantaneous rotational

reference point on the ith wall-body Dwi to any point x 2 D.
Next, the translational (Vi) and angular (Wi) velocities of Dwi are

updated using Newton’s equations as

Vnþ1
i ¼ Vn

i þM�1
i � Dt �

XJe

q¼0

aq � ðFn�q
hi
þ Fn�q

exti
Þ ð20aÞ

Wnþ1
i ¼Wn

i þ I�1
i � Dt �

XJe

q¼0

aq � ðNn�q
hi
þ Nn�q

exti
Þ; ð20bÞ

where Mi and Ii are the mass and the moment of inertia of the ith
wall sub-domain, aq are the coefficients from a Adam–Bashforth
scheme. Here Fn�q

exti
and Nn�q

exti
are, respectively, the external force

and torque, also Fn�q
hi

and Nn�q
hi

denote the hydrodynamic force and
torque defined in (19), exerting on the ith sub-wall domain at pre-
vious time steps. Then, the corresponding updated velocity field
unþ1

w is calculated from (10). The random forcing in (12b) at time le-
vel nþ 1 is obtained from (18) as

fnþ1 	 unþ1
w � u�

Dt
/nþ1: ð21Þ

This relation demonstrates that the random forcing fðx; t;xÞ repre-
sents a multiplicative noise that SSPM is conceptually similar to
penalty methods [34,35].

Finally, the total velocity field unþ1 is obtained by enforcing the
rigid-body motion constraint using the random forcing in (21),
unþ1 � u�

Dt
¼ fnþ1 �rpw; in D�X; ð22Þ

Here pwðx; t;xÞ is the extra pressure due to rigidity of the wall-body
geometry. It satisfies a Poisson equation

r2pw ¼ r � fnþ1 in D�X; ð23aÞ

which is obtained by taking the divergence of (22). Corresponding
boundary conditions for pw along the velocity Dirichlet boundary
are

n � rpw ¼ n � fnþ1
: ð23bÞ

The total pressure pðx; t;xÞ is calculated as p ¼ pw þ p�.

4.2. Spatial discretization

We use the spectral/hp element method [33] to discretize the
SSPM equations in the deterministic domain D. This method en-
ables us to accurately represent deterministic fixed rigid bound-
aries of the flow domain, while using SSPM to represent the
roughness. (However, any discretization method with adaptive
refinement near the wall is appropriate.) We accomplish this by
partitioning D into non-overlapping elements D ¼

SNel
e¼1D

e. By con-
structing the standard element Dst , the local coordinates in the
standard element (f 2 Dst) can be mapped to the global coordinate
in any elemental domain (x 2 De) by an iso-parametric transforma-
tion x ¼ veðfÞ.

In the p-refinement step, a polynomial expansion of order P is
employed within the standard element to construct an approxi-
mate solution ud as

udðxÞ ¼
XNel

e¼1

XP

j¼1

ûe
j U

e
j ðfÞ ¼

XNdof

i¼0

ûiUiðxÞ; ð24Þ

where Nel represents the total number of elements in D, and Ndof de-
notes the total degrees of freedom i.e., modal coefficients in the
solution expansion. Here f ¼ ½ve��1ðxÞ is the local coordinate, Ue

i ðfÞ
are the local expansion modes, and UiðxÞ are the global modes de-
rived from the global assembly of the local modes [33]. Both modal
and nodal basis can be used for the basis Ue

j ðfÞ. In this study, a modal
expansion is utilized in conjunction with a Galerkin projection to
solve (14), (17) and (23a), while a nodal expansion is used in con-
junction with a collocation projection of (13).

The updating step (22) can be done by either collocation or a
Galerkin projection. The former is more efficient but might result
in a numerical solution that is discontinuous at some element
boundaries. The latter guarantees C0 continuity of a numerical
solution across the elements through an appropriate choice of
the boundary modes. For the modal expansion, we use a semi-
orthogonal basis written in terms of the Jacobi polynomials. Final-
ly, we employ the Lagrange–Jacobi polynomials through the
Gauss–Lobatto quadrature points for the nodal basis.

4.3. Stochastic discretization

In order to discretize the stochastic NS Eqs. (12) in the random
space X, we implement a multi-element probabilistic collocation
method (ME-PCM), see [36]. The finite-dimensional noise assump-
tion mentioned in Section 3 suggests that the random force
fðx; t;xÞ can be represented by a finite set of random variables
fN1ðxÞ;N2ðxÞ; . . . ;NNðxÞg with a known joint probability density
function (PDF)

qðnÞ ¼
YN
j¼1

qjðnjÞ: ð25Þ



M. Zayernouri et al. / Comput. Methods Appl. Mech. Engrg. 263 (2013) 99–112 103
Then the SSPM formulation of the flow Eqs. (12) can be posed as fol-
lows. Find the total velocity uðx; t; xÞ : D� ½0; s� �X! R, such that
within the time interval ½0; s� and 8x 2 D

@u
@t
þ ðu � rÞu ¼ � 1

q
rpþ mr2uþ g

þ f½x; t; N1ðxÞ;N2ðxÞ; . . . ;NNðxÞ� ð26Þ

holds P-a.s. Also, x 2 X subject to the constraints of incompress-
ibility (12a) and the corresponding boundary conditions for
uðx; t;xÞ. According to the Doob–Dynkin lemma [37], the total
velocity uðx; t;xÞ can be expressed as u½x; t; NðxÞ�, where
N ¼ ðN1;N2; . . . ;NNÞ is a set of N random variables NiðxÞ
(i ¼ 1; . . . ;N) that constitute a mapping of the sample space X onto
the target space K.

