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Current discretizations of fractional differential equations lead to numerical solutions
of low order of accuracy. Here, we present different methods for fractional ODEs that
lead to exponentially fast decay of the error. First, we develop a Petrov–Galerkin (PG)
spectral method for Fractional Initial-Value Problems (FIVPs) of the form 0Dν

t u(t) = f (t)
and Fractional Final-Value Problems (FFVPs) tDν

T u(t) = g(t), where ν ∈ (0,1), subject
to Dirichlet initial/final conditions. These schemes are developed based on a new
spectral theory for fractional Sturm–Liouville problems (FSLPs), which has been recently
developed in [1]. Specifically, we obtain solutions to FIVPs and FFVPs in terms of the
new fractional (non-polynomial) basis functions, called Jacobi polyfractonomials, which
are the eigenfunctions of the FSLP of first kind (FSLP-I). Correspondingly, we employ
another space of test functions as the span of polyfractonomial eigenfunctions of the
FSLP of second kind (FSLP-II). Subsequently, we develop a Discontinuous Spectral Method
(DSM) of Petrov–Galerkin sense for the aforementioned FIVPs and FFVPs, where the basis
functions do not satisfy the initial/final conditions. Finally, we extend the DSM scheme
to a Discontinuous Spectral Element Method (DSEM) for efficient longer time-integration
and adaptive refinement. In these discontinuous schemes, we employ the asymptotic
eigensolutions to FSLP-I & -II, which are of Jacobi polynomial forms, as basis and test
functions. Our numerical tests confirm the exponential/algebraic convergence, respectively,
in p- and h-refinements, for various test cases with integer- and fractional-order solutions.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Fractional differential operators of form Dν
t ≡ dν/dtν , where ν ∈ R, appear in many systems in science and engineering

such as electrochemical processes [2], porous or fractured media [3], viscoelastic materials [4,5], bioengineering applica-
tions [6]. For instance, it has been found that the transport dynamics in complex and/or disordered systems is governed
by non-exponential relaxation patterns and anomalous diffusion [7–9]. For such non-Markovian processes, a time-fractional
diffusion equation, in which the time-derivative emerges as Dν

t u(t), governs the evolution for the Probability Density Func-
tion (PDF). Another interesting example occurring in viscous fluid flows is the cumulative memory effect of the wall-friction
through the boundary layer, which gives rise to fractional derivatives in equations of fluid motion [10–12].

Over the last two decades, the notion of fractional derivative has been extended to many ordinary fractional differential
equations (FODEs) such as fractional Cauchy equation, fractional Gauss equations [13,14] and fractional Sturm–Liouville
equation [15], in addition to a variety of fractional partial differential equations (FPDEs) such as fractional Fokker–Planck
equation [16], fractional Burgers’ equation [17], and fractional advection–diffusion equation [18]. In these problems, the
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corresponding differential operators can be defined based on different but closely related ways. The extension of existing
numerical methods for integer-order differential equations ([19–23] and references therein) to their corresponding fractional
differential equations (FDEs) is not trivial. While the approximation of these models is computationally demanding due to
their long-range history-dependence, the development of numerical schemes in this area does not have a long history, and
has undergone a fast evolution. Depending on how (temporal Dν

t or spatial Dν
x ) fractional derivatives are discretized and

according to their order of accuracy, different classes of numerical methods have been developed in the literature.

1.1. Finite difference methods (FDM)

To our knowledge, Lubich [24,25] is the pioneer of the idea of discretized fractional calculus within the spirit of finite dif-
ference method (FDM). Later, Sanz-Serna [26] adopted the idea of Lubich and presented a temporal semi-discrete algorithm
for partial integro-differential equations, which was first order accurate. Sugimoto [17] also employed an FDM for approx-
imating the fractional derivative emerging in Burgers’ equation. Later on, the paper of Metzler and Klafter [8] opened a
new horizon toward FPDEs by introducing a fractional dynamics approach to time-fractional diffusion. Subsequently, Goren-
flo et al. [27] adopted a finite difference scheme by which they could generate discrete models of random walk in such
anomalous diffusion. Diethelm et al. proposed a predictor–corrector scheme in addition to a fractional Adams method [13,
28]. After that, Langlands and Henry [29] considered the fractional diffusion equation, and analyzed the L1 scheme for the
time-fractional derivative. Sun and Wu [30] also constructed a difference scheme with L∞ approximation of time-fractional
derivative. In order to develop and analyze higher-order FDM schemes Lin and Xu [31] analyzed an FDM for the discretiza-
tion of the time-fractional diffusion equation with order (2−α). Kumar and Agrawal [32] proposed a block-by-block method
for a class of fractional initial-value problems which later Huang et al. [33] proved that it enjoys a rate of convergence of at
least 3. Recently, Cao and Xu [34] rigorously developed the scheme to (3 +α)-th order, α ∈ (0,1). To the best of knowledge,
this is the highest-order and the most recent FDM scheme for discretization of fractional derivatives.

