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Abstract

Existing numerical methods for fractional PDEs suffer from low accuracy and inefficiency in dealing with three-dimensional
problems or with long-time integrations. We develop a unified and spectrally accurate Petrov–Galerkin (PG) spectral method
for a weak formulation of the general linear Fractional Partial Differential Equations (FPDEs) of the form 0 D2τ

t u +
d

j=1 c j

[a j D2µ j
x j u ] + γ u = f , where 2τ , µ j ∈ (0, 1), in a (1 + d)-dimensional space–time domain subject to Dirichlet initial and

boundary conditions. We perform the stability analysis (in 1-D) and the corresponding convergence study of the scheme (in multi-
D). The unified PG spectral method applies to the entire family of linear hyperbolic-, parabolic- and elli ptic-like equations.
We develop the PG method based on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), recently introduced
in Zayernouri and Karniadakis (2013). Specifically, we employ the eigenfunctions of the FSLP of first kind (FSLP-I), called Ja-
cobi poly-fractonomials, as temporal/spatial bases. Next, we construct a different space for test functions from poly-fractonomial
eigenfunctions of the FSLP of second kind (FSLP-II). Besides the high-order spatial accuracy of the PG method, we demon-
strate its efficiency and spectral accuracy in time-integration schemes for solving time-dependent FPDEs as well, rather than
employing algebraically accurate traditional methods, especially when 2τ = 1. Finally, we formulate a general fast linear solver
based on the eigenpairs of the corresponding temporal and spatial mass matrices with respect to the stiffness matrices, which
reduces the computational cost drastically. We demonstrate that this framework can reduce to hyperbolic FPDEs such as time-
and space-fractional advection (TSFA), parabolic FPDEs such as time- and space-fractional diffusion (TSFD) model, and elliptic
FPDEs such as fractional Helmholtz/Poisson equations with the same ease and cost. Several numerical tests confirm the efficiency
and spectral convergence of the unified PG spectral method for the aforementioned families of FPDEs. Moreover, we demon-
strate the computational efficiency of the new approach in higher-dimensions e.g., (1 + 3), (1 + 5) and (1 + 9)-dimensional
problems.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The calculus of fractional differentiation and fractional integration generalizes the notion of the standard integer-
order calculus to any real-valued order [1,2]. Over the last decades, it has been shown that fractional differential
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operators appear as attractive and potentially powerful modeling tools in many areas such as viscoelastic materials
[3,4], porous or fractured media [5], fluid mechanics [6–8], bioengineering [9], and anomalous diffusion (non-
Markovian) processes [10,11]. In these applications, fractional partial differential equations (FPDEs) appear of differ-
ent type such as time- and/or space-fractional diffusion equation of parabolic nature [12], time- and/or space fractional
advection, advection–diffusion and Burger’s equations of hyperbolic character [13,14], also elliptic FPDEs as the sta-
tionary space-fractional diffusion problems [15].

Existing numerical schemes for FPDEs suffer mainly from low accuracy and computational inefficiency in dealing
with three-dimensional problems or with long-time integrations. Recently, a variety of numerical methods, originally
developed for integer-order PDEs (see e.g., [16–19]), have been extended to FPDEs. Such an extension is neither
trivial nor straightforward. For instance, there is a lot of work done in developing Finite-Difference Methods (FDM)
for FPDEs. Lubich [20,21] introduced the idea of discretized fractional calculus and later Sanz-Serna [22] presented
a first-order FDM algorithm for partial integro-differential equations. Since then, many works have aimed at improv-
ing the convergence rates of FDM schemes e.g., in time to (∆t)2−α or (∆t)3+α, α ∈ (0, 1) (see e.g.[23–26]). The
implementation of such FDM approaches is relatively easy. However, the bottleneck in the FDM approach is that the
convergence is algebraic and the accuracy is limited. Moreover, we observe that the heavy cost and memory storage
in computing the long-range history in two- and three-dimensional problems makes FDM schemes computationally
inefficient. In fact, FDM is essentially a local approach which has been employed to approximate non-local fractional
derivatives. This fact would suggest that global schemes, such as spectral methods (SM), are more consistent/adapted
to the nature of FPDEs.

Sugimoto [14] employed Fourier SM in fractional Burgers’ equation, and later Blank [27] adopted a spline-based
collocation method for a class of FODEs. This approach was later employed by Rawashdeh [28] for solving fractional
integro-differential equations. Li and Xu [29,30] developed a space–time spectral method for a time-fractional
diffusion equation with spectral convergence, which was based on the early work of Fix and Roop [31]. Later on,
Khader [32] proposed a Chebyshev collocation method for a space-fractional diffusion equation; also Piret and Hanert
developed a radial basis function method for fractional diffusion equations [33]. Moreover, a Chebyshev spectral
method [34], a Legendre spectral method [35], and an adaptive pseudospectral method [36] were proposed for solving
fractional boundary value problems. In addition, generalized Laguerre spectral algorithms and Legendre spectral
Galerkin method were developed by Baleanu et al. [37] and by Bhrawy and Alghamdia [38] for fractional initial
value problems, respectively. The main challenge in these spectral methods is that the corresponding stiffness and
mass matrices are non-symmetric, dense and they gradually become ill-conditioned when the fractional order tends to
small values. Hence, carrying out long-time and/or adaptive integration using such SM schemes becomes intractable.
To this end, Xu and Hesthaven [39] developed a stable multi-domain spectral penalty method for fractional partial
differential equations. In all the aforementioned studies, the standard integer-ordered (polynomial) basis functions
have been utilized.

Recently, Zayernouri and Karniadakis [40,41] developed spectrally accurate Petrov–Galerkin spectral and spectral
element methods for non-delay and delay fractional differential equations, where they employed a new family of
fractional bases, called Jacobi poly-fractonomials. They introduced these poly-fractonomials as the eigenfunctions of
fractional Sturm–Liouville problems in [42], explicitly given as

(1)Pα,β,µ
n (ξ) = (1 + ξ)−β+µ−1 Pα−µ+1,−β+µ−1

n−1 (ξ), ξ ∈ [−1, 1], (1)

with µ ∈ (0, 1),−1 ≤ α < 2 − µ, and −1 ≤ β < µ − 1, which are representing the eigenfunctions of the singular
FSLP of first kind (SFSLP-I), and

(2)Pα,β,µ
n (ξ) = (1 − ξ)−α+µ−1 P−α+µ−1, β−µ+1

n−1 (ξ), ξ ∈ [−1, 1], (2)

where −1 < α < µ − 1 and −1 < β < 2 − µ, and µ ∈ (0, 1), denoting the eigenfunctions of the singular
FSLP of second kind (SFSLP-II). Moreover, Zayernouri and Karniadakis developed a space–time discontinuous
Petrov–Galerkin (DPG) and a discontinuous Galerkin (DG) method for the hyperbolic time- and space-fractional
advection equation in [43]. This approach was shown to be also applicable to problems of integer order time
derivatives. In addition, they employed the aforementioned Jacobi poly-fractonomial bases to introduce a new
class of fractional Lagrange interpolants for developing an efficient and spectrally accurate Fractional Spectral
Collocation Method (FSCM) in [44] for a variety of FODEs and FPDEs including multi-term FPDEs and the nonlinear
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space-fractional Burgers’ equation. Recently, the FSCM scheme has been further generalized to FPDEs of variable
order in [45], in where the associate fractional order(s) can vary in the computational domain Ω . However, like all
previous spectral methods, applying these schemes to higher-dimensional problems remains a great challenge.

In this paper, we develop a unified and spectrally accurate Petrov–Galerkin (PG) spectral method for the general
FPDEs of the following weak form

(0 Dτ
t u, t Dτ

T v)Ω +

d
j=1

c j (a j Dµ j
x j u, x j Dµ j

b j
v)Ω + γ (u, v)Ω = ( f, v)Ω ,

where 2τ, µ j ∈ (0, 1), in a (1 + d)-dimensional space–time domain subject to Dirichlet initial and boundary condi-

tions. Such a weak form is equivalent to the strong form 0 D2τ
t u +

d
j=1 cx j a j D2µ j

x j u + γ u = f , when u possesses
enough smoothness. This method applies equally-well to the entire family of linear fractional hyperbolic, parabolic
and elli ptic equations with the same ease. The main feature of this PG spectral methods is the global discretization
of the temporal term, in addition to the spatial derivatives, rather than utilizing traditional low-order time-integration
methods. We essentially develop our PG method based on a new spectral theory for fractional Sturm–Liouville prob-
lems (FSLPs) [42]. Specifically, we employ the eigenfunctions of the FSLP of first kind (FSLP-I), called Jacobi poly-
fractonomials, as temporal/spatial bases. Next, we construct a different space for test functions from poly-fractonomial
eigenfunctions of the FSLP of second kind (FSLP-II). We show that this choice of basis and test functions leads to
a stable bilinear form; moreover, we perform the corresponding error analysis. In the present method, all the afore-
mentioned matrices are constructed exactly and efficiently. Moreover, we formulate a new general fast linear solver
based on the eigenpairs of the corresponding temporal and spatial mass matrices with respect to the stiffness matri-
ces, which significantly reduces the computational cost in higher-dimensional problems e.g., (1 + 3), (1 + 5) and
(1 + 9)-dimensional FPDEs.

The organization of the paper is as follows: in Section 2, we introduce the notation and some preliminaries from
fractional calculus. In Section 3, we present the mathematical formulation of the Petrov–Galerkin spectral method
in a (1 + d)-dimensional hypercube where we define the basis and test function spaces separately. We additionally
obtain the general Lyapunov equation, for which we formulate a closed-form solution in terms of the generalized
eigensolutions. In Section 4, we reduce this general framework to the special well-known (i) hyperbolic, (ii) parabolic
FPDEs, and (iii) elliptic FPDEs. We furthermore employ our PG method and the fast solver to even higher dimensional
(10-D) problems to demonstrate the robustness and applicability of the scheme. In addition, we introduce our scheme
as a spectrally accurate time-integrator method when the FPDE of interest is integer-order in time. We end the paper
with a summary and discussion in Section 5. In the Appendix, we present the properties of the stiffness and mass
matrices and provide efficient quadrature rules to compute them exactly.