Let a random vector n ¼ ðn1; n2; . . . ; nNÞ 2 K ¼
QN

m¼1Km denote
an arbitrary point in the parametric space, where Km is the image
of NmðxÞ. Then, problem (26) can be reformulated as follows. Find
uðx; t; nÞ : D� ½0; s� �K! R such that

@u
@t
þ ðu � rÞu ¼ � 1

q
rpþ mr2uþ gþ fðx; t; nÞ ð27Þ

holds q-a.s. for nðxÞ 2 K and 8x 2 D, subject to the constraints of
incompressibility (12a) and the corresponding boundary conditions
for u. One can think of the solution uðx; t; nÞ as a function on K, tak-
ing values in a proper Banach space WðDÞ.

Let fBigMe
i¼1 denote a finite collection of Me non-overlapping open

subsets (or elements) of random space K, such that [Me
i¼ Bi ¼ Kand

Bi \ Bj ¼ ; for i – j. Once a mesh is selected, a set of collocation
points fqi

kg
J
k¼1 is prescribed in each element Bi, where J represents

the number of quadrature points within each element Bi. For sim-
plicity, we consider rectangular elements Bi. It is common to take
fqi

kg
J
k¼1 to be the points of a cubature rule on Bi with integration

weights fwi
kg
J
k¼1.

Next, the solution u is collocated on the set of pointsPMe
i¼1

PJ
k¼1fqi

kg, where Me denotes the number of elements in the
parametric space. In other words, we use the spectral/hp element
method described in Section 4.2 to solve a set of deterministic
problems, wherein the random force fðx; t; nÞ in (27) is replaced
with its deterministic counterpart fðx; t; qi

jÞ. As a result of this col-
location procedure, the approximate solution forms a mapping

ukð�; qi
jÞ : K!WðDÞ; ð28Þ

which highlights the non-intrusive nature of the ME-PCM.
Finally, we use the following procedure to construct a global

approximant ~ukðx; t; nÞ from a set of the deterministic solutions
fukðx; t;qi

jÞg
i
j. Let IBi

denote an interpolation operator. One choice
for IBi

is to use the tensor product Lagrangian interpolant

IBi
ukðx; t; nÞ � LPBi

ukðx; t; nÞ ¼
XJ
j¼1

ukðx; t; qi
jÞL

i
jðnÞ; ð29Þ
Fig. 2. Flow past a cylinder with random inflow and random roughness.
where P is the polynomial degree in each random space dimension,
and Li

jðnÞ represents the Lagrange polynomial associated with the
collocation point qi

j. In this study, we chose the interpolant IBi
to

be the isotropic Smolyak sparse grid operator SBi
[38]. This choice

provides an alternative to the more costly full tensor product rule.
The global approximant is computed as

~ukðx; t; nÞ ¼
XMe

i¼1

IBi
ukðx; t; nÞIfx2X:nðxÞ2Big 8x 2 D; 8n 2 K; ð30Þ

where IA is the characteristic function of a set A.
In order to calculate the statistical moments of u, we define the

conditional PDF over ith element in the random space as

qi
condðnÞ ¼

qðnÞR
Bi

qðnÞdn
; i ¼ 1; . . . ;Me: ð31Þ

The local mean (expectation) of u in the ith element is obtained as

Ei½u� ¼ E½u j n 2 Bi� ¼
Z
Bi

uðx; t; nÞqi
condðnÞdn: ð32Þ

The use of any quadrature method over each element to approxi-
mate this integral yields

Ei
a½~u� ¼

XJ
j¼1

ukðx; t; qi
jÞwi

j 	 Ei½~u�: ð33Þ

One has to ensure that Ei
a is defined through the particular choice of

collocation grids in ME-PCM. Bayes’ theorem allows one to compute
an approximate global mean by assembling the local mean values
on each element in the random space,

Ea½~u�ðx; tÞ ¼
XMe

i¼1

Ei
a½~u�ðx; tÞP½nðxÞ 2 Bi� 	 E½~u�ðx; tÞ: ð34Þ

In this study, we use the uniform random variables to represent
the roughness. This allows us to obtain grids in each element by an
affine mapping from a reference element. For general qðnÞ, grids
are element-dependent since qi

condðnÞ are different in each element
when the parametric space K is decomposed.

5. Numerical results

We apply the SSPM to simulate both external and internal flows.
Section 5.1 presents simulation results for incompressible flow
past a circular cylinder with random wall-roughness (external
flow). A corresponding stochastic model for the lift coefficient is
discussed in Section 5.2 in order to evaluate and verify the asymp-
totic behavior of statistical moments of the SSPM simulations. Sec-
tion 5.3 contains simulation results for Stokes flow between two
planar plates with rough walls (internal flow).

5.1. Flow past a cylinder with random wall-roughness

Consider incompressible flow past a cylinder with random
roughness. For the sake of generality, we allow for uncertain distri-
bution (randomness) of upstream flow velocity (Fig. 2). In the sim-
ulation reported below, we set the mean diameter of the cylinder
to �d ¼ 1:0 and the corresponding Reynolds number to Re�d ¼ 100.
Our focus is on the effects of random roughness on the moments
of drag coefficient CD and lift coefficient CL.