Although implementation of such FDM approaches is relatively easy, their biggest issue is that the accuracy is limited.
Moreover, these approaches suffer from heavy cost of computing the long-ranged memory in discretization of the fractional
derivatives at each point. In fact, FDM is inherently a local approach whereas fractional derivatives are essentially global
(nonlocal) differential operators. This property would suggest that global schemes such as Spectral Methods (SMs) are more
appropriate tools for discretizing fractional differential equations.

1.2. Spectral methods (SMs)

Unlike the attention put on developing FDM schemes, very little effort has been put on developing rigorous high-order
spectral methods. A Fourier SM was utilized by Sugimoto [17] in a fractional Burgers’ equation, linearized by Taylor expan-
sion, and a spline-based collocation method was employed by Blank [35] for numerical treatment of a class of FODEs. This
approach was later employed by Rawashdeh [36] for solving fractional integro-differential equations. In these works, the
expected high convergence rate was not observed and no error/stability analysis was carried out. Lin and Xu [31] developed
a hybrid scheme for time-fractional diffusion problem, treating the time-fractional derivative using FDM and discretizing the
integer-order spatial derivative by a Legendre SM. In such mixed approaches, the error associated with the low-order tem-
poral accuracy can easily dominate the global error, for instance when the time-dependent portion of the exact solution is
discontinuous, or if is a monomial of form tn , where n is sufficiently large, or is a smooth function e.g., sin(nπt). The idea of
collocation was later adopted by Khader [37], where he proposed a Chebyshev collocation method for the discretization of
the space-fractional diffusion equation. More recently, Khader and Hendy [38] developed a Legendre pseudospectral method
for fractional-order delay differential equations.

The collocation and pseudospectral schemes for fractional equations are relatively easy to implement but their perfor-
mance has not been tested thoroughly. For instance, when the exact solution is of polynomial form it is claimed that
a fast convergence is observed. However, for other test cases no such exponential-like convergence is achieved. The first
fundamental work on spectral methods for FPDEs was done by Li and Xu [39,40] who developed a space–time SM for
time-fractional diffusion equation. To the best of our knowledge, they were the first who achieved exponential convergence
in their numerical tests in agreement with their error analysis. However, in this scheme, the corresponding stiffness and
mass matrices are dense and gradually become ill-conditioned when the fractional order α tends to small values. Moreover,
this approach is not effective e.g., when the forcing term exhibits discontinuity in the time-domain. This, in turn, motivates
the use of domain decomposition and Finite Element Methods (FEM) and Spectral Element Methods (SEM) in the context of
fractional calculus.

1.3. Spectral/hp element methods

A theoretical framework for the least-square finite element approximation of a fractional-order differential equation was
developed by Fix and Roop [41], where optimal error estimates are proven for piecewise linear trial elements. The main
hurdle to overcome in FEM is the nonlocal nature of the fractional operator which leads to large dense matrices; even con-
struction of such matrices presents difficulties [42]. There are, however, a number of recent works already employed in this
area using FEM to obtain more efficient schemes. McLean and Mustapha [43] developed a piecewise-constant discontinuous
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Galerkin method for the time discretization of a sub-diffusion equation. Hanert [44] also considered the use of a Chebyshev
spectral element method for the numerical solution of the fractional-order transport. Recently, the idea of the least-square
FEM [41] was extended to the spectral element method by Carella [45]. Despite the spectral expansion, these schemes are
not properly formulated and fail to achieve exponential convergence.