2. Preliminaries on fractional calculus

We first provide some definitions from fractional calculus. Following [2], for a univariate function g(x) ∈ Cn
[a, b],

we denote by a Dν
x g(x) the left-sided Riemann–Liouville fractional derivative of order ν, when n−1 ≤ ν < n, defined

as

a Dν
x g(x) =

1
Γ (n − ν)

dn

dxn

 x

a

g(s)

(x − s)ν+1−n
ds, x ∈ [a, b], (3)

where Γ represents the Euler gamma function, and as ν → n, the global operator a Dν
x → dn/dxn , recovering

the local nth order derivative with respect to x . We also denote by x Dν
b g(x) the corresponding right-sided

Riemann–Liouville fractional derivative of order ν, defined as

b Dν
x g(x) =

1
Γ (n − ν)

(−1)n
dn

dxn

 b

x

g(s)

(s − x)ν+1−n
ds, x ∈ [a, b]. (4)

Similarly, as ν → n, the right-sided fractional derivative tends to the standard nth local one. The corresponding
left- and right-sided fractional derivative of Caputo type can be also defined as (3) and (4), but with the order of
integration and differentiation exchanged. However, these two sets of Riemann–Liouville and Caputo definitions are
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closely linked. By virtue of (3) and (4), we can define the corresponding partial fractional-derivative of a bivariate
function.

Finally, we recall a useful property of the Riemann–Liouville fractional derivatives. Assume that 0 < p < 1 and
0 < q < 1 and g(xL) = 0 x > xL , then

xL D p+q
x g(x) =


xL D p

x
 

xL Dq
x


g(x) =


xL Dq
x
 

xL D p
x


g(x). (5)

3. Mathematical formulation of Petrov–Galerkin spectral method

Let u : Rd+1
→ R, for some positive integer d. For u ∈ U (see e.g., (10)), we consider the following general weak

form in Ω = [0, T ] × [a1, b1] × [a2, b2] × · · · × [ad , bd ] as

(0 Dτ
t u, t Dτ

T v)Ω +

d
j=1

c j (a j Dµ j
x j u, x j Dµ j

b j
v)Ω + γ (u, v)Ω = ( f, v)Ω , ∀v ∈ V, (6)

where γ, c j are constant, 2τ, µ j ∈ (0, 1), j = 1, 2, . . . , d , subject to the following homogeneous Dirichlet initial and
boundary conditions

u|t=0 = 0, τ ∈ (0, 1/2), (7)

u|x j =a j = 0, µ j ∈ (0, 1/2), j = 1, 2, . . . , d

u|x j =a j = u|x j =b j = 0, µ j ∈ (1/2, 1), j = 1, 2, . . . , d.

We note that the variational form (6) is equivalent to the following linear FPDE of order 2τ in time and 2µ j in the j th
spatial dimension, j = 1, 2, . . . , d,

0 D2τ
t u(t, x1, x2, . . . , xd)+

d
j=1

c j [ a j D2µ j
x j u(t, x1, x2, . . . , xd) ] + γ u(t, x1, x2, . . . , xd)

= f (t, x1, x2, . . . , xd), (8)

when solution u is smooth enough.
We define the solution space U as

U :=


u : Ω → R | u ∈ C(Ω), ∥u∥U < ∞, and u|t=0 = u|x j =a j = 0


, (9)

if µ j ∈ (0, 1/2) and

U :=


u : Ω → R | u ∈ C(Ω), ∥u∥U < ∞, s.t. u|t=0 = u|x j =a j = u|x j =b j = 0


(10)

when µ j ∈ (1/2, 1), in which

∥u∥U =


∥0 Dτ

t u∥
2
+

d
j=1

∥a j Dµ j
x j u∥

2
+ ∥u∥

2
1/2

. (11)

Correspondingly, we define the test space V as

V :=


v : Ω → R | ∥v∥V < ∞, s.t. v|t=T = v|x j =b j = 0


, (12)

when µ j ∈ (0, 1), in which

∥v∥V =


∥t Dτ

T v∥
2
+

d
j=1

∥x j Dµ j
b j
v∥2

+ ∥v∥2
1/2

, (13)
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where by [31,46], we can show that U and V are Hilbert spaces, moreover, the associated norms ∥ · ∥U and ∥ · ∥V are
equivalent. Now, let a : U × V → R be a bilinear form, defined as

a(u, v) = (0 Dτ
t u, t Dτ

T v)Ω +

d
j=1

c j (a j Dµ j
x j u, x j Dµ j

b j
v)Ω + γ (u, v)Ω . (14)

Moreover, let L ∈ V ∗, the dual space of V , be a continuous linear functional defined as

L(v) = ( f, v), ∀v ∈ V . (15)

Now, the problem is to find u ∈ U such that

a(u, v) = L(v), ∀v ∈ V . (16)

Next, we define UN ⊂ U and VN ⊂ V to be finite dimensional subspaces of U and V with dim(UN ) = dim(VN ) = N .
Now, our PG spectral method reads as: find uN ∈ UN such that

a(uN , vN ) = L(vN ), ∀vN ∈ VN . (17)

By representing uN as a linear combination of points/elements in UN i.e., the corresponding (1 + d)-dimensional
space–time basis functions, the finite-dimensional problem (17) leads to a linear system known as Lyapunov matrix
equation. For instance, if d = 1, i.e., 1-D in time and 1-D in space, we obtain the corresponding Lyapunov equation
in the space–time domain [0, T ] × [a1, b1] as

Sτ U MT
µ1

+ Mτ U ST
µ1

= F, (18)

in which U is the matrix of unknown coefficients, Sτ and Mτ denote, respectively, the temporal stiffness and mass
matrices; similarly, Sµ1 and Mµ1 , represent the spatial stiffness and mass matrices, and F is the corresponding load
matrix.

In general, numerical solutions to such a linear system, originating from a fractional differential operator, become
excessively expensive since the corresponding mass and stiffness matrices usually turn out to be full and non-
symmetric. Moreover, we note that the size of the above linear system grows as the product of the degrees of
freedom in each dimension. To address this problem in this paper, we present a new class of basis and test functions
yielding stiffness matrices, which are either diagonal or tridiagonal. Similarly, by introducing proper quadrature
rules, we compute exactly the corresponding mass matrices, which are symmetric. Such useful properties allow us
to subsequently develop a general fast linear solver for (18) with a substantially reduced computational cost. To this
end, we first introduce the corresponding finite-dimensional spaces of basis UN and test functions VN in our PG
framework.

3.1. Space of basis functions (UN )

We develop a PG spectral method for (8), subject to homogeneous Dirichlet initial and boundary conditions. We
construct the basis function space as the space of some temporal and spatial functions to globally treat the time-
dimension in addition to the spatial-dimensions. To this end, the new eigensolutions, introduced in [42], yield new
sets of basis and test functions, properly suited for our Petrov–Galerkin framework. We represent the solution in the
entire space–time computational domain Ω in terms of specially chosen basis functions, constructed as the tensor
product of the eigenfunctions in the following manner. Let

(1)Pµ
n (ξ) = (1 + ξ)µ P−µ,µ

n−1 (ξ), n = 1, 2, . . . x ∈ [−1, 1], (19)

denote the eigenfunctions of the regular FSLP of first kind (RFSLP-I), corresponding to the case where α = β = −1.
We construct our basis for the spatial discretization using the univariate poly-fractonomials defined by

φ µm ( ξ ) = σm


(1)P µ

m ( ξ ), m = 1, 2, . . . , µ ∈ (0, 1/2],

(1)P µ
m ( ξ )− ϵ µm

(1)P µ
m−1( ξ ), m = 2, 3, . . . µ ∈ (1/2, 1),

(20)
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where σm = 2+(−1)m and theµ-dependent coefficient ϵµm j = (m−1−µ)/(m−1). The definition reflects the fact that
if µ ≤ 1/2 then only one boundary condition needs to be presented, whereas if µ > 1/2 then two endpoint conditions
are prescribed. Naturally, for the temporal basis functions only initial conditions are prescribed and as a consequence
the basis functions for the temporal discretization are constructed using the univariate poly-fractonomials

ψ τ
n (η) = σn

(1)P τ
n ( η ), τ ∈ (0, 1), (21)

for n ≥ ⌈2τ⌉. With these notations established, we define the space–time trial space to be

UN = span

ψ τ

n ◦ η

(t)

d
j=1


φ
µx j
m j ◦ ξ j


(x j ) : n = 1, . . . ,N , m j = ⌈σ j⌉, . . . ,M j


, (22)

where η(t) = 2t/T − 1 and ξ j (s) = 2 s−a j
b j −a j

− 1. The construction of the univariate functions ensures that UN ⊂ U ,

since φ µm (−1) = 0, for all µ ∈ (0, 1), also φ µm (1) = 0, for all µ ∈ (1/2, 1). Then, we shall approximate the solution
to (8) in terms of a linear combination of elements in UN , whose bases satisfy exactly the homogeneous initial and
boundary condition in Ω .

3.2. Space of test functions (VN )

Let the poly-fractonomials

(2)P µ
k (ξ) = (1 − ξ)µ P µ,−µ

k−1 (ξ), k = 1, 2, . . . , ξ ∈ [−1, 1], (23)

denote the eigenfunctions of the regular FSLP of second kind (RFSLP-II), corresponding to the case α = β = −1 in
(2). Next, we construct our spatial test functions using the univariate poly-fractonomials defined by

Φ µ
k (ξ) = σk


(2)P µ

k ( ξ ), k = 1, 2, . . . µ ∈ (0, 1/2],
(2)P µ

k (ξ)+ ϵ
µ
k
(2)P µ

k−1(ξ), k = 2, 3, . . . µ ∈ (1/2, 1),
(24)

where σk = 2 (−1)k + 1. Next, we define the temporal test functions using the univariate poly-fractonomials

Ψ τ
r (η) = σr

(2)P τ
r ( η ), τ ∈ (0, 1), (25)

for all r ≥ ⌈2τ⌉. With these notations established, we define the space–time test space to be

VN = span


Ψ τ
r ◦ η


(t)

d
j=1


Φ
µ j
k j

◦ ξ j


(x j ) : r = 1, . . . ,N , k j = ⌈σ j⌉, . . . ,M j


. (26)

Having defined the space of trial and test functions, we can now define the corresponding temporal/spatial stiffness
and mass matrices.

Remark 3.1. We show later that the choice of σm in (20) and (21), also σk in (24) and (25), leads to the construction
of symmetric spatial/temporal mass and stiffness matrices. We will exploit this property to formulate a general fast
linear solver for the resulting linear system.