The radius of the rough cylinder, h ¼ hðs;xÞ, where s ¼ 1
2

�dh, var-
ies randomly with the angle h 2 ½0;2p�, such that E½h� ¼ 1

2
�d. The

magnitude of roughness, as quantified by Eq. (6), is set to
r ¼ �=l ¼ 0:1. We consider the roughness’ correlation length ra-
tios ‘ ¼ 0:1;1:0 and 2.0. We use the truncated KL expansion (4)
with uncorrelated uniformly distributed random variables to
approximate the random field in the h ¼ hðs;xÞ. Table 1 contains



Table 1
The minimum number of terms in the KL expansion (4), matching
RN

n¼1ðb
2
nÞP aR1n¼1ðb

2
nÞ criterion at different ‘ ¼ 0:1;1:0 and 2.0.

a (%) Nð‘ ¼ 0:1Þ Nð‘ ¼ 1:0Þ Nð‘ ¼ 2:0Þ

90 1 2 2
95 2 2 3
99 3 4 5
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the minimum number of terms that are required to capture 90%,
95%, and 99% of the energy (in the L2-norm sense), for the correla-
tion length ratios ‘ ¼ 0:1;1:0 and 2.0. Fig. 3 shows different realiza-
tions of the resulting random surfaces corresponding to the
percentage of energy capturing a ¼ 95%.

Obtaining the necessary resolution in both physical and para-
metric (random) domains is an important step in capturing the
ensemble moments of quantities of interest. In the problem under
consideration, the necessary resolution is governed by two param-
eters: the Reynolds number Re�d, and the correlation ratio ‘ of the
random roughness. As Re�d increases, the inertial term in the NS
equations becomes more important, leading to formation of eddies
of wider range of length scales [39]. Capturing this phenomenon
requires higher mesh resolution in the physical space that can be
achieved by hp-refinement, as discussed in Section 4.2. Our focus
is on the effects of randomness encapsulated in the correlation ra-
tio ‘ ¼ T=A. For a given length of the roughness process (i.e.,
T ¼ 2p), ‘ increases as the correlation length A decreases. It should
be noted that at the vicinity of the random surface, higher
resolution is needed in order to adequately capture the random
roughness.

In general, the impact of Re�d and ‘ on the parametric space res-
olution can be clarified through the vortex shedding phenomenon.
It is well-understood that (see e.g., [40]) the boundary layer on the
cylinder becomes more sensitive to wall-roughness perturbations
as Re�d increases. This would render the separation point of the
boundary layer more stochastic, which translates into a more ran-
dom vortex shedding dynamics behind the cylinder. Therefore, one
needs to increase the resolution in the parametric space in order to
accurately calculate the moments of the lift coefficient CL. How-
ever, in the laminar flow past cylinder the necessary resolution
for the parametric space is mostly affected by the correlation
length ratio ‘ rather than Re�d.

Consider first the case where the cylinder’s surface is the only
source of uncertainty, i.e., the upstream velocity U ¼ ðu;v;wÞ> is
deterministic. We set the corresponding inflow boundary condi-
tion to u ¼ 1; v ¼ 0, and w ¼ 0. Our quantity of interest in the lift
coefficient CL defined as

CL ¼
Fy

1
2 qU1�d

; ð35Þ
Fig. 3. Realizations of the random wall-roughness along the periphery of the cylinder,
where �d ¼ 1:0 is the mean diameter of the cylinder and 0 6 h 6 2p.
where Fy is the vertical component of the force obtained by (19a),
U1 represents the horizontal component of the upstream velocity.

Fig. 4 shows the mean and variance of the lift coefficient CL

computed with the SSPM, which employed different numbers of
elements and collocation points in its ME-PCM engine. The mean
of CL approaches zero as the number of collocation points J and
the number of elements Me in the parametric space C increases.
This demonstrates the convergence in the mean of our simulations.
Although not shown here, we found similar convergence of the
mean of CL to zero for the correlation ratios ‘ ¼ 0:1 and 2.0 at
the same resolution. The effect of random roughness is to reduce
the mean of CL to zero, while CL for a smooth cylinder (determin-
istic case) exhibits temporal oscillations about zero (Fig. 4).

The variance of CL exhibits temporal fluctuations, reaching a
constant level in the oscillating sense for large times (Fig. 4). One
can see the significant effect of the h-refinement (i.e., number of
elements Me in the parametric space) at the beginning and later
p-refinement in the convergence of the statistics, particularly the
mean.

The correlation ratio ‘ has a noticeable effect on the temporal
behavior of the variance of CL at early times, i.e., in the pre-asymp-
totic regime (Fig. 5). As ‘ increases, the variance of CL exhibits
stronger temporal fluctuations with higher peak-to-peak values
in the transient (pre-asymptotic) regime. However, the variance
of CL tends to almost the same asymptotic value (in the oscillating
sense).

The variance of the drag coefficient,

CD ¼
Fx

1
2 qU1�d

; ð36Þ

where Fx is the horizontal component of the force obtained by (19a),
exhibits milder temporal fluctuations, reaching almost the same
asymptotic value (in the oscillating sense) at large times (Fig. 6).
Although not shown here, we observed that the ensemble mean
of CD has very low sensitivity to the roughness in the asymptotic re-
gime. This is only true for small height of roughness.

5.2. Stochastic model for CL

In order to verify our results for the ensemble moments of CL,
we develop a stochastic harmonic model of the asymptotic (large
time) behavior of the mean and variance of CL. The model is based
on the observation [41] that the lift force FL on a smooth cylinder in
uniform (deterministic) flow is a harmonic function of time,

FLðtÞ ¼
1
2

qUd
1

�dCL; CLðtÞ � Cm
L cosð2pfdtÞ; ð37Þ

where Ud
1 is the deterministic value of the upstream velocity

U ¼ ðUd
1;0;0Þ

>
; �d is the mean diameter of the cylinder, Cm

L is the
corresponding to a ¼ 95%, also ‘ ¼ 0:1 (left), ‘ ¼ 1:0 (middle), and ‘ ¼ 10:0 (right),



Fig. 4. Temporal behavior of the mean (left) and variance (right) of the lift coefficient CL computed with several sparse grid levels and different number of elements Me in the
random space. The correlation ratio is set to ‘ ¼ 1.