In this paper, we develop exponentially accurate numerical schemes of Petrov–Galerkin type for the FODEs of form
0Dν

t u(t) = f (t) and tDν
T u(t) = f (t), introduced, respectively, as Fractional Initial-Value Problem (FIVP) and Fractional Final-

Value Problem (FFVP) subject to Dirichlet initial/final conditions. To this end, we first develop a Petrov–Galerkin (PG) spectral
method whose corresponding stiffness matrix is diagonal. Subsequently, we develop a Discontinuous Spectral Method (DSM)
of Petrov–Galerkin sense with exact quadrature rules for the aforementioned FIVPs and FFVPs. This scheme is also extended
to a discontinuous spectral element method (DSEM) for efficient longer time-integrations and adaptive refinement. These
schemes are developed based on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), which has been
recently developed in [1]. In order to test the performance of our schemes, p-refinement and h-refinement tests are per-
formed for a range of test cases, where the exact solution is a monomial tn , n ∈ N, fractonomial tn+μ , μ ∈ (0,1), (see [1]),
smooth functions of form t p sin(nπt), p ∈ N, fractional functions tn1+μ1 sin(nπtn2+μ2 ), n1,n2 ∈ N and μ1,μ2 ∈ (0,1), or any
combinations of these functions.

2. Notation and definitions

We first introduce the simplest fractional ordinary differential equation (FODE), which forms a building block for the
construction of other fractional differential operators. Here, we define the Fractional Initial-Value Problem (FIVP) of order
ν ∈ (0,1) as

0Dν
t u(t) = f (t), t ∈ (0, T ], (1)

u(0) = u0,

where 0Dν
t denotes the left-sided Riemann–Liouville fractional derivative of order ν ∈ (0,1) following [46], defined as

0Dν
t u(t) = 1

Γ (1 − ν)

d

dt

t∫
0

u(s)ds

(t − s)ν
, t > 0, (2)

where Γ represents the Euler gamma function.
Next, we define the corresponding Fractional Final-Value Problem (FFVP) of order ν ∈ (0,1), for which the final value of

the unknown solution is given as

tDν
T u(t) = g(t), t ∈ [0, T ),

u(T ) = uT , (3)

where tDν
T represents the right-sided Riemann–Liouville fractional derivative of order ν ∈ (0,1), defined as

tDν
T u(t) = 1

Γ (1 − ν)

(−d

dt

) T∫
t

u(s)ds

(s − t)ν
, t < T . (4)

We also define the fractional differential operators in (1) and (3) to be the Caputo fractional derivatives C
0Dν

t and C
t Dν

T ,
respectively. In fact, these fractional operators can be defined by (2) and (4), in which the order of the integration and first
derivative is reversed. However, the two definitions are linked by the following relationships

0Dν
t u(t) = u(0)

Γ (1 − ν)tν
+ C

0D
ν
t u(t), (5)

and

tDν
T u(t) = u(tT )

Γ (1 − ν)(T − t)ν
+ C

t Dν
T u(t). (6)

Hence, when u0 = 0 and uT = 0 in (1) and (3), these problems become identical to the corresponding problems with the
Caputo derivatives by virtue of (5) and (6).

3. Petrov–Galerkin (PG) spectral method

First, we develop a spectral method for the FIVP (1), subject to homogeneous Dirichlet initial conditions. Then, we
generalize the scheme for non-zero Dirichlet initial conditions.
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3.1. Basis functions

Our spectral scheme is based upon a new spectral theory for fractional Sturm–Liouville eigen-problems (FSLP), developed
in [1]. Accordingly, we seek the solution to the FIVPs in terms of the new fractional (non-polynomial) basis functions, called
Jacobi polyfractonomials, which are the eigenfunctions of the FSLP of first kind, explicitly obtained as

(1)Pα,β,μ
n (x) = (1 + x)−β+μ−1 Pα−μ+1,−β+μ−1

n−1 (x), x ∈ [−1,1], (7)

where Pα−μ+1,−β+μ−1
n−1 (x) are the standard Jacobi polynomials in which μ ∈ (0,1), −1 � α < 2 − μ, and −1 � β < μ − 1.