3.3. Stability and convergence analysis

The following theorems provide the stability analysis of the scheme when the pair of UN ⊂ U and VN ⊂ V are
given as in (22) and (26), respectively. We first consider the discrete stability of the method for one-dimensional case.

Theorem 3.2. The Petrov–Galerkin spectral method for the problem

−1 D2µ
x u(x) = f (x), ∀x ∈ [−1, 1], (27)

u(−1) = 0, if 0 < µ < 1/2,

u(±1) = 0, if 1/2 < µ < 1
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is stable, i.e., the discrete inf - sup condition

sup
vN ∈VN

a(uN , vN )

∥vN ∥V
≥ β∥uN ∥U , ∀uN ∈ UN ⊂ U, (28)

holds with β = 1.

Proof. We note that in the absence of the time-derivative and since γ = 0, the corresponding norm defined on
U (see Eq. (11)) just reduces to ∥u∥U = ∥−1 Dµ

x u∥. While ∥−1 Dµ
x u∥ has been traditionally treated as a semi-

norm in the literature (e.g., see [47,29]), one can easily show that it satisfies all the properties of a norm since the
Riemann–Liouville fractional derivative of a constant is non-zero. Correspondingly, in this one-dimensional setting,
∥v∥V = ∥x Dµ

1 v∥.

Case (I) 0 < µ < 1/2: we represent uN as

uN (x) =

N
n=1

ûn(1 + x)µP−µ,µ
n−1 (x), (29)

and choose vN to be the following linear combination of elements in VN as

vN (x) =

N
k=1

ûk(1 − x)µPµ,−µk−1 (x), (30)

in which we employ the same coefficients ûk as in (29). Hence, we obtain

a(uN , vN ) =

 1

−1
−1 Dµ

x uN x Dµ
1 vN dt

=

N
n=1

ûn

N
k=1

ûk

 1

−1
−1 Dµ

x [(1 + x)µP−µ,µ
n−1 (x)], x Dµ

1 [(1 − x)µPµ,−µk−1 (x)] dt

=

N
n=1

ûn
Γ (n + µ)

Γ (n)

N
k=1

ûk
Γ (k + µ)

Γ (k)

 1

−1
Pn−1(x)Pk−1(x) dt

=

N
n=1

û2
n

Γ (n + µ)

Γ (n)

2 2n + 1
2

= ∥x Dµ
1 vN ∥

2
L2([−1,1])

= ∥vN ∥
2
V , (31)

sup
vN ∈VN

a(uN , vN )

∥vN ∥V
= ∥uN ∥U , ∀uN ∈ UN , (32)

which means that the stability is guaranteed for β = 1.

Case (II) 1/2 < µ < 1: we expand uN this time as

uN (x) =

N
n=1

ûn


(1 + x)µP−µ,µ

n−1 (x)− ϵµn (1 + x)µP−µ,µ
n−2 (x)


, (33)

and choose vN to be the following linear combination of elements in VN as

vN (x) =

N
k=1

ûk


(1 − x)µPµ,−µk−1 (x)+ ϵ

µ
k (1 − x)µPµ,−µk−2 (x)


, (34)

where the coefficients ûk are the same as the ones in (33). Hence, it is easy to again show that

a(uN , vN ) =

N
n=1

û2
n

Γ (n + µ)

Γ (n)

2 2n + 1
2

(1 − ϵµn I{1≤n≤N−1})

= ∥x Dµ
1 vN ∥

2
L2([−1,1])

= ∥vN ∥
2
V . � (35)
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Remark 3.3. We performed the discrete stability analysis for the 1-D case. The multi-D case is more involved and
we will address it in a separate paper in future.

Theorem 3.4 (Projection Error). In the weak form (17), let ∥0 Dr+τ
t u∥L2(Ω) < ∞ and ∥−1 Dr+µ j

x j u∥L2(Ω) < ∞ for
all j = 1, 2, . . . , d, for some integer r ≥ 1. Moreover, let uN denote the projection of the exact solution u.Then,

∥u − uN ∥
2
U ≤ C N−2r


∥0 Dr+τ

t u∥
2
L2(Ω) +

d
j=1

∥−1 Dr+µ j
x j u∥

2
L2(Ω)


.

Proof. We first consider the one-dimensional problem (27). We expand the exact solution u, when 2µ ∈ (0, 1), in
terms of the following infinite series of Jacobi poly-fractonomials

u(x) =

∞
n=1

ûn(1 + x)µP−µ,µ
n−1 (x). (36)

Here, we would like to bound ∥u − uN ∥U in terms of higher-order derivative. We first note that

−1 Dr+µ
x u(x) =

dr

dxr [−1 Dµ
x u(x)] =

∞
n=1

ûn
Γ (n + µ)

Γ (n)
dr

dxr [Pn−1(x)],

where

dr

dxr [Pn−1(x)] =


(n − 1 + r)!

2r(n − 1)!
Pr,r

n−1−r (x), r ≤ n,

0, r > n.

Hence,

−1 Dr+µ
x u(x) =

∞
n=r

ûn
Γ (n + µ)

Γ (n)
(n − 1 + r)!

2r(n − 1)!
Pr,r

n−1−r (x).

Therefore,

∥(1 − x)r/2(1 + x)r/2−1 Dr+µ
x u(x)∥2

=

 1

−1
(1 − x)r (1 + x)r

 ∞
n=r

ûn
Γ (n + µ)

Γ (n)
(n − 1 + r)!

2r(n − 1)!
Pr,r

n−1−r (x)
2

=

∞
n=r


ûn

Γ (n + µ)

Γ (n)
(n − 1 + r)!

2r(n − 1)!

2
 1

−1
(1 − x)r (1 + x)r Pr,r

n−1−r (x)P
r,r
n−1−r (x)dx

=

∞
n=r


ûn

Γ (n + µ)

Γ (n)
(n − 1 + r)!

2r(n − 1)!

2 22r+1 ((n − 1)!)2

(n − 1 − r)!(n − 1 + r)!

=

∞
n=r


ûn

Γ (n + µ)

Γ (n)

2 2
2n + 1

(n − 1 + r)!

(n − 1 − r)!
.

We also note that (n−1+r)!
(n−1−r)! is minimized when n = N + 1. Hence,

∥u − uN ∥
2
U =

∞
n=N+1


ûn

Γ (n + µ)

Γ (n)

2

≤

∞
n=N+1


ûn

Γ (n + µ)

Γ (n)

2 (n − 1 + r)!

(n − 1 − r)!

(N − r)!

(N + r)!

=
(N − r)!

(N + r)!

∞
n=N+1


ûn

Γ (n + µ)

Γ (n)

2 (n − 1 + r)!

(n − 1 − r)!
,
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=
(N − r)!

(N + r)!
∥(1 − x)r/2(1 + x)r/2−1 Dr+µ

x u(x)∥2

≤
(N − r)!

(N + r)!
∥−1 Dr+µ

x u(x)∥2

≤ c N−2r
∥−1 Dr+µ

x u(x)∥2, (37)

where r ≥ 1 and 2µ ∈ (0, 1). Similar steps are done for the case 2µ ∈ (1, 2) to obtain (37) noting that in either case,
µ remains between 0 and 1.

Next, we consider the following two-dimensional problem in Ω = [−1, 1] × [−1, 1]:

−1 D2µx
x u(x, y)+ −1 D2µy

y u(x, y) = f (x, y), ∀(x, y) ∈ Ω , (38)

u(−1, y) = u(x,−1) = 0, if 0 < µx , µy < 1/2,

whose corresponding weak form is given by

(−1 Dµx
x u, x Dµx

1 v)Ω + (−1 Dµy
y u, y Dµy

1 v)Ω = ( f, v)Ω . (39)

We represent the exact solution u when 2µx , 2µy ∈ (0, 1), in terms of the following infinite series of tensor product
Jacobi poly-fractonomials as

u(x, y) =

∞
n=1

∞
m=1

ûnm(1 + x)µx P−µx ,µx
n−1 (x) (1 + y)µy P

−µy ,µy
m−1 (y). (40)

Hence,

−1 Dr+µx
x u =

∞
n=1

∞
m=1

ûnm
Γ (n + µx )

Γ (n)
(n − 1 + r)!

2r(n − 1)!
Pr,r

n−1−r (x) (1 + y)µy P
−µy ,µy
m−1 (y) (41)

−1 Dr+µy
y u =

∞
n=1

∞
m=1

ûnm(1 + x)µx P−µx ,µx
n−1 (x)

Γ (m + µy)

Γ (m)
(m − 1 + r)!

2r(m − 1)!
Pr,r

m−1−r (y). (42)

Moreover, taking w1(x) = (1 − x)r/2(1 + x)r/2 and w2(y) = (1 − y)−µy/2(1 + y)−µy/2, we have

∥w1(x) w2(y)−1 Dr+µx
x u∥

2
L2(Ω)

=

∞
n=1

∞
m=1


ûnm

Γ (n + µx )

Γ (n)
(n − 1 + r)!

2r(n − 1)!

2
·


+1

−1
(1 − x)r (1 + x)r [Pr,r

n−1−r (x)]
2dx

·


+1

−1
(1 − y)−µy (1 + y)µy [P

−µy ,µy
m−1 (y)]2dy

=

∞
n=1

∞
m=1


ûnm

Γ (n + µx )

Γ (n)

2 2
2n + 1

·
(n − 1 + r)!

(n − 1 − r)!

2
2m − 1

Γ (m − µy)Γ (m + µy)

(m − 1)!Γ (m)
.

Similarly,

∥w1(y) w2(x)−1 Dr+µy
y u∥

2
L2(Ω)

=

∞
n=1

∞
m=1


ûnm

Γ (m + µx )

Γ (m)

2 2
2n − 1

Γ (n − µx )Γ (n + µx )

(n − 1)!Γ (n)
2

2m + 1
(m − 1 + r)!

(m − 1 − r)!
.

We note that u(x, y) can be decomposed into four contributions as

u =

 N
n=1

N
m=1

+

N
n=1

∞
m=N+1

+

∞
n=N+1

N
m=1

+

∞
n=N+1

∞
m=N+1


ûnm Pµx

n (x)Pµy
m (y),
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or equivalently,

u − uN =

 N
n=1

∞
m=N+1

+

∞
n=N+1

N
m=1

+

∞
n=N+1

∞
m=N+1


ûnm Pµx

n (x)Pµy
m (y).