Fig. 5. Temporal behavior of the variance of lift coefficient CL (left) and its zoomed-in view (right) for ‘ ¼ 0:1;1:0 and 2.0 at Re�d ¼ 100.

Fig. 6. Temporal behavior of the variance of drag coefficient CD (left) and its zoomed-in view (right) for ‘ ¼ 0:1;1:0 and 2.0 at Re�d ¼ 100.
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maximum value of the deterministic CLðtÞ, and fd is the determinis-
tic shedding frequency. Our model accounts for randomness of the
cylinder’s surface yðnÞ and the upstream velocity U1ðt; YÞ, where
n 2 RN and Y 2 R are a set of mutually independent random vari-
ables with zero means and unit variances. Replacing the determin-
istic lift coefficient CL in (37) with its random counterpart, we
obtain

CLðt; Y; nÞ ¼ A cosð2pftÞ: ð38Þ

Here fðY; nÞ is the stochastic shedding frequency and

AðY; nÞ ¼ AdIfn¼0g þ c1Y þ c2 � n; fðY ; nÞ ¼ fdIfn¼0g þ aY þ b � n;
ð39Þ

where c1; c2;a and b are non-zero constants. The N-dimensional
random vector n was introduced in Section 4.3 to represent the ran-
dom roughness of the cylinder’s surface. The one-dimensional ran-
dom variable Y enters the representation of the separable random
upstream velocity U1 as

U1 ¼ ð1þ rYÞT ðtÞ; ð40Þ

where r > 0 is a constant indicating the strength of random fluctu-
ations, and T ðtÞ denotes an arbitrary (non-zero) function of time.

The ensemble mean of CL in (38) is given by

E½CL� ¼
Z

C
CLðt; y; zÞfYnðy; zÞdydz; ð41Þ

where C is the ðN þ 1Þ-dimensional parameter space, and fYnðy; zÞ is
the joint PDF of Y and n that is equivalent to fY ðyÞfnðzÞ due to the
independence of n from Y. Combining (38)–(41), decomposing the
parametric space into two non-overlapping sets E1 ¼ f0;0g and
E2 ¼ C n E1, and representing the integral in (41) as the sum of
two corresponding integrals, we obtain
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E½CL� ¼
Z

E1

Ad cosð2pfdtÞfYnð0;0Þdydz

þ
Z

E2

c1yþ c2 � zð Þ cos½2pðayþ b � zÞt�fYnðy; zÞdydz: ð42Þ

The first integrand in (42) is the deterministic lift coefficient Cd
L ,

when Y ¼ 0 and n ¼ 0. The corresponding integral is over a set of
the Lebesque measure zero, kðE1Þ ¼ 0. Therefore, the first integral
is identically zero. To evaluate the second integral in (42), we ex-
pand the cosine term in its integrand, and carrying out the integra-
tion over y and z. This yields a time-dependent expression for the
ensemble mean of CL,

E½CL� ¼
sinð2patÞ
að2ptÞ2

X
i

sinð2pbitÞ
bi

; ð43Þ

where bi’s are the components of vector b in (39). Since a and bi are
non-zero constants, E½CL� ! 0 as t !1, which is the asymptotic
solution obtained with the numerical simulations in the previous
section.

The variance of CL is defined by

Var½CL� ¼ E½C2
L � � E½CL�2 ¼

Z
C

C2
L ðt; y; zÞfYnðy; zÞdydz: ð44Þ

Decomposing the parametric space into two non-overlapping sets
E1 ¼ f0g and E2 ¼ C n E1, we obtain in the limit of large t

Var½CL� ¼
1
2

Z
E2

A2ðy; zÞfYnðy; zÞdydz: ð45Þ

Below we examine the relative importance of the two sources of
uncertainty (randomness), random roughness of the cylinder’s sur-
face and random upstream velocity, on the statistics of CL.
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Fig. 7. Temporal behavior of the mean (left column) and variance (right column) of CL fo
Here E denotes the number of elements in the parametric space.
5.2.1. Random wall-roughness
When the wall roughness is the only source of uncertainty, (38)

and (39) reduce to

CLðt; nÞ ¼ A cosð2pftÞ; ð46aÞ

where

AðnÞ ¼ AdIfn¼0g þ c2 � n; fðnÞ ¼ fdIfn¼0g þ b � n: ð46bÞ

Then (42) takes the form

E½CL� ¼
Z

E2

ðc2 � zÞ cos½2pðayþ b � zÞt�fnðzÞdz: ð47Þ

If the PDF of the n is symmetric with respect to the origin of the ran-
dom space, then E2 ¼ C n f0g is a symmetric hypercube in RN and
the integrand in (47) is an odd function. Therefore,

E½CL� ¼ 0; ð48Þ

i.e., the stochastic linear model predicts a zero-mean lift coefficient
at all times. This result is to be expected since, for flows with
Re�d ¼ 100, the frequency of shedding is very robust and the stochas-
tic roughness perturbs it only slightly in each realization. This sug-
gests that the linear model (46) is sufficient to verify our numerical
simulations.

The roughness amplitude r affects the laminar boundary layer
adjacent to the random surface of the cylinder, where the separa-
tion point would be perturbed slightly at low-to-moderate Re�d. At
higher Re�d, the separation point changes more chaotically, result-
ing in a larger stochastic lift force. Thus, the linear model (46)
might not be able to correctly predict E½CL� at high Re�d. Instead, a
quadratic model for the amplitude Aðt; nÞ might be a better choice
to predict the asymptotic solution for E½CL�.
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r several sparse grid levels and different number of elements in the random space.