Particularly, (1)Pα,β,μ
n (x) represent the eigenfunctions of the singular FSLP of first kind (SFSLP-I) when α �= −1 and β �=

−1; otherwise (1)Pμ
n (x) ≡ (1)P−1,−1,μ

n (x) denote the eigenfunctions of the regular FSLP of first kind (RFSLP-I). Moreover,
it has been shown in [1] that both sets of regular {(1)Pμ

n (x)}N
n=1 and singular bases {(1)Pα,β,μ

n (x)}N
n=1 (for some N ∈ N)

have identical approximating properties when α = β . Hence, in this work and for simplicity, we employ the fractional
eigenfunctions for α = β = −1:

(1)Pμ
n (x) = (1 + x)μ P−μ,μ

n−1 (x), x ∈ [−1,1], (8)

as our basis functions. Now, let u0 = 0 and t ∈ [0, T ]. Then,

(1)P̃μ
n (t) =

(
2

T

)μ

tμ P−μ,μ
n−1

(
x(t)

)
(9)

represent the shifted basis functions of fractional order (n−1+μ) that is obtained through the affine mapping x = 2t/T −1,
transforming the standard interval [−1,1] to [0, T ]. From the properties of the eigensolutions in [1], the left-sided Riemann–
Liouville fractional derivative of (9) is given as

0Dμ
t

(
(1)P̃μ

n
(
x(t)

)) =
(

2

T

)μ

−1Dμ
x
(
(1)Pμ

n (x)
) =

(
2

T

)μ
Γ (n + μ)

Γ (n)
Pn−1

(
x(t)

)
, (10)

stating that the μ-th order fractional derivative of such fractional (non-polynomial) basis functions of order (n − 1 + μ)
is a standard Legendre polynomials of integer order (n − 1). Moreover, since u(0) = u0 = 0, the aforementioned Riemann–
Liouville fractional derivative is identical to the one of Caputo type by virtue of (5).

3.2. Test functions

In order to obtain the variational form in the Petrov–Galerkin spectral method, we test (1) against a different set of test
functions, which are in fact the eigenfunctions of the FSLP of second kind, explicitly obtained in [1] as

(2)Pα,β,μ
k (x) = (1 − x)−α+μ−1 P−α+μ−1,β−μ+1

k−1 (x), x ∈ [−1,1], (11)

which belong to another family of the Jacobi polyfractonomials, where this time −1 � α < 1 − μ, and −1 � β < 2μ − 1. By
the same argument made in Section 3.1, we employ the following fractional test functions

(2)Pμ
k (x) = (1 − x)μ Pμ,−μ

k−1 (x), x ∈ [−1,1], (12)

in our weak formulation. By carrying out the same affine mapping x = 2t/T − 1, we can obtain the shifted test functions

(2)P̃μ
k

(
x(t)

) =
(

2

T

)μ

(T − t)μ Pμ,−μ
k−1

(
x(t)

)
, (13)

corresponding to the interval [0, T ]. Now, following [1], the right-sided Riemann–Liouville fractional derivative of (13) is
obtained as

tDμ
T

(
(2)P̃μ

k (t)
) =

(
2

T

)μ

xDμ
+1

(
(2)Pμ

k (x)
) =

(
2

T

)μ
Γ (k + μ)

Γ (k)
Pk−1

(
x(t)

) = 0Dμ
t

(
(1)P̃μ

k (t)
)
, (14)

where the last equality holds by (10). The relations in (14) also hold for the Caputo fractional derivatives thanks to (6).
Having defined the basis and test functions, next we will present the Petrov–Galerkin spectral method by recalling the

following lemma.

Lemma 3.1. (See [39].) For all 0 < ξ < 1, if u ∈ H1([0, T ]) and w ∈ Hξ/2([0, T ]), then(
0Dξ

t u, w
)
[0,T ] = (

0Dξ/2
t u, tDξ/2

T w
)
[0,T ], (15)

where (·,·)[0,T ] denotes the standard inner product in the interval [0, T ].
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3.3. PG spectral method for the FIVP

In FIVP (1), we seek an approximate solution of the form

u(t) ≈ uN(t) =
N∑

n=1

an
(1)P̃μ

n (t), (16)

where an are the unknown expansion coefficients to be determined. By plugging (16) into (1), we obtain the residual R N(t)
as

R N(t) = 0Dν
t uN(t) − f (t)

to be L2-orthogonal to all elements in the set of test functions {(2)P̃μ
k (x(t)): k = 1,2, . . . , N} as

N∑
n=1

an

T∫
0

0Dν
t

(1)P̃μ
n (t) (2)P̃μ

k

(
x(t)

)
dt =

T∫
0

f (t) (2)P̃μ
k

(
x(t)

)
dt.