Next, we aim to bound ∥u − uN ∥U in terms of higher-order derivative as

∥u − uN ∥
2
U ≤

 N
n=1

∞
m=N+1

ûnm Pµx
n (x)Pµy

m (y)


2

U

+

 ∞
n=N+1

N
m=1

ûnm Pµx
n (x)Pµy

m (y)


2

U

+

 ∞
n=N+1

∞
m=N+1

ûnm Pµx
n (x)Pµy

m (y)


2

U

, (43)

in which we note the symmetry between the first two terms on the right-hand side. Let us consider the second term
first:  ∞

n=N+1

N
m=1

ûnm Pµx
n (x)Pµy

m (y)


2

U

=

−1 Dµx
x

 ∞
n=N+1

N
m=1

ûnm Pµx
n (x)Pµy

m (y)
2

L2(Ω)

+

−1 Dµy
y

 ∞
n=N+1

N
m=1

ûnm Pµx
n (x)Pµy

m (y)
2

L2(Ω)
, (44)

where−1 Dµx
x

 ∞
n=N+1

N
m=1

ûnm Pµx
n (x)Pµy

m (y)
2

L2(Ω)
=

≤

 1

−1

 1

−1
w2(y)

 ∞
n=N+1

N
m=1

ûnm
Γ (n + µx )

Γ (n)
Pn−1(x)Pµy

m (y)
2

≤

∞
n=N+1

N
m=1


ûnm

Γ (n + µx )

Γ (n)

2 2
2n + 1

2
2m − 1

Γ (m − µy)Γ (m + µy)

(m − 1)!Γ (m)

≤
(N − r)!

(N + r)!

∞
n=N+1

N
m=1


ûnm

Γ (n + µx )

Γ (n)

2 2
2n + 1

(n − 1 + r)!

(n − 1 − r)!

2
2m − 1

Γ (m − µy)Γ (m + µy)

(m − 1)!Γ (m)

≤
(N − r)!

(N + r)!
∥−1 D1+µx

x u∥
2
L2(Ω)

≤ cN−2r
∥−1 D1+µx

x u∥
2
L2(Ω).

Following similar steps, we obtain−1 Dµy
y

 ∞
n=N+1

N
m=1

ûnm Pµx
n (x)Pµy

m (y)
2

L2(Ω)
≤ cN−2r

∥−1 Dr+µy
y u∥

2
L2(Ω).

Therefore, we obtain the following estimate for the second term on the right-hand side of (43) ∞
n=N+1

N
m=1

ûnm Pµx
n (x)Pµy

m (y)


2

U

≤ c̃N−2r

∥−1 Dr+µx

x u∥
2
L2(Ω) + ∥−1 Dr+µy

y u∥
2
L2(Ω)


. (45)

Moreover, by symmetry, we have the following results for the first term on the right-hand side of (43): N
n=1

∞
m=N+1

ûnm Pµx
n (x)Pµy

m (y)


2

U

≤ C̃ N−2r

∥−1 Dr+µx

x u∥
2
L2(Ω) + ∥−1 Dr+µy

y u∥
2
L2(Ω)


. (46)
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It is easy to check that ∥


∞

n=N+1


∞

m=N+1 ûnm Pµx
n (x)Pµy

m (y)∥2
U can be bounded by the first two terms on the

right-hand side, hence, by substituting (45) and (46) into (43), we finally obtain the following estimate

∥u − uN ∥
2
U ≤ C N−2r


∥−1 Dr+µx

x u∥
2
L2(Ω) + ∥−1 Dr+µy

y u∥
2
L2(Ω)


. (47)

Such an error estimate can be isotropically tensor producted up for higher-dimensional problems to get the following
estimate

∥u − uN ∥
2
U ≤ C N−2r


∥0 Dr+τ

t u∥
2
L2(Ω) +

d
j=1

∥−1 Dr+µ j
x j u∥

2
L2(Ω)


, (48)

in which N denotes the number of terms in the expansion in all (d + 1) dimensions. �

Remark 3.5. Since the inf–sup condition holds (see Theorem 3.2), by the Banach–Nečas–Babuška theorem [48], the
error in the numerical scheme is less than or equal to a constant times the projection error. Choosing the projection
uN in Theorem 3.4, we conclude the spectral accuracy of the scheme.

3.4. Implementation of PG spectral method

We now seek the solution to (8) in terms of a linear combination of elements in the space UN of the form

uN (x, t) =

N
n=⌈2τ⌉

M1
m1=⌈2µ1⌉

· · ·

Md
md=⌈2µd⌉

ûn,m1,...,md


ψ τ

n (t)
d

j=1

φ
µ j
m j (x j )


(49)

in Ω . Next, we require the corresponding residual

RN (t, x1, . . . , xd) = 0 D2τ
t


uN


+

d
j=1

c j a j D2µ j
x j


uN


+ γ uN − f (50)

to be L2-orthogonal to the elements in vN ∈ VN , which leads to the finite-dimensional variational form given in

(17). Specifically, by choosing vN = Ψ µt
r (t)

d
j=1 Φ

µx j
k j

(x j ), when r = ⌈2τ⌉, . . . ,N and k j = ⌈2µ j⌉, . . . ,M j , we
obtain

N
n=⌈2τ⌉

M1
m1=⌈2µ1⌉

· · ·

Md
md=⌈2µd⌉

ûn,m1,...,md


{Sτ }r,n {Mµ1}k1,m1 · · · {Mµd }kd ,md

+

d
j=1

c j [ {Mτ }r,n {Mµ1}k1,m1 · · · {Sµ j }k j ,m j · · · {Mµd }kd ,md ]

+ γ {Mτ }r,n {Mµ1}k1,m1 · · · {Mµd }kd ,md


= Fr,k1,...,kd , (51)

where Sτ and Mτ denote, respectively, the temporal stiffness and mass matrices, whose entries are defined as

{Sτ }r,n =

 T

0
0 Dτ

t


ψτn ◦ η


(t)t Dτ

T


Ψ τ

r ◦ η

(t) dt,

and

{Mτ }r,n =

 T

0


Ψ τ

r ◦ η

(t)


ψτn ◦ η


(t) dt.

Moreover, Sµ j and Mµ j , j = 1, 2, . . . , d , are the corresponding spatial stiffness and mass matrices

{Sµ j }k j ,m j =

 b j

a j

a j Dµ j
x j


φ
µ j
m j ◦ ξ j


(x j ) x j Dµ j

b j


Φ
µ j
k j

◦ ξ j


(x j ) dx j ,
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and

{Mµ j }k j ,m j =

 b j

a j


Φ
µ j
k j

◦ ξ j


(x j )


φ
µ j
m j ◦ ξ j


(x j ) dx j ,

respectively, to be exactly computed in the Appendix. Moreover, Fr,k1,...,kd is
Ω

f (t, x1, . . . , xd)

Ψ τ

r ◦ η

(t)

d
j=1


Φ
µ j
k j

◦ ξ j


(x j ) dΩ . (52)

Assuming that all the aforementioned stiffness and mass matrices are symmetric, we can render the linear system (51)
as the following general Lyapunov equation

Sτ ⊗ Mµ1 ⊗ Mµ2 · · · ⊗ Mµd +

d
j=1

c j [ Mτ ⊗ Mµ1 ⊗ · · · ⊗ Mµ j−1 ⊗ Sµ j ⊗ Mµ j+1 · · · ⊗ Mµd ]

+ γ Mτ ⊗ Mµ1 ⊗ Mµ2 · · · ⊗ Mµd


U = F, (53)

in which ⊗ represents the Kronecker product, F denotes the multi-dimensional load matrix whose entries given in
(52), and U is the corresponding multi-dimensional matrix of unknown coefficients whose entries are ûn,m1,...,md .

In the Appendix, we investigate the properties of the aforementioned matrices in addition to presenting efficient
ways of deriving the stiffness matrices explicitly and computing the mass matrices exactly through proper quadrature
rules.

3.5. A new fast FPDE solver

So far, we have formulated a suitable Petrov–Galerkin variational framework for the general (1 + d)-dimensional
FPDE, given in (8), by choosing proper basis and test functions. The main advantage of such framework is that we can
explicitly obtain the corresponding stiffness matrices to be symmetric diagonal/tridiagonal, and moreover, to exactly
compute the mass matrices, which we showed to be symmetric. The following result better highlights the benefit of
this scheme, where we formulate a closed-form solution for the Lyapunov system (53) in terms of the generalized
eigensolutions that can be computed very efficiently.

Theorem 3.6. Let {e⃗
µ j
m j , λ

µ j
m j }

M j
m j =⌈2µ j ⌉

be the set of general eigensolutions of the spatial mass matrix Mµ j with

respect to the stiffness matrix Sµ j . Moreover, let us assume that {e⃗ τn , λ
τ
n }

N
n=⌈2τ⌉ are the set of general eigensolutions

of the temporal mass matrix Mτ with respect to the stiffness matrix Sτ . (I) if d > 1, then the multi-dimensional matrix
of unknown solution U is explicitly obtained as

U =

N
n=⌈2τ⌉

M1
m1=⌈2µ1⌉

· · ·

Md
md=⌈2µd⌉

κn,m1,...,md e⃗ τn ⊗ e⃗µ1
m1

⊗ · · · ⊗ e⃗µd
md
, (54)

where the unknown κn,m1,...,md are given by

κn,m1,...,md =
( e⃗ τn e⃗µ1

m1 · · · e⃗µd
md )F

(e⃗ τ T
n Sτ e⃗ τn )

d
j=1
(e⃗
µT

j
m j Sµ j e⃗

µ j
m j )


Λn,m1,...,md

(55)

in which the numerator represents the standard multi-dimensional inner product, and Λn,m1,...,md are obtained in
terms of the eigenvalues of all mass matrices as

Λn,m1,...,md =


(1 + γ λτn)

d
j=1

λ
µ j
m j + λτn

d
j=1

c j

 d
s=1,s≠ j

λµs
ms


.
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(II) If d = 1, then the two-dimensional matrix of the unknown solution U is obtained as

U =

N
n=⌈2τ⌉

M1
m1=⌈2µ1⌉

κn,m1 e⃗ τn e⃗
µT

1
m1 ,

where κn,m1 is explicitly obtained as

κn,m1 =
e⃗ τ

T

n F e⃗µ1
m1

(e⃗ τ T
n Sτ e⃗ τn )(e⃗

µ1
T

m1 Sµ1 e⃗µ1
m1 )