Table 2
The minimum number of terms in the KL expansion (4), matching

RN
n¼1ðb

2
nÞP aR1n¼1ðb

2
nÞ criterion at ‘ ¼ 2:0.

a (%) Nðls ¼ 1; T ¼ 2Þ Nðls ¼ 5; T ¼ 10Þ

90 2 5
95 2 6
99 4 12
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Long-time behavior of the variance of CL is obtained from (45)
as

Var½CL� ¼
1
2

Z
E2

A2ðzÞfnðzÞdz: ð49Þ

This result is consistent with the variance of CL shown in Fig. 4
(right), where Var½CL� oscillates about the asymptotic solution. It
has been shown in ([42]) that the amplitude of the aforementioned
oscillation can be reduced to any arbitrary small range by increasing
the resolution in the parametric space.

5.2.2. Random upstream velocity
When the upstream velocity is the only source of uncertainty,

(38) and (39) reduce to

CLðt; YÞ ¼ A cosð2pftÞ; ð50aÞ

where

AðyÞ ¼ Ad þ c1Y ; fðyÞ ¼ fd þ aY: ð50bÞ

At late times (t !1), (42) and (45) reduce to

E½CL� ¼ 0; Var½CL� !
1
2

Z
E2

A2ðyÞfYðyÞdy: ð51Þ

These results were compared to those obtained with the
numerical simulations of the stochastic NS equations (Section 4).
In these simulations, we took the cylinder to be smooth while
allowing the upstream velocity to vary in accordance with (40).
We also employed the Smolyak formula as a cubature rule, where
the collocation points are nested i.e., the collocation points in pre-
vious Smolyak sparse levels are fully used in next sparse levels
[43–45]. The mean and variance of CL resulting from these simula-
tions are shown in Fig. 7. Both quantities reach (in the oscillating
sense) their respective asymptotic values at later times. The oscil-
lations decrease as the number of collocation points increases.

5.3. Stokes flow in a channel with rough walls

Consider Stokes flow between two parallel plates, one of which
is randomly rough. The random flow domain is Df : fðx; y; zÞ 2
½�T=2; T=2� � ½y0; d� � ½0;p�. The upper plate, y ¼ d, is smooth, while
Fig. 8. Realizations of the random bottom plate of the
the lower plate is a random surface represented by the truncated
expansion (6),

y0ðs;xÞ ¼ �hm

l
; E½hm� ¼ 0; ð52Þ

in which the coordinate s coincides with the x-axis. Let hmðx;xÞ be
periodic in x (i.e., along the flow direction) with period T. This al-
lows us to use the covariance kernel introduced in Section 2 for
periodic random processes. In the simulations reported below, we
set d ¼ 1;r ¼ 0:2 or 0:4, and ‘ ¼ T=ls ¼ 2 where ls is the correlation
length of y0ðx;xÞ. This choice of the correlation length ratio ‘ facil-
itates representation of the roughness in a higher-dimensional ran-
dom space at a manageable cost. The number of terms in the KL
expansion that are necessary to represent y0ðx; xÞ with a given de-
gree of accuracy (a) are presented in Table 2. Typical realizations of
the random plate y0ðx;xÞ, for the above-mentioned statistical
parameters and the KL expansion that captures a ¼ 95% of the en-
ergy in the L2-norm sense, are shown in Fig. 8.

A deterministic domain for the SSPM is D : fðx; y; zÞ 2
½�T=2; T=2� � ½�d; d� � ½0;p�. It includes a random wall domain
Dw : fðx; y; zÞ 2 ½�T=2; T=2� � ½�d; y0� � ½0;p�g. The flow is driven
by the externally applied pressure gradient �@P=@x ¼ 2. Since the
stochastic Stokes equations neglect the advection term in the NS
equations, the SSPM skips the corresponding step in the time inte-
gration (Section 4.1).

In order to verify our SSPM results, we compare them with their
counterparts obtained with the mapping approach [6]. The latter is
a two-step computational method: first, a random flow domain is
mapped onto a deterministic domain; second the transformed sto-
chastic Stokes equations in a deterministic domain are solved
using a stochastic Galerkin method (generalized polynomial chaos
or gPC) in the probability space and a spectral element method in
the physical space. This approach is briefly outlined in A. In both
the SSPM and the mapping approach, extensive effort has been
made to obtain grid-independent (converged) first and second mo-
ments of the horizontal (u) and vertical (v) components of the ran-
dom velocity vector. The difference between the two solutions is
reported in terms of a relative L2 norm error, for example for hor-
izontal component u,

Eð~uÞ ¼ k
~uSSPM � ~ugPCk2

k~uSSPMk2
� 100%; ð53Þ

where ~uSSPM and ~ugPC denote the moments of u obtained by the SSPM
and the mapping approach (gPC), respectively.

To facilitate the comparison between the two solutions, the SSPM
results are presented in the transformed coordinate system
(g1;g2;g3), such that g1 ¼ x;g3 ¼ z, and g2 ¼ ðy� y0Þ=ðd� y0Þ. This
affine mapping transforms the random flow domain Df into a
deterministic domain Dt : fðg1;g2;g3Þ 2 ½�T=2; T=2�� ½0;1� � ½0;p�.
The ensemble statistics of uðx;g2;xÞ are displayed at a few cross-
channel for ‘ ¼ 2:0 and the channel length T ¼ 10.



Fig. 9. Mean velocity profiles across the channel width computed at x ¼ 0:5 with the SSPM and the mapping approach (gPC) for ls ¼ 1 and either r ¼ 0:2 (top) or r ¼ 0:4
(bottom). Also shown are the Poiseuille velocity profiles (Analytic) for smooth walls.