Now, we choose μ = ν/2, and by Lemma 3.1, we obtain

N∑
n=1

an

T∫
0

0Dμ
t

(1)P̃μ
n (t) tDμ

T
(2)P̃μ

k

(
x(t)

)
dt =

T∫
0

f (t) (2)P̃μ
k

(
x(t)

)
dt,

where by (10) and (14) we obtain

N∑
n=1

an

(
2

T

)2μ(
n + μ

n

)(
k + μ

k

) T∫
0

Pn−1
(
x(t)

)
Pk−1

(
x(t)

)
dt =

N∑
n=1

an

(
2

T

)2μ−1(n + μ

n

)2 2

2n − 1
δnk

=
T∫

0

f (t) (2)P̃μ
k

(
x(t)

)
dt,

which yields a diagonal stiffness matrix on the left-hand side, whose diagonal entries are given by γk = ( 2
T )2μ−1(

k+μ
k )2 2

2k−1 .
Consequently, we obtain the expansion coefficients as

ak = 1

γk

T∫
0

f (t) (2)P̃μ
k

(
x(t)

)
dt. (17)

For the case of non-homogeneous initial conditions when u(0) = u0 �= 0, we employ the method of lifting a known
solution, where we decompose the solution u(t) into two parts as

u(t) = uH(t) + uD, (18)

in which uH(t) corresponds to the homogeneous solution and uD ≡ u0 is the non-zero initial condition, given in (1). We
substitute (18) into (1) and take the fractional derivative on the known uD to the right-hand side to obtain

0Dν
t uH(t) = h(t), t ∈ (0, T ],

uH(0) = 0, (19)

where h(t) = f (t)− uD
Γ (1−ν)tν . We note that if we replace the fractional derivative in (19) by a Caputo one, the same scheme

can be used, where this time h(t) ≡ f (t), since the Caputo fractional derivative of the constant initial value u0(= uD) is
identically zero.

In Fig. 1, we present numerical results obtained using the PG spectral method to solve the fractional initial-value problem
0Dν

t u(t) = f (t), t ∈ [0,1], corresponding to ν = 1/10 and 9/10. Here we consider four different exact solutions: (i) mono-
mial uext(t) = t10, (ii) smooth function uext(t) = t6 sin(πt), (iii) fractional function uext(t) = t13/2 sin(πt4/3), and finally (iv)
combination of fractonomials (see [1]) and a smooth function uext(t) = t6 exp(t2) + t8+5/7 + t10+1/3. In all aforementioned
cases exponential convergence is observed.
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Fig. 1. PG spectral method for FIVP: log-linear L2-error of the numerical solution to 0Dν
t u(t) = f (t), t ∈ [0,1], versus N , the order-index in (16), cor-

responding to ν = 1/10 and 9/10: (top-left) the exact solution uext(t) = t10, (top-right) uext(t) = t6 sin(πt), (bottom-left) uext(t) = t13/2 sin(πt4/3), and
(bottom-right) uext(t) = t6 exp(t2) + t8+5/7 + t10+1/3.

3.4. PG spectral method for the FFVP

The numerical scheme for the FFVP (3) is similar to the one we developed in Section 3.3, except that we interchange
the space of basis and test functions in the new scheme. In fact, we choose {(2)P̃μ

j (t): j = 1,2, . . . , N} to be set of basis

functions, and we consider {(1)P̃μ
k (t): k = 1,2, . . . , N} as the set of test functions in deriving the variational form. Here, we

seek the approximate solution to (3) of form

u(t) ≈ uN(t) =
N∑

j=1

b j
(2)P̃μ

j (t), (20)

where b j are the unknown expansion coefficients. By plugging (20) into (3) and requiring the corresponding residual func-
tion R N(t) to be L2-orthogonal to each element in the set of the test functions, we obtain the unknown coefficients as

bk = 1

γk

T∫
0

f (t) (1)P̃μ
k

(
x(t)

)
dt. (21)