λ
µ1
m1−1 + c1 λτn + γ λτnλ

µ1
m1

 .
Proof. Let us consider the following generalized eigenvalue problems

Mµ j e⃗
µ j
m j = λ

µ j
m j Sµ j e⃗

µ j
m j , m j = ⌈2µ j⌉, . . . ,M j , j = 1, 2, . . . , d, (56)

Mτ e⃗ τn = λτn Sτ e⃗ τn , n = ⌈2τ⌉, 2, . . . ,N . (57)

We aim to represent the unknown coefficient matrix U in the expansion (49) in terms of the spatial and temporal
eigenvectors as

U =

N
n=⌈2τ⌉

M1
m1=⌈2µ1⌉

· · ·

Md
md=⌈2µd⌉

κn,m1,...,md e⃗ τn ⊗ e⃗µ1
m1

⊗ · · · ⊗ e⃗µd
md
, (58)

where the unknown κn,m1,...,md are obtained as follows. We first take the multi-dimensional inner product of
e⃗ τq e⃗µ1

p1 · · · e⃗µd
pd on both sides of the Lyapunov equation (53) to obtain

( e⃗ τq e⃗µ1
p1

e⃗µ2
p2

· · · e⃗µd
pd
)


Sτ ⊗ Mµ1 ⊗ · · · ⊗ Mµd

+

d
j=1

c j [Mτ ⊗ Mµ1 ⊗ · · · ⊗ Mµ j−1 ⊗ Sµ j ⊗ Mµ j+1 · · · ⊗ Mµd ]

+ γ Mτ ⊗ Mµ1 ⊗ · · · ⊗ Mµd


U = ( e⃗ τq e⃗µ1

p1
· · · e⃗µd

pd
)F.

Next, we substitute (58) and re-arrange the terms to obtain

N
n=⌈2τ⌉

M1
m1=⌈2µ1⌉

· · ·

Md
md=⌈2µd⌉

κn,m1,...,md


e⃗ τ

T

q Sτ e⃗ τn e⃗
µT

j
p1 Mµ1 e⃗

µ j
m1 · · · e⃗

µT
j

pd Mµd e⃗
µ j
md

+

d
j=1

c j e⃗ τ
T

q Mτ e⃗ τn e⃗
µT

j
p1 Mµ1 e⃗

µ j
m1 · · · e⃗

µT
j

p j Sµ j e⃗
µ j
m j e⃗

µT
j+1

p j+1 Mµ j+1 e⃗
µ j+1
m j+1 e⃗

µT
j

pd Mµd e⃗
µ j
md

+ γ e⃗ τ
T

q Mτ e⃗ τn e⃗
µT

j
p1 Mµ1 e⃗

µ j
m1 e⃗

µT
j

p2 Mµ2 e⃗
µ j
m2 · · · e⃗

µT
j

pd Mµd e⃗
µ j
md


= ( e⃗ τq e⃗µ1

p1
e⃗µ2

p2
· · · e⃗µd

pd
)F,

where we recall that Mµ j e⃗
µ j
m j = (λ

µ j
m j Sµ j e⃗

µ j
m j ) and Mτ e⃗ τn = (λτn Sτ e⃗ τn ). Hence,

N
n=⌈2τ⌉

M1
m1=⌈2µ1⌉

· · ·

Md
md=⌈2µd⌉

κn,m1,...,md


e⃗ τ

T

q Sτ e⃗ τn e⃗
µT

j
p1 (λ

µ1
m1

Sµ1 e⃗µ1
m1
) e⃗

µT
j

p2 (λ
µ2
m2

Sµ2 e⃗µ2
m2
) · · · (λµd

md
Sµd e⃗µd

md
)

+

d
j=1

c j e⃗ τ
T

q (λτn Sτ e⃗ τn ) e⃗
µT

j
p1 (λ

µ1
m1

Sµ1 e⃗µ1
m1
)

· · · e⃗
µT

j
p j Sµ j e⃗

µ j
m j e⃗

µT
j+1

p j+1 (λ
µ j +1
m j+1 Sµ j+1 e⃗

µ j+1
m j+1 ) · · · e⃗

µT
j

pd (λ
µd
md

Sµd e⃗µd
md
)

+ γ e⃗ τ
T

q (λτn Sτ e⃗ τn ) e⃗
µT

j
p1 (λ

µ1
m1

Sµ1 e⃗µ1
m1
) e⃗

µT
j

p2 (λ
µ2
m2

Sµ2 e⃗µ2
m2
) · · · (λµd

md
Sµd e⃗µd

md
)


= ( e⃗ τq e⃗µ1
p1

e⃗µ2
p2

· · · e⃗µd
pd
)F
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or alternatively,

N
n=⌈2τ⌉

M1
m1=⌈2µ1⌉

· · ·

Md
md=⌈2µd⌉

κn,m1,...,md (e⃗
τ T

q Sτ e⃗ τn )(e⃗
µT

j
p1 Sµ1 e⃗µ1

m1
) · · · (e⃗

µT
d

pd Sµd e⃗µd
md
)

×


(1 + γ λτn)

d
j=1

λ
µ j
m j + λτn

d
j=1

c j

 d
s=1,s≠ j

λµs
ms


= ( e⃗ τq e⃗µ1

p1
e⃗µ2

p2
· · · e⃗µd

pd
)F,

and since the spatial and temporal stiffness matrices Sµ j and Sτ are diagonal (see Appendix), then (e⃗ τ
T

q Sτ e⃗ τn ) = 0 if

q ≠ n, also (e⃗
µT

j
p j Sµ j e⃗

µ j
m j ) = 0, if p j ≠ m j , which completes the proof for the case d > 1. Following similar steps for

the two-dimensional problem in the t–µ1 domain, it is easy to see that if d = 1, the relationship for κ can be derived
as

κq,p1 =
e⃗ τ

T

q F e⃗µ1
p1

(e⃗ τ T
q Sτ e⃗ τq )(e⃗

µ1
T

p1 Sµ1 e⃗µ1
p1 )


λ
µ1
p + cµ1 λ

τ
q + γ λτqλ

µ1
p

 . � (59)

Remark 3.7. If µ j = µ ≠ τ and M j = M, j = 1, 2, . . . , d , then the complexity of the calculations of (56) and
(57) reduces to two linear generalized eigenproblems for space and time. Moreover, if µ = τ and M = N , then we
only need to solve a single one-dimensional eigenproblem Mµe⃗q = λq Sµe⃗q once.

Remark 3.8. For time-independent (steady-state) problems, where the time-fractional derivative vanishes in (8),
the same general framework holds. For such problems, the time-dependent basis and test functions in UN and VN
consequently vanish, and we construct the d-dimensional basis space U N in Ω = [a1, b1] × · · · × [ad , bd ] as

U N = span
 d

j=1


φ
µ j
m j ◦ ξ j


(x j ) : m j = ⌈2µ j⌉, . . . ,M j


, (60)

where we seek the solution in terms of elements in the space U N of the form

uN (µ1, . . . , µd) =

M1
m1=⌈2µ1⌉

· · ·

Md
md=⌈2µd⌉

ûm1,...,md

d
j=1


φ
µ j
m j ◦ ξ j


(x j ) (61)

and test the problem against the elements in

V N = span
 d

j=1


Φ
µ j
k j

◦ ξ j


(x j ) : k j = ⌈2µ j⌉, . . . ,M j


. (62)

Subsequently, we obtain a similar Lyapunov equation as in (53) where Mτ no longer appears, however, Mµ j and Sµ j

possess all the properties presented in Theorems A.1 and A.3 in the Appendix.

Lemma 3.9. If d > 1, in the absence of the fractional time-derivative in (8), i.e., when Sτ vanishes, we obtain the
matrix of unknown solution U in (61) as

U =

M1
m1=⌈2µ1⌉

· · ·

Md
md=⌈2µd⌉

κm1,...,md e⃗µ1
m1

⊗ · · · ⊗ e⃗µd
md
,

where the unknown κm1,...,md is given by

κm1,...,md =
( e⃗µ1

m1 · · · e⃗µd
md )F d

j=1
(e⃗
µT

j
m j Sµ j e⃗

µ j
m j )


γ

d
j=1

λ
µ j
m j +

d
j=1

c j

 d
s=1,s≠ j

λ
µs
ms

 . (63)

Proof. It follows the proof in Theorem 3.6. �
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3.6. Computational considerations

In Theorem 3.6, we assume that the eigenvectors and eigenvalues of each mass matrix with respect to the
corresponding stiffness matrices are known. Therefore, employing the PG spectral method in a (1 + d)-dimensional
problem when (1 + d) ≥ 2 leads to efficient computations. Otherwise, the computational cost of the eigensolver,
which is O(N 3) in practice, becomes dominant. As we shall demonstrate, this approach appears to be even more
beneficial as (1 + d) increases. In fact, the cost of the fast FPDE solver is associated with the following two steps:
(i) the computation of κn,m1,...,md in (55), and (ii) the cost of representing U in (54). In what follows, we show that the
computational complexity of mathematical operations in our PG spectral method is O(N 2+d), the dimension of the
space–time domain Ω , and if we assume N = M1 = · · · = Md .