Fig. 10. Standard deviation of u at x ¼ 
0:5 computed with the SSPM and the mapping approach (gPC) for ls ¼ 1 and r ¼ 0:4 (left) or r ¼ 0:2 (right).
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sections x ¼ const. Since no variation of the roughness along the z-
axis is considered, no change in the solution field along the depth
of the channel is observed. Based on the covariance kernel and the
correlation length utilized, we chose the cross-sections x ¼ 
0:5
for T ¼ 2 and ls ¼ 1, and the cross-sections x ¼ 
2:5 for T ¼ 10
and ls ¼ 5. In both cases, these cross-sections correspond to the
locations with the maximum variance of the random roughness
y0ðx;xÞ.

We present the statistics of the problem across some important
cross-sections along the channel. In this study, our choices of cor-
relation length, which are not too small, prohibit any ensemble
averaging along the length of the channel. This is so because SSPM
does not involve any transformation of the physical domain, while
gPC essentially solves the problem in the transformed domain (see
A for more details).

We found the mean of uðx;g2; xÞ to be nearly independent of x.
Fig. 9 exhibits the mean velocity profiles across the channel width,
E½u�, for ls ¼ 1 and either r ¼ 0:2 or 0:4. A visual comparison re-
veals close agreement between the predictions of E½u� obtained
with the SSPM and the mapping approach (gPC). The two solutions
have relative errors EfE½u�g ¼ 0:55% for r ¼ 0:2 and EfE½u�g ¼
0:72% for r ¼ 0:4. As expected, Fig. 9 demonstrates that the mean
centerline velocity and, hence, the volumetric flow rate decrease as
the wall roughness (r) increases.



Fig. 11. Standard deviations of u (left) and v (right) at x ¼ 0:0 computed with the SSPM and the mapping approach (gPC) for ls ¼ 1 and r ¼ 0:4.

Table 3
The relative error E for the standard deviations of the horizontal (u) and vertical (v)
components of flow velocity.

Section r ¼ 0:2 r ¼ 0:4

EfStd½u�g;% EfStd½v �g;% EfStd½u�g;% EfStd½v �g;%

x ¼ �0:5 1.87 7.70 2.02 7.85
x ¼ 0:0 7.16 0.53 7.76 0.72
x ¼ þ0:5 1.72 7.62 2.62 7.66

Fig. 12. Mean velocity profiles across the channel width computed at x ¼ 0:5 with
the SSPM and the mapping approach (gPC) for ls ¼ 5:0 and r ¼ 0:4. Also shown is
the Poiseuille velocity profile (Analytic) for smooth walls.
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Fig. 10 shows the standard deviation of uðx;g2; xÞ computed at
x ¼ 
0:5 with the SSPM and the mapping approach (gPC). Since the
wall roughness (r) is highest at x ¼ 
0:5, one can expect the max-
imum uncertainty (as quantified by Std½u�) to occur at these cross-
sections. Fig. 10 reveals that vertical profiles of Std½u� at x ¼ 0:5 and
x ¼ �0:5 coincide, which demonstrates that choosing the simula-
tion domain’s length T to satisfy ‘ � T=ls ¼ 2 suffices to capture
the dynamics of the stochastic Stokes flow. One can also see that
the estimates of Std½u� computed with the SSPM and the mapping
approach (gPC) are in close agreement. This finding is confirmed
quantitatively: the relative errors between the two solutions are
EfStd½u�g ¼ 1:87% for r ¼ 0:2 and EfStd½u�g ¼ 2:62% for r ¼ 0:4.
The peak of uncertainty, i.e., maximum of Std½u�, is shifted from
the channel’s centerline towards its random wall (g2 	 0:25). The
location of maximum predictive uncertainty is seen to be insensi-
tive to the strength of wall randomness (r = 0.2 or 0.4).

As shown in Fig. 8, the random roughness deterministically
adopts zero-value in the middle of each process (i.e., at x ¼ 0:0).
Therefore, one may expect Std½u� to be minimum there. It is shown
that Std½u� is non-zero at section x ¼ 0:0 due to random fluctua-
tions of the rough wall in its neighborhood. Fig. 11 demonstrates
that this is indeed the case. The standard deviation of u at
x ¼ 0:0 is almost an order of magnitude smaller than its counter-
part at x ¼ 0:5 (Fig. 10). The relative error between the standard
deviations of u computed with the SSPM and the mapping ap-
proach is EfStd½u�g ¼ 7:76%.

The presence of random roughness induces vertical fluctuations
in flow velocity. While E½v � ¼ 0, the standard deviation of the ver-
tical velocity component Std½v � is appreciable (Fig. 11). In fact, at
x ¼ 0:0 it is an order of magnitude higher than StdðuÞ. The SSPM
and the mapping approach yield the estimates of Std½u� that have
a relative error of EfStd½v �g ¼ 0:72%. Table 3 elucidates the latter
point further by presenting EfStd½u�g and EfStd½v �g at several
cross-section x ¼ const.

To investigate the effects of the correlation length of the surface
roughness on the mean flow behavior, we conducted simulations
with ls ¼ 5 and r ¼ 0:4. The channel’s length was changed to
T ¼ 10 to keep ‘ ¼ T=ls ¼ 2. Both approaches underwent a grid-
independence study to obtain the resolution in the physical and
probability spaces necessary for estimates of the first two ensem-
ble moments to converge. Fig. 12 exhibits the resulting mean flow
velocity E½u� at cross section x ¼ 0:5, computed with the SSPM and
the mapping approach. The two approaches are in a close agree-
ment, with the relative error of EfE½u�g ¼ 0:65%. The comparison
of Figs. 9 and 12 demonstrates that the flow rate decreases as ls in-
creases, when the correlation length ‘ ¼ T=lS ¼ 2 is kept constant.