When u(T ) = uT �= 0, we employ again the method of lifting a known solution. We then decompose u(t) as shown in (18)
and substitute it into (3) to obtain the following equivalent finite-value problem

tDν
T uH(t) = w(t), t ∈ [0, T ),

uH(T ) = 0, (22)

where w(t) = f (t) − uT
Γ (1−ν)(T −t)ν . In Fig. 2, we present numerical results obtained by the PG spectral method to solve the

fractional final-value problem tDν u(t) = f (t), t ∈ [0,1], corresponding to ν = 1/10 and 9/10. We consider four different
T
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Fig. 2. PG spectral method for FFVP: log-linear L2-error of the approximate solution to tDν
T u(t) = f (t), t ∈ [0,1], versus N , the order-index in (20), corre-

sponding to ν = 1/10 and 9/10: (top-left) the exact solution uext(t) = (T − t)10, (top-right) the exact solution uext(t) = (T − t)6 sin(π(T − t)), (bottom-left)
the exact solution uext(t) = (T − t)13/2 sin(π(T − t)4/3), and (bottom-right) the exact solution uext(t) = (T − t)6 exp[(T − t)2] + (T − t)8+5/7 + (T − t)10+1/3.

exact solutions: (i) monomial uext(t) = (T − t)10, (ii) smooth function uext(t) = (T − t)6 sin(π(T − t)), (iii) fractional function
uext(t) = (T − t)13/2 sin(π(T − t)4/3), and finally (iv) combination of fractonomials and a smooth function uext(t) = (T −
t)6 exp((T − t)2) + (T − t)8+5/7 + (T − t)10+1/3. In all of these test cases again we obtain exponential convergence.

4. Discontinuous methods

In spectral methods developed for FIVP (1) and FFVP (3), the basis functions naturally satisfy the homogeneous initial
conditions; however for the case of non-homogeneous initial conditions, we needed to decompose the solution and slightly
modify the problem. Next, we present a new discontinuous spectral element method to be efficiently employed in long-time
integration and possible adaptive refinement. To this end, the following lemmas are useful:

Lemma 4.1. (See [47].) For μ > 0, α > −1, β > −1, and ∀x ∈ [−1,1]

(1 + x)β+μ Pα−μ,β+μ
n (x)

Pα−μ,β+μ
n (−1)

= Γ (β + μ + 1)

Γ (β + 1)Γ (μ)Pα,β
n (−1)

x∫
−1

(1 + s)β Pα,β
n (s)

(x − s)1−μ
ds. (23)

By the definition of the left-sided Riemann–Liouville integral and evaluating the special end-values Pα−μ,β+μ
n (−1) and

Pα,β
n (−1), we can re-write (23) as

RL−1I
μ
x

{
(1 + x)β Pα,β

n (x)
} = Γ (n + β + 1)

Γ (n + β + μ + 1)
(1 + x)β+μ Pα−μ,β+μ

n (x). (24)

Now, by taking the fractional derivative RL Dμ
x on both sides of (24) when β = −μ we obtain
−1
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RL−1D
μ
x
{

Pα−μ,0
n (x)

} = Γ (n + 1)

Γ (n − μ + 1)
(1 + x)−μ Pα,−μ

n (x). (25)

Lemma 4.2. (See [47].) For μ > 0, α > −1, β > −1, and ∀x ∈ [−1,1]

(1 − x)α+μ Pα+μ,β−μ
n (x)

Pα+μ,β−μ
n (+1)

= Γ (α + μ + 1)

Γ (α + 1)Γ (μ)Pα,β
n (+1)

1∫
x

(1 − s)α Pα,β
n (s)

(s − x)1−μ
ds. (26)

By the definition of the right-sided Riemann–Liouville integral and evaluating the special end-values Pα−μ,β+μ
n (+1) and

Pα,β
n (+1), we can re-write (26) as

RL
x Iμ

1

{
(1 − x)α Pα,β

n (x)
} = Γ (n + α + 1)

Γ (n + α + μ + 1)
(1 − x)α+μ Pα+μ,β−μ

n (x). (27)

In a similar fashion, by taking the fractional derivative RL
x Dμ

−1 on both sides of (27) when α = −μ we obtain

RL
x Dμ

1

{
P 0,β−μ

n (x)
} = Γ (n + 1)

Γ (n − μ + 1)
(1 − x)−μ P−μ,β

n (x). (28)

The relations (25) and (28) are useful in computing the corresponding stiffness matrix in the discontinuous scheme pre-
sented in the following section.