Step (i): In order to compute the (1 + d)-dimensional array κ in (55), we need to first calculate the numerator

( e⃗ τq e⃗µ1
p1

· · · e⃗µd
pd
)F =

N
i=⌈2τ⌉

M1
s1=⌈2µ1⌉

· · ·

Md
sd=⌈2µd⌉

{e⃗ τq }i {e⃗µ1
p1

}s1 · · · {e⃗µd
pd

}sd {F}i,s1,...,sd , (64)

for which naive computations for all the entries lead to a computational complexity O(N 2(1+d)) that can be intractable
when d increases. Alternatively, by performing sum-factorization (see [19]), the operation counts can be reduced to
O(N 2+d), including the time-dimension in our calculations. Following this technique we re-write the inner-product
as

( e⃗ τq e⃗µ1
p1

· · · e⃗µd
pd
)F

=

N
i=⌈2τ⌉

{e⃗ τq }i

M1
s1=⌈2µ1⌉

{e⃗µ1
p1

}s1 · · ·

Md−1
sd−1=⌈2µd−1⌉

{e⃗µd−1
pd−1 }sd−1

Md
sd=⌈2µd⌉

{e⃗µd
pd

}sd {F}i,s1,...,sd , (65)

in which we separately obtain the inner-most sum as

F d
i,s1,...,sd−1,pd

=

Md
sd=⌈2µd⌉

{e⃗µd
pd

}sd {F}i,s1,...,sd , (66)

and similarly we write the second inner-most sum as

F d−1
i,s1,...,sd−2,pd−1,pd

=

Md−1
sd−1=⌈2µd−1⌉

{e⃗µd−1
pd−1 }sd−1 F d

i,s1,...,sd−1,pd
. (67)

Finally, we recursively obtain

F 1
i,p1,...,pd

=

M1
s1=⌈2µ1⌉

{e⃗µ1
p1

}s1 F 2
i,p1,p2,...,pd

. (68)

We note that the operation count in computing the entries of F j
i,s1,...,s j−1,p j ,...,pd

in each recursion is O(N 2+d). Now,
by substituting (68) back into (65), we obtain the whole inner-product as

( e⃗ τq e⃗µ1
p1

· · · e⃗µd
pd
)F =

N
i=⌈2τ⌉

{e⃗ τq }i F 1
i,p1,...,pd

, (69)

which is again of complexity O(N 2+d). We observe that the total computational complexity of evaluating the inner
product is O(N 2+d). Moreover, the operation count for computing the denumerator in (55) and for each entry of
κn,m1,...,md is O(N ). This is true since the stiffness matrix is either diagonal or tridiagonal due to the choice of our
poly-fractonomial bases. Hence, the total complexity for computing the denumerator is again O(N 2+d). We recall
that we have already included the time-dimension into account, i.e., the space–time domain Ω ⊂ R1+d . Hence, κ in
(55) is obtained with cost O(N 2+d).
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Step (ii): In the computation of (54), we observe that sum-factorization technique helps to reduce the complexity to
O(N 2+d).

4. Special FPDEs and numerical tests

In Section 3, we introduced general (1 + d)-dimensional linear FPDEs, for which we developed a general
Petrov–Galerkin spectral method in addition to the general fast solver. Here, we reduce this general framework to
the special well-known (i) hyperbolic FPDEs such as the fractional advection equation, (ii) parabolic FPDEs such as
the fractional sub-diffusion problems, and (iii) elliptic FPDEs such as the fractional Helmholtz/Poisson equations. In
the following numerical examples, we carry out the spatial/temporal p-refinement test via fixing correspondingly the
temporal/spatial expansion order fixed at 15.

4.1. Hyperbolic FPDEs

We consider the following hyperbolic FPDE

0 D2τ
t u(t, x)+ cx [−1 D2µ

x u(t, x) ] = f (t, x), (t, x) ∈ [0, T ] × [−1, 1], (70)

subject to u(x, 0) = 0 and u(−1, t) = 0 when τ, µ ∈ (0, 1/2]. In this case, the FPDE (70) appears as Time- and
Space-Fractional Advection (TSFA) equation, where we set cx = 1. We then seek the solution to (70) in terms of a
linear combination of elements in UN , now consisting of only two dimensions, i.e., time t and space x , of the form

uN (t, x) =

N
n=⌈2τ⌉

M
m=⌈2µ⌉

ûn,m


ψ τ

n ◦ η

(t)


φ µm ◦ ξ


(x). (71)

Next, we obtain the corresponding linear system of the Lyapunov equation after carrying out the Kronecker product
as

Sτ U Mµ + Mτ U Sµ = F, (72)

where we represent the unknown coefficient matrix U in terms of the spatial and temporal eigenvectors as

U =

N
q=⌈2τ⌉

M
p=⌈2µ⌉

κq,p e⃗ τq e⃗µ
T

p , (73)

for which κq,p is followed by (59) setting γ = 0 as

κq,p =
e⃗ τ

T

q F e⃗µp

( e⃗ τ T
q Sτ e⃗ τq ) · (e⃗µ

T

p Sµ e⃗µp ) · (c1 λτq + λ
µ
p)
. (74)

In Fig. 1, we examine the TSFA problem (70) and study the p-refinement in both the temporal (left) and the
spatial (right) dimensions. To demonstrate the spectral convergence of the PG spectral method, we plot the log–log
L2-error versus temporal and spatial expansion orders N ,M. In the temporal p-refinement τ = 1/20 and 9/20 while
µ = 1/4; also in the spatial p-refinement, the spatial orders µ = 1/20 and 9/20 while τ = 1/4. In this test, we set
the simulation time to T = 1, while the exact solution is uext (x, t) = t6+2/7 (1 + x)6+3/4.

4.2. Parabolic FPDEs

First, we consider the following parabolic Time- and Space-Fractional Diffusion (TSFD) equation

0 D2τ
t u(x, t) = K −1 D2µ

x u(x, t)+ f (x, t), (x, t) ∈ [0, T ] × [−1, 1], (75)

u(x, 0) = 0,

u(±1, t) = 0,
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Fig. 1. TSFA, temporal/spatial p-refinement: log–log L2-error versus temporal and spatial expansion orders N ,M. In the temporal p-refinement
τ = 1/20 and 9/20 while µ = 1/4, also in the spatial p-refinement, the spatial orders µ = 1/20 and 9/20 while τ = 1/4. Here, the exact solution
is uext (x, t) = t6+2/7 (1 + x)6+3/4.

Fig. 2. TSFD, spatial p-refinement: log–log L2-error versus spatial expansion orders M . Here, the spatial orders µ = 11/20 and 19/20 while
τ = 1/4, and the exact solution is uext (x, t) = t6+2/7

[ (1 + x)6+3/4
− 238/35 (1 + x)5+1/2

].

where τ ∈ (0, 1/2], µ ∈ (1/2, 1), K > 0, which is a well-known model for anomalous sub-diffusion process. In
this case, we seek the solution also of the form (71), and obtain a similar linear system as in (72), and hence we
obtain

κq,p =
e⃗ τ

T

q F e⃗µp

( e⃗ τ T
q Sτ e⃗ τq ) · (e⃗µ

T

p Sµ e⃗ x
p ) · (λ

µ
p − K λτq)

(76)

for p = ⌈2τ⌉, . . . ,N and q = ⌈2µ⌉, . . . ,M. In Fig. 2, we solve the TSFD problem (75) and study the p-refinement
in the spacial dimension. We plot the log–log L2-error versus the spatial expansion order M. Similarly, in the spatial
p-refinement, the spatial orders µ = 11/20 and 19/20 while τ = 1/4. In both cases, the spectral convergence of the
solution is achieved. Since, the exact solution is fixed in each case, the convergence rate corresponding to µ = 11/20
appears to be larger than the case where µ = 19/20 as expected. It is naturally due to the higher regularity requirement
in the weak form corresponding to the second test-case. In the temporal p-refinement similar results were observed as
in Fig. 1 (left).

4.3. Elliptic FPDEs

We examine the well-known elliptic Helmholtz/Poisson equations, rendered fractional in two-dimensional (in
space) domains. We choose the spatial computational domain as Ω = [−1, 1] × [−1, 1], and consider the following
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Fig. 3. Space-fractional Helmholtz problem with γ = 1, spatial p-refinement in x-dimension: log–log L2-error versus spatial expansion orders
Mx1 . Here, the spatial orders are µ1 = 11/20 and 19/20 while µ2 = 15/20, is kept constant. The exact solution is uext (x1, x2) =

[ (1 + x1)
6+3/4

− 25/4 (1 + x1)
5+1/2

][ (1 + x2)
6+4/9

− 273/63 (1 + x2)
5+2/7

]. A similar convergence curve is achieved in the p-refinement
performed in the y-dimension, also for the case of γ = 0.

problem

−1 D2µ1
x1

u(x1, x2)+ −1 D2µ2
x2

u(x1, x2)+ γ u(x1, x2) = f (x1, x2), in Ω , (77)

u(x1, x2) = 0, on ∂Ω

where γ > 0, µ1, µ2 ∈ (1/2, 1), which reduces to the Space-Fractional Poisson equation when γ = 0. Here, we
present a general scheme in addition to a linear fast solver for both problems.

We then seek the solution to (77) in terms of a linear combination of elements in UN in absence of the time-basis,
consisting of only two dimensions of the form

uN (x1, x2) =

M1
m1=2

M2
m2=2

ûm1,m2


φ µ1

m1
◦ ξ1


(x1)


φ µ2

m2
◦ ξ2


(x2), (78)

for which we represent the unknown coefficient matrix U in terms of the spatial eigenvectors as

U =

M1
p1=2

M2
p2=2

κp1,p2 e⃗µ1
p1

e⃗µ2
T

p2
, (79)

where

κp1,p2 =
e⃗µ1

T

p1 G e⃗µ2
p2

(e⃗µ1
T

p1 Sµ1 e⃗µ1
p1 ) · ( e⃗µ2

T

p2 Sµ2 e⃗µ2
p2 ) · ( λ

µ1
p1 + λ

µ2
p2 + γ λ

µ1
p1 λ

x2
p2 )

. (80)

In Fig. 3, we solve the fractional Helmholtz problem (77) and study the p-refinement in the spacial x1-dimension.
To demonstrate the spectral convergence of the fast FPDE solver, we plot the log–log L2-error versus the spatial ex-
pansion order Mx1 . The spatial ordersµ1 = 11/20 and 19/20 whileµ2 = 15/20. Similar to the spatial p-convergence
in Fig. 2, the convergence rate corresponding to µ1 = 11/20 appears to be larger than the case where µ2 = 19/20.
We observe a similar p-refinement in the x2-dimension as well.