Finally, we examine the impact of larger correlation lengths
(ls ¼ 5) on the standard deviation of u and v. Fig. 13 presents the
estimates of Std½u� and Std½v � computed with the SSPM and the
mapping approach. As discussed earlier, the peak positions of
StdðuÞ and StdðvÞ are insensitive to the strength of the random
roughness r. The comparison of Figs. 11 and 13 demonstrates that
the location of maximum uncertainty shifts closer to the random
rough wall as ls decreases, i.e., the wall becomes rougher. The rel-
ative error in this simulation is EfStd½u�g ¼ 2:34% at x ¼ 
2:5 and
EfStd½u�g ¼ 1:04% at x ¼ 0:0.

6. Summary and conclusions

We introduced a stochastic smoothed profile method (SSPM) to
solve the Navier–Stokes (NS) equations on random domains. Ran-
dom boundaries were modeled as a second-order autoregressive
process through a Karhunen-Loève (KL) expansion. The SSPM relies



Fig. 13. Standard deviations of u at x ¼ 
2:5 (left) and v at x ¼ 0:0 (right) computed with the SSPM and the mapping approach (gPC) for ls ¼ 5:0 and r ¼ 0:4.
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on a random indicator function /ðx; t; xÞ to transform such bound-
ary-value problems into the stochastic NS equations on determin-
istic domains. Unlike the stochastic mapping approaches
[19,12,13], the SSPM does not require one to construct a numerical
map, which can be computationally expensive. Instead, a random
force is added to the NS equations. To solve these equations, we
used a high-order method that employs a spectral/hp discretiza-
tion in both physical and random spaces.

We implemented this general approach to model external and
internal problems: flow past a rough cylinder and Stokes flow in
a channel with rough walls. In the first test-case, we compared
the SSPM predictions for the lift coefficient CL to their counterparts,
predicted by a linear stochastic harmonic oscillator model. Next,
we used the second problem to verify the SSPM by comparing its
predictions with those obtained from Stochastic Mapping Ap-
proach (SMA) [6]. The three approaches yielded nearly identical
estimates of the statistical moments of quantities of interest, thus
demonstrating the accuracy and robustness of the SSPM.

Our analysis leads to the following conclusions regarding the
fluid mechanics quantities of interest.

1. Flow past a rough cylinder
(a) The mean of the lift coefficient CL for a rough cylinder is

zero; the variance of CL approaches a constant value at large
times.

(b) As the correlation length of roughness decreases, the vari-
ance of CL exhibits stronger temporal fluctuations in the
transient (pre-asymptotic) regime. However, the asymp-
totic value of the variance remains almost the same.

2. Flow in a channel with a rough wall
(a) Random roughness reduces the volumetric flow rate; this

reduction becomes more pronounced as the roughness var-
iance increases and/or its correlation length decreases.

(b) The peak of uncertainty is shifted from the channel center-
line towards its random wall. The location of maximum
uncertainty is insensitive to the roughness variance but is
affected by its correlation length.

Although the examples considered here deal with PDEs defined on
fixed random domains, the SSPM is equally valid for problems in
which random domains evolve in time (e.g, free-surface dynamics
in random environments [46,19]).

To further discuss the performance of SSPM and SMA which was
used for verification, we point out that they both rely on two-step
procedures to solve transformed (stochastic or deterministic) PDEs
on random domains. In the first step, the governing equations on
random domains are transformed into stochastic PDEs on deter-
ministic domains. The SSPM accomplishes this goal by adding a
random force to (stochastic or deterministic) momentum equa-
tions, while the SMA maps (analytically or numerically) the ran-
dom domain onto its canonical deterministic counterpart. In the
second step, the resulting stochastic PDEs are solved with standard
analytical (e.g., perturbation expansions) or numerical (e.g., poly-
nomial chaos expansions, collocation methods, MCS, etc.)
techniques.

Except for problems defined on relatively simple geometries
that admit analytical transformations (e.g., flow between two ran-
dom surfaces or in a tube with randomly varying aperture), numer-
ical procedures involved in the stochastic mapping are
computationally demanding. Under these general conditions, the
SSPM offers significant computational savings over the SMA. More-
over, the transformed equations in the SMA differ from their origi-
nal counterparts and therefore might require a modification of
numerical codes used to solve the original PDEs. In this sense,
the SMA is intrusive regardless of whether its second step (solving
stochastic PDEs on deterministic domains) is intrusive or not.

For both methods, without regard to the complexity of the do-
main, the correlation length of the roughness process can be a bot-
tleneck when it tends to zero. In fact, as the correlation length
decreases, the dimension of the parametric space increases. Conse-
quently, the curse of dimensionality becomes a barrier for both ap-
proaches. For instance, in SMA utilized with the stochastic Galerkin
projection, the number of PDEs for the expansion coefficients,
M ¼ ðNþPÞ!

N!P!
� 1, increases very rapidly, which makes the computa-

tional cost of the problem unmanageable. In such cases, ANOVA
decomposition can be used as an effective technique to signifi-
cantly reduce the dimension of the random space [47].

Finally, we emphasize that SSPM provides a general and flexible
framework, which naturally handles moving geometries [48]. This
would make SSPM an efficient computational tool to study the ef-
fect of random roughness, e.g., in aerodynamic and turbo-machin-
ery applications.
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Appendix A. Random mapping approach

The mapping approach for solving PDEs on random domains
consists of the following two steps. First, the random domain is
mapped onto a deterministic domain. The random Jacobian trans-
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formation renders a (deterministic or stochastic) governing PDE
stochastic. Second, the transformed stochastic PDE in the deter-
ministic domain is solved. This can be accomplished either analyt-
ically (e.g., via perturbation expansions [19]) or numerically (e.g.,
via either polynomial chaos [12] or stochastic collocation methods
[13]). Here we use the generalized polynomial chaos (gPC) imple-
mentation of the approach described in [6]. It is briefly presented
below for completeness.