In the following, we first develop a discontinuous spectral (single-element) scheme for FIVPs (1) and FFVPs (3) and
subsequently we extend it to a discontinuous spectral element method in which we partition the computational domain
into non-overlapping elements.

4.1. Discontinuous spectral method (DSM; single-element)

We first introduce the spaces of basis and test functions to be employed in the discontinuous scheme for the FIVPs (1).
Let (−β + μ − 1) → 0 in (7), then (1)Pα,β,μ

n (x) → Pα−μ+1,0
n−1 (x), where α − μ + 1 = η ∈ (0,1), since −1 � α < 2 − μ and

−1 � β < μ − 1, recalling from [1]. Hence, in the mapped interval [0, T ], we define the space of basis functions as

V N = span
{

P̃η,0
j

(
x(t)

)
: η ∈ (0,1), and j = 0,1, . . . , N

}
. (29)

In a similar fashion, if we let (−α + μ − 1) → 0, then (2)Pα,β,μ
n (x) → P 0,β−μ+1

n−1 (x), where β − μ + 1 = χ ∈ (0,1). In fact in
this case −1 � β < 2 − μ and −1 � α < μ − 1. Hence, we define the space of test functions as

VN = span
{

P̃ 0,χ
k

(
x(t)

)
: χ ∈ (0,1), and k = 0,1, . . . , N

}
. (30)

We call P̃η,0
j (x(t)) and P̃ 0,χ

k (x(t)) asymptotic eigenfunctions of FSLP-I & -II, which are polynomials.

Remark 4.3. We shall show how this choice of basis and test polynomial functions leads to efficient and exact calculation
of the stiffness matrices arising in the corresponding variational forms using the standard Gauss–Legendre quadrature rules.

4.1.1. FIVP (single-element)
We follow a discontinuous spectral method (DSM) of Petrov–Galerkin kind and seek an approximate solution to (1),

where u(0) = uD �= 0 generally, in the form

uN(t) =
N∑

n=0

cn P̃η,0
j

(
x(t)

)
, (31)

which ∀ϑ(t) ∈ VN satisfies the following variational form obtained from (1) in the time-interval I = [0, T ]
(

0+Dν/2
t uN(t), tDν/2

T ϑ(t)
)

I − ϑ(T )T 1−ν

(1 − ν)Γ (1 − ν)
�uN(0)� = (

f (t),ϑ(t)
)

I , (32)

where (·,·)I denotes the standard inner product in the interval I , and �uN (0)� = uN (0+)−uN (0−) = uN (0+)−uD represents
the jump discontinuity of the solution at the initial condition, and ϑ(T ) is the test function evaluated at the end of the
time-interval. In Appendix A, we provide the derivation of the scheme (32).

We then choose η = χ = ν/2, and by substituting (31) into the scheme (32), and taking ϑ(t) = P̃ 0,χ
k (x(t)) for k =

0,1, . . . , N , we obtain
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N∑
n=0

cn

{ T∫
0

0+Dν/2
t P̃ν/2,0

n
(
x(t)

)
tDη

T − P̃ 0,ν/2
k

(
x(t)

)
dt − P̃ 0,ν/2

k (T )T 1−ν

(1 − ν)Γ (1 − ν)
P̃ν/2,0

n
(
0+)}

=
T∫

0

f (t) P̃ 0,ν/2
k

(
x(t)

)
dt − P̃ 0,ν/2

k (T )T 1−ν

(1 − ν)Γ (1 − ν)
uD , (33)

where by virtue of (25) and (28) and explicitly evaluating the end points P̃ν/2,0
k (T −) ≡ 1 and P̃ν/2,0

n (0+) ≡ (−1)n , (33) yields
the following linear system

S
c = 
F (34)

where S denotes the corresponding N × N stiffness matrix whose entries are obtained as

S[k,n] = Λkn

T∫
0

t−ν/2(T − t)−ν/2 P̃ν,−ν/2
n

(
x(t)

)
P̃−ν/2,ν

k

(
x(t)

)
dt + (−1)n+1T 1−ν

(1 − ν)Γ (1 − ν)
, (35)

where Λkn is computed explicitly as

Λkn = Γ (k + 1)

Γ (k − ν/2 + 1)

Γ (n + 1)

Γ (n − ν/2 + 1)
. (36)

In (34), we also compute the load-vector 
F of size N as

F[k] =
T∫

0

f (t) P̃ 0,ν/2
k

(
x(t)

)
dt − T 1−ν

(1 − ν)Γ (1 − ν)
uD . (37)

Remark 4.4. The stiffness matrix S is a full matrix whose entries satisfy S[k,n] = (−1)k+nS[n,k]. Hence, we need to
compute only half of the entries. Moreover, such entries can be computed exactly using the following Gauss quadrature rule
thanks to the weight function t−ν/2(T − t)−ν/2 arising from the choice of the basis and test functions

T∫
0

t−ν/2(T − t)−ν/2 P̃ν,−ν/2
n

(
x(t)

)
P̃−ν/2,ν

k

(
x(t)

)
dt ≈

N+1∑
j=1

P̃ν,−ν/2
n (t j) P̃−ν/2,ν

k (t j)ω j . (38)

This is true since P̃ν,−ν/2
n P̃−ν/2,ν

k ∈ P2N for all n,k = 1,2, . . . , N . Here, tk ’s are the Gauss–Lobatto–Jacobi (GLJ) quadrature
points in the interval [0, T ] given by

t j = T

2

(
ξ

−ν/2,−ν/2
j + 1

)
, j = 1,2, . . . , N + 1, (39)

where ξ
−ν/2,−ν/2
j are the standard quadrature GLJ points in [−1,1], and the corresponding weights are obtained as

ω j =
(

T

2

)1−ν

ρ
−ν/2,−ν/2
j , j = 1,2, . . . , N + 1, (40)

in which ρ
−ν/2,−ν/2
j represents the standard GLJ quadrature weights associated with the Jacobi parameters −ν/2,−ν/2.

4.1.2. FFVPs (single-element)
We now modify the DSM scheme (32) for solving the FFVPs (3), simply by switching the space of the basis and test

functions employed in (32), where this time we employ (30) as our basis space and instead we use (29) as the set of test
functions. Then, we seek the approximate solution to (32) where we choose u(T ) = uD �= 0, in the form

uN(t) =
N∑

n=0

ĉn P̃ 0,χ
j

(
x(t)

)
, (41)

which ∀ϑ(t) ∈ V N (set of test functions) satisfies the following variational form(
tDν/2

T − uN(t), 0+Dν/2
t ϑ(t)

)
I + ϑ(0+)T 1−ν

�uN(T )� = (
f (t),ϑ(t)

)
I , (42)
(1 − ν)Γ (1 − ν)
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Fig. 3. Discontinuous spectral method for FIVP: log-linear L2-error of the approximate solution to 0Dν
t u(t) = f (t), t ∈ [0,1], versus N , the polynomial order

in (31), corresponding to ν = 1/10 and 9/10: (top-left) the exact solution uext(t) = t10, (top-right) the exact solution uext(t) = t6 sin(πt), (bottom-left) the
exact solution uext(t) = t13/2 sin(πt4/3), and (bottom-right) the exact solution uext(t) = t6 exp(t2) + t8+5/7 + t10+1/3.

where �uN (T )� = uN(T +)−uN (T −) = uD −uN (T −) represents the jump discontinuity of the solution at the initial condition,
and finally ϑ(0+) is the test function evaluated at the beginning of the time-interval. In Appendix A, we provide the
derivation of the scheme (42).

In Figs. 3 and 4, we present numerical results obtained by the DSM scheme to solve the fractional initial-value problem
0Dν

t u(t) = f (t), t ∈ [0,1], and finite-value problem tDν
T u(t) = f (t), t ∈ [0,1], corresponding to ν = 1/10 and 9/10. For the

sake of comparison, we consider the same test cases utilized in Figs. 1 and 2. Exponential convergence of both schemes in
Figs. 3 and 4 is demonstrated.

4.2. Discontinuous spectral element method (DSEM; multi-element)

Now, we partition the time-interval [0, T ] into Nel non-overlapping time-elements, Ie = [te−1/2, te+1/2] such that⋃Nel
e=1 Ie = [0, T ]. Next, we expand the solution in each element Ie in terms of some basis functions, which are discon-

tinuous at the interfaces of elements and test the problem against another set of test functions space. Here, we construct
our basis and