4.4. Higher-dimensional FPDEs

Next, we employ our PG method and the fast solver in even higher dimensional problems to exhibit the generality
and efficiency of the scheme. In Table 1, the convergence results and CPU time of the unified PG spectral method
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Table 1
Convergence study and CPU time of the unified PG spectral method employed in the time- and

space-fractional advection equation (TSFA) 0 D2τ
t u +

d
j=1 [−1 D

2µ j
x j u] = f , where 2τ = 2µ j =

1/2, j = 1, 2, . . . , d , subject to homogeneous Dirichlet boundary conditions in four-dimensional
(4-D), six-dimensional (6-D), and ten-dimensional (10-D) space–time hypercube domains, where
D = 1+d . The error is measured by the essential norm ∥ϵ∥L∞ = ∥u−uext

∥L∞/∥uext
∥L∞ , which

is normalized by the essential norm of the exact solution uext (t, x⃗) = [t
d

j=1(1 + x j )]
2+2/5,

where t ∈ [0, 1] and x ∈ [−1, 1]
d . The CPU time (seconds) is obtained on a Intel (Xeon X5550)

2.67 GHz processor. In each step, we uniformly increase the bases order by one in all dimensions.

N = M1 = · · · = Md ∥ϵ∥L∞ CPU Time (s)

4-D TSFA
2 0.576869 0.006333
3 0.034706 0.015997
4 0.003990 0.041994
5 0.0009071 0.105984

6-D TSFA
2 0.741056 0.014748
3 0.055171 0.134313
4 0.006578 0.821208
5 0.001525 3.546791

10-D TSFA
2 0.903357 0.288956
3 0.095305 18.45320
4 0.0119229 370.1 (≈6 min)
5 0.0028102 3332.4 (≈55 min)

in higher-dimensional problems are examined. Particularly, we employ this scheme to solve the time- and space-
fractional advection equation (TSFA)

0 D2τ
t u + −1 D2µ1

x1
u + −1 D2µ2

x2
u + · · · + −1 D2µd

xd
u = f,

where 2τ = 2µ j = 1/2, subject to homogeneous Dirichlet boundary conditions in a four-dimensional (4-D), six-
dimensional (6-D), and ten-dimensional (10-D) space–time hypercube domains. The error is measured by the essential
norm ∥ϵ∥L∞ = ∥u − uext

∥L∞/∥uext
∥L∞ , which is stronger than the L2-norm and is normalized by the essential norm

of the exact solution uext (t, x⃗) = [t
d

j=1(1 + x j )]
2+2/5 for the sake of consistency. The CPU time (seconds) is

measured on a single core Intel (Xeon X5550) 2.67 GHz processor. In each step of the p-refinement, we uniformly
increase the bases order by one in all dimensions. All the computations are performed in Mathematica 8. These
simulations highlight that the unified PG spectral method is efficient even for a 10-D problem run on a PC in less than
an hour!

4.5. Time-integration when 2τ = 1

We recall that our unified PG spectral method works equally well when the temporal time-derivative order 2τ = 1.
In general, a first-order in time PDE/FPDE reads

∂u

∂t
= F(u; t, x1, . . . , xd), (81)

where the operator F(u; t, x1, . . . , xd) is given as

F(u; t, x1, . . . , xd) = f (t, x1, . . . , xd)−

d
j=1

c j [ a j D2µ j
x j u ] + γ u,

in view of (8). Here, we regard the PG method as an alternative scheme for spectrally accurate time-integration
for a general F(u; t, x1, . . . , xd), rather than utilizing existing algebraically accurate methods, including multi-step
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Table 2

Time-Integration when 2τ = 1: ∂u/∂t +
3

j=1 [−1 D
2µ j
x j u] = f in Ω ⊂ R1+3, where t ∈ [0, 1]

and x j ∈ [−1, 1], j = 1, 2, 3. Here, we set µ j = 1/2 to fully recover the standard time-dependent
advection equation in three-dimensional spatial domain. However, in general µ j ∈ (0, 1). The error
is measured by the essential norm ∥ϵ∥L∞ = ∥u − uext

∥L∞/∥uext
∥L∞ , which is normalized by

the essential norm of the exact solution is uext (t, x⃗) = [t
3

j=1(1 + x j )]
6+2/5. The CPU time

(seconds) is obtained on a Intel (Xeon X5550) 2.67 GHz processor. In each step, we uniformly
increase the bases order by one in all dimensions.

N = M1 = M2 = M3 ∥ϵ∥L∞ CPU Time (s)

Integer-order time-integration
3 0.6225970 0.051992
5 0.0336570 0.352947
7 1.34 × 10−5 1.9737
9 1.06 × 10−7 3.7894

11 3.52 × 10−9 9.7365
13 2.54 × 10−10 21.472

methods such as the Adams family and stiffly-stable schemes, also multi-stage approaches such as the Runge–Kutta
method.

The idea of employing the PG spectral method when 2τ = 1 is simply based on the useful property (5) by which a
full first-order derivative d/dt can be decomposed into a product of the sequential ( 1

2 )th order derivatives 0 D1/2
t 0 D1/2

t ,
a result that is not valid in the standard (integer-order) calculus. Hence, by virtue of the fractional integration-by-parts,
such a decomposition artificially induces non-locality to the temporal term in the corresponding weak form. Therefore,
it provides an appropriate framework for global (spectral) treatment of the temporal term using our unified PG spectral
method. To this end, we carry out the time-integration when 2τ = 1 in the following FPDE

∂u/∂t +

3
j=1

−1 D2µ j
x j u = f

in Ω ⊂ R1+3, where in general µ j ∈ (0, 1). Here, we set µ j = 1/2 for simplicity, which recovers the standard
time-dependent advection equation in three-dimensional spatial domain.

In Table 2, we again measure the error by the normalized essential norm, where the exact solution is uext (t, x⃗) =

[t
3

j=1(1 + x j )]
6+2/5, where t ∈ [0, 1] and x j ∈ [−1, 1], j = 1, 2, 3. Similar to the previous case, the CPU time

(seconds) is obtained on a single-core Intel (Xeon X5550) 2.67 GHz processor, where we uniformly increase the bases
order by one in all dimensions in each step. In these simulations, we globally treat the time-axis in addition to other
spatial dimensions. The CPU time and the spectral convergence strongly highlight the efficiency of our approach,
where a 4-D problem (i.e., 1-D in time and 3-D in space) can be highly accurately solved in a fraction of minute!

5. Summary and discussion

We developed a unified and spectrally accurate Petrov–Galerkin (PG) spectral method for a weak formulation of

the general linear FPDE of the form 0 D2τ
t u+

d
j=1 cx j [ a j D2µ j

x j u ]+γ u = f, τ, µ j ∈ (0, 1), in a (1+d)-dimensional
space–time domain subject to Dirichlet initial and boundary conditions. We demonstrated that this scheme performs
well for the whole family of linear hyperbolic-, parabolic- and elli ptic-like equations with the same ease. We
developed our PG method based on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), recently
introduced in [42]. In the present method, all the aforementioned matrices are constructed exactly and efficiently. We
additionally performed the stability analysis (in 1-D) and the corresponding convergence study of the scheme (in multi-
D). Moreover, we formulated a new general fast linear solver based on the eigenpairs of the corresponding temporal
and spatial mass matrices with respect to the stiffness matrices, which significantly reduces the computational cost in
higher-dimensional problems e.g., (1 + 3), (1 + 5) and (1 + 9)-dimensional FPDEs.

In the p-refinement tests performed in the aforementioned problems, we kept the fractional order to be the middle-
value (either 1/2 or 3/2) in the fixed direction, and we examined some limit fractional orders in the other direction.
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However, we numerically observe that if the fixed fractional order is taken to be closer to the limit values (i.e., either
0 or 1), the mode of spectral convergence remains unchanged but we achieve a different rate of convergence to be
verified in our future theoretical analysis.

Alternating Direction Implicit (ADI) methods (see e.g., [49]) are another way of solving space-fractional FPDEs
in higher dimensional problems. In this approach, a one-dimensional space-fractional FPDE solver with a low-
order (finite-difference) time integrator can be employed to solve 2-D or 3-D problems. However, we note that ADI
naturally cannot treat time- and space-fractional FPDEs. Moreover, the temporal rate of convergence in this approach
is algebraic in contrast to the high accuracy in the spatial discretizations. Hence, the computational complexity of this
approach becomes exceedingly large in higher-dimensional FPDEs.

In practice, the enforcement of periodic boundary conditions to FPDEs is not possible since it is not clear how
to define history (memory) for a periodic function. Moreover, we note that Riemann–Liouville fractional derivatives
in time/space only allow us to impose homogeneous initial/boundary conditions to the corresponding FPDEs to be
well-posed. However, we note that our PG spectral method is also applicable in such problems in the following
manner. When inhomogeneous Dirichlet conditions are enforced, the corresponding derivatives are usually replaced
by Caputo fractional derivatives. We illustrate such a treatment in the following model problem posed subject to an
inhomogeneous initial condition:

C
0 D2τ

t u = −1 D2µ
x u + f (x, t), (82)

u(x, 0) = g(x),

u(±1, t) = 0,

in which 2µ ∈ (1, 2), g(x) ∈ C0([−1, 1]), and C
0 D2τ

t (·) denotes the Caputo fractional derivative of order 2τ ∈ (0, 1),
which is defined via interchanging the order of differentiation and integration in (3), see e.g., [2]. Now, we define
U (x, t) = u(x, t) − g(x), and taking into account that C

0 D2τ
t g(x) ≡ 0. Then, by substituting u = U + g into (82)

and noting that C
0 D2τ

t U = 0 D2τ
t U due to the homogeneity of U (x, 0), we obtain the transformed problem as

0 D2τ
t U = −1 D2µ

x U + f (x, t), (83)

U (x, 0) = 0,

U (±1, t) = 0,

in which f (x, t) = f (x, t)+ −1 D2µ
x g(x). Therefore, we can treat such inhomogeneous conditions by our unified PG

spectral method through homogenizing the problem and modifying the forcing term on the right-hand side. The same
approach applies to inhomogeneous boundary conditions.

Although the proposed unified PG method enjoys the high accuracy of the discretization in time and space in
addition to its efficiency in solving higher-dimensional problems, treating FPDEs in complex geometries still remains
a great challenge to be addressed in our future works. Moreover, special care should be taken when the FPDE of the
interest is associated with variable coefficients and/or non-linearity. In [44], we have employed the fractional bases
to construct a new class of fractional Lagrange interpolants i.e., fractional nodal rather than modal basis functions
presented here, to develop efficient and spectrally accurate collocation methods for a variety of FODEs and FPDEs
including non-linear space-fractional Burgers’ equation.
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Appendix

Theorem A.1. The temporal stiffness matrix Sτ corresponding to the time-fractional order τ ∈ (0, 1) is a diagonal
N × N matrix, whose entries are explicitly given as

{Sτ }n,n = σn σn

Γ (n + τ)

Γ (n)

2 2
T

2τ−1 2
2n − 1

, n = 1, 2, . . . , N .



1566 M. Zayernouri et al. / Comput. Methods Appl. Mech. Engrg. 283 (2015) 1545–1569

Proof. By the PG projection, the (r, n)th entry of the stiffness matrix, r, n = 1, 2, . . . ,N , is defined as

{Sτ }r,n =

 T

0
t Dτ

T


Ψ τ

r ◦ η

(t)0 Dτ

t


ψτn ◦ η


(t) dt. (84)

Following [42], we obtain the Riemann–Liouville left-sided time-fractional derivative of the temporal basis as

0 Dτ
t


ψτn ◦ η


(t) = σn

 2
T

τ Γ (n + τ)

Γ (n)
Pn−1( 2t/T − 1 ), (85)

where Pn−1( 2t/T − 1 ) represents the (n − 1)th order Legendre polynomial in t ∈ [0, T ]. Also, we obtain the right-
sided time-fractional derivative of the temporal basis again following [42] as

t Dτ
T


Ψ τ

r ◦ η

(t) = σr

 2
T

τ Γ (r + τ)

Γ (r)
Pr−1( 2t/T − 1 ). (86)

Now, by plugging (85) and (86) into (84), we obtain

{Sτ }r,n = σr σn
Γ (r + τ)

Γ (r)
Γ (n + τ)

Γ (n)

 2
T

2τ
 T

0
Pr−1(x(t)) Pn−1(x(t)) dt

= σr σn
Γ (r + τ)

Γ (r)
Γ (n + τ)

Γ (n)

 2
T

2τ−1
 1

−1
Pr−1(x) Pn−1(x) dx

= σr σn
Γ (r + τ)

Γ (r)
Γ (n + τ)

Γ (n)

 2
T

2τ−1 2
2n − 1

δrn, (87)

by the orthogonality of the Legendre polynomials, where δrn is the Kronecker delta functions. �

Theorem A.2. (I) If µ j ∈ (0, 1/2], the spatial stiffness matrix Sµ j is a diagonal M j × M j matrix, whose entries
are explicitly given as

{Sµ j }k,k = σk σk

Γ (k + µ j )

Γ (k)

2  2
L j

2µ j −1 2
2k − 1

, k = 1, 2, . . . ,M j .

(II) If µ j ∈ (1/2, 1), Sµ j is a symmetric tridiagonal (M j − 1)× (M j − 1) with entries, explicitly given as

{Sµ j }k,m = bk am

Γ (k + µ j )

Γ (k)

2  2
L j

2µ j −1 2
2k − 1


δk,m − ϵ

µ j
m δk,m−1


+ ϵ

µ j
k bk am

Γ (k − 1 + µ j )

Γ (k − 1)

2  2
L j

2µ j −1 2
2k − 3


δk−1,m − ϵ

µ j
m δk−1,m−1


,

k,m = 2, 3, . . . ,M j and L j = b j − a j .

Proof. The first part, when µ j ∈ (0, 1/2] is similar to the proof in Theorem A.1, however, carried out on the interval

[a j , b j ] rather than [0, T ]. Here, the µ j th order left-sided Riemann–Liouville fractional derivative of

φ
µ j
m j ◦ ξ j


(x j )

is given following [42] as

a j D µ j
x j


φ
µ j
m ◦ ξ j


(x j ) =

B
µ j
m Pm−1


ξ(x j )


, µ j ∈ (0, 1/2],

B
µ j
m Pm−1


ξ(x j )


− C

µ j
m Pm−2


ξ(x j )


, µ j ∈ (1/2, 1),

(88)

for m = ⌈2µ j⌉, . . . ,M j in the j th spatial dimension, where the coefficient B
µ j
m j = σm (2/L j )

2µ j Γ (m + µ j )/Γ (m)
and C

µ j
m = σm (2/L j )

2µ j ϵ
µ j
m Γ (m − 1 + µ j )/Γ (m − 1); in addition, the µ j th order left-sided Riemann–Liouville

fractional derivative of

Φ
µ j
m ◦ ξ j


(x j ) is obtained as

x j D µ j
b j


Φ
µ j
m ◦ ξ j


(x j ) =

Bµ j
k Pk−1


ξ(x j )


, µ j ∈ (0, 1/2],

Bµ j
k Pk−1


ξ(x j )


− Cµ j

k Pk−2


ξ(x j )


, µ j ∈ (1/2, 1),

(89)
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for k = ⌈2µ j⌉, . . . ,M j in the j th spatial dimension, in which we set the coefficient Bµ j
k = σk (2/L j )

2µ j Γ (k +

µ j )/Γ (k) and Cµ j
k = σk (2/L j )

2µ j ϵ
µ j
k Γ (k − 1 + µ j )/Γ (k − 1).

For the second part, when µ j ∈ (1/2, 1), the (k,m)th entry of Sµ j is

{Sµ j }k,m =

 b j

a j

x j Dµ j
b j


Φ
µ j
k ◦ ξ j


(x j )a j Dµ j

x j


φ
µ j
m ◦ ξ j


(x j )dx j .

Next, by virtue of (88) and (89), also by an affine mapping from [a j , b j ] to the standard interval [−1, 1], we obtain

{Sµ j }k,m =


L j

2

  1

−1


B
µ j
m Pm−1( ξ j )− C

µ j
m Pm−2( ξ j )


Bµ j

k Pk−1( ξ j )− Cµ j
k Pk−2( ξ j )


dξ j .

Hence, by the orthogonality of the Legendre polynomials we obtain

{Sµ j }k,m =


L j

2

 
B
µ j
m Bµ j

k
2

2k − 1
δk,m − C

µ j
m Bµ j

k
2

2k − 1
δk,m−1

+ B
µ j
m Cµ j

k
2

2k − 3
δk−1,m − C

µ j
m Cµ j

k
2

2k − 3
δk−1,m−1


,

which completes the proof, while the symmetry of the stiffness matrix can be easily checked. �

Theorem A.3. The temporal and the spatial mass matrices Mτ as well as Mµ j are symmetric. Moreover, their
entries can be computed exactly by employing a Gauss–Lobatto–Jacobi (GLJ) rule with respect to the weight function
(1 − ξ)α(1 + ξ)α, ξ ∈ [−1, 1], where α = τ/2 in the temporal and α = µ j for the spatial case.

Proof. The entries of Mτ in our PG spectral method are defined as

{Mτ }r,n =

 T

0


Ψ τ

r ◦ η

(t)


ψµt

m ◦ η

(t)dt,

which be computed exactly as

{Mτ }r,n = σr σn


2
T

τ  T

0
tτ (T − t)τ Pτ,−τr−1 ( η(t) ) P−τ, τ

n−1 ( η(t) ) dt

= σr σn
T

2

 1

−1
(1 − η)τ (1 + η)τ Pτ,−τr−1 (η) P−τ, τ

n−1 (η)dη

= σr σn
T

2

Q
q=1

wq Pτ,−τr−1 (ηq)P
−τ, τ
n−1 (ηq), (90)

in which Q ≥ N + 2 represents the minimum number of GLJ quadrature points {ηq}
Q
q=1, associated with the weigh

function (1 − η)τ (1 + η)τ , for exact quadrature, and {wq}
Q
q=1 are the corresponding quadrature weights. From the

exact discrete rule, recalling the definition of σn and σr , employing the property of the Jacobi polynomials where
Pα,βn (−x) = (−1)n Pβ,αn (x), moreover, noting that {ηq}

Q
q=1 and {wq}

Q
q=1 are symmetric with respect to the reference

point, it is easy to show that {Mτ }r,n = {Mτ }n,r .
The spatial mass matrix Mµ j , when µ j ∈ (0, 1/2], is also M j × M j , whose entries are computed similarly as

{Mµ j }k,m = σk σm
L j

2

Q
q=1

wq P
µ j ,−µ j
k−1 (ξq)P

−µ j , µ j
m−1 (ξq), (91)

in which Q ≥ M j + 2 represents the minimum number of GLJ quadrature points {ξq}
Q
q=1, associated with the weigh

function (1 − ξ)µ j (1 + ξ)µ j , for exact quadrature. We can also show that Mµ j is symmetric and that the GJL rule is
exact when Q ≥ M j + 2.



1568 M. Zayernouri et al. / Comput. Methods Appl. Mech. Engrg. 283 (2015) 1545–1569

Finally, when µ j ∈ (1/2, 1), the spatial mass matrix Mµ j , becomes (M j − 1) × (M j − 1), whose entries are
computed exactly as

{Mµ j }k,m =

 b j

a j


Φ
µ j /2
k ◦ ξ


(x j )


φ
µ j /2
m ◦ ξ


(x j )dx j

= σk j σm j

 1

−1

(2)P µ j
k j
( ξ(x j ) )

(1)P µx
m ( ξ(x j ) ) dx j

− ϵµx
m

 1

−1

(2)P µ j
k j
( ξ(x j ) )

(1)P µ j
m j −1( ξ(x j ) ) dx j

+ ϵ
µx
k

 1

−1

(2)P µ j
k j −1( ξ(x j ) )

(1)P µ j
m j ( ξ(x j ) ) dx j

− ϵ
µ j
k j
ϵ
µ j
m j

 1

−1

(2)P µ j
k j −1( ξ(x j ) )

(1)P µ j
m j −1( ξ(x j ) )dx j


,

where we note that all the above integrations share the same weight function by construction. Hence, we obtain

{Mµ j }k,m = σk j σm j

L j

2

 1

−1
(1 − ξ)µ j (1 + ξ)µ j


P
µ j ,−µ j
k−1 (ξ) P

−µ j , µ j
m−1 (ξ)

− ϵµx
m P

µ j ,−µ j
k−1 (ξ) P

−µ j , µ j
m−2 (ξ)+ ϵ

µx
k P

µ j ,−µ j
k−2 (ξ) P

−µ j , µ j
m−1 (ξ)

− ϵ
µ j
k j
ϵ
µ j
m j P

µ j ,−µ j
k−2 (ξ) P

−µ j , µ j
m−2 (ξ)


dx j

which leads to the following exact GLJ rule

{Mµ j }k,m = σk jσm j

L j

2

Q
q=1

wq


P
µ j ,−µ j
k−1 (ξq) P

−µ j , µ j
m−1 (ξq)− ϵµx

m P
µ j ,−µ j
k−1 (ξq) P

−µ j , µ j
m−2 (ξq)

+ ϵ
µx
k P

µ j ,−µ j
k−2 (ξq) P

−µ j , µ j
m−1 (ξq)− ϵ

µ j
k j
ϵ
µ j
m j P

µ j ,−µ j
k−2 (ξq) P

−µ j , µ j
m−2 (ξq)


, (92)

which is also exact when Q ≥ M j + 2, and the same argument on the symmetry of the matrix applies here. �
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