A.1. Stochastic mapping onto a deterministic domain

Let us introduce a new coordinate system ðg1;g2Þ, in which
the original stochastic flow domain D ¼ fðx1; x2Þ : 0 6 x1 6

Lx; sðx1;xÞ 6 x2 6 Lyg takes the form of a deterministic rectangle
E ¼ fðg1;g2Þ : 0 6 g1 6 Lx;0 6 g2 6 Lyg. A mappingD ! E is accom-
plished by a transformation of coordinates gi ¼ giðx1; x2Þ (i ¼ 1;2).
For complex geometries, this stochastic mapping gi ¼ giðx1; x2Þ
and its inverse xi ¼ xiðg1;g2Þ are constructed [19,12,6] by solving
Laplace’s equations,

@2xi

@g2
1

þ @
2xi

@g2
2

¼ 0; ðg1;g2Þ 2 E; i ¼ 1;2: ðA:1Þ

subject to the boundary conditions

x1ð0;g2Þ ¼ 0; x1ðLx;g2Þ ¼ Lx; x1ðg1;0Þ ¼ g1; x1ðg1; LyÞ ¼ g1;

ðA:2aÞ
x2ð0;g2Þ ¼ g2; x2ðLx;g2Þ ¼ g2; x2ðg1;0Þ ¼ s; x2ðg1; LyÞ ¼ Ly:

ðA:2bÞ

Uncertainty (randomness) in domain geometry, sðx1;xÞ, mani-
fests itself in the mapping problem through a boundary condition
in (A.2). The random field sðx1;xÞ is represented via a Karhunen–
Loève expansion truncated after N terms. Solutions of (A.1), (A.2)
can now be approximated by a series

xiðg1;g2;xÞ ¼
XN

k¼0

x̂i;kðg1;g2ÞYkðxÞ; i ¼ 1;2: ðA:3Þ

Substituting (A.3) into (A.1) and taking a Galerkin projection yields
2ðN þ 1Þ Laplace’s equations for the coefficients x̂i;kðg1;g2Þ,

@2x̂i;k

@g2
1

þ @
2x̂i;k

@g2
2

¼ 0; ðg1;g2Þ 2 E; i ¼ 1;2; k ¼ 0; . . . ;N: ðA:4Þ

The boundary conditions for (A.4) are derived by substituting (A.3)
into (A.2) and taking a Galerkin projection. The resulting boundary-
value problems are solved with a Chebyshev spectral method.

A.2. Transformed Stokes equations

The procedure outlined above enables one to compute a Jaco-
bian transformation,

Jðg1;g2;xÞ �
@ðg1;g2Þ
@ðx1; x2Þ

¼ J½g1;g2;Y1ðxÞ; � � � ; YNðxÞ� ðA:5Þ

and related transformation metrics

A ¼ 1
J

@x2

@g2

� �2

þ @x1

@g2

� �2
" #

;

B ¼ 1
J

@x2

@g1

@x2

@g2
þ @x1

@g1

@x1

@g2

� �
;

C ¼ 1
J

@x2

@g1

� �2

þ @x1

@g1

� �2
" #

: ðA:6Þ

The flow Eqs. (9) are transformed into
@

@g1
A
@u1

@g1
� B

@u1

@g2

� �
� @

@g2
B
@u1

@g1
� C

@u1

@g2

� �

¼ 1
l

@x2

@g2

@p
@g1
� @x2

@g1

@p
@g2

� �
; ðA:7aÞ

@

@g1
A
@u2

@g1
� B

@u2

@g2

� �
� @

@g2
B
@u2

@g1
� C

@u2

@g2

� �

¼ 1
l

@x1

@g2

@p
@g2
� @x1

@g2

@p
@g1

� �
; ðA:7bÞ

@x2

@g2

@u1

@g1
� @x2

@g1

@u1

@g2

� �
� @x1

@g2

@u2

@g1
� @x1

@g1

@u2

@g2

� �
¼ 0: ðA:7cÞ
A.3. Solution of stochastic flow equations

Let fWmðYÞgM
m¼0 denote a set of multidimensional orthogonal

polynomials of the random vector YðxÞ � ðY1; . . . ;YNÞT of the N
independent random variables Y1ðxÞ; . . . ;YNðxÞ introduced in
(A.3). The polynomials are chosen to have the ensemble means
W0 ¼ 1 and Wk ¼ 0 (k P 1) and satisfy the orthogonality condition

WiWj ¼ W2
i dij; WiWj �

Z
WiðYÞWjðYÞWðYÞdY1 . . . dYN ; ðA:8Þ

where WðYÞ is a weight function corresponding to a given polyno-
mial type.

The size of the polynomial set, M, is determined by the ‘‘sto-
chastic dimension’’ N and the order P of polynomials Wk, according
to

M ¼ ðN þ PÞ!
N!P!

� 1: ðA:9Þ

Polynomial chaos expansions (PCEs) represent a system state, e.g.,
pressure pðg;xÞ, a random field whose ensemble statistics are to
be determined, as a series

pðg;xÞ ¼
XM

k¼0

p̂kðgÞWk½YðxÞ�: ðA:10Þ

Similar expansions are employed for the other two state variables,
u1ðg;xÞ and u2ðg;xÞ and metrics coefficients, Aðg;xÞ;Bðg;xÞ and
Cðg;xÞ. Substituting these expansions into (A.7) and taking a
Galerkin projection, one obtains a set of deterministic equations
for the coefficients fp̂kðgÞgM

k¼0; fûkðgÞgM
k¼0 and fv̂kðgÞgM

k¼0. These
equations were solved using a spectral element method.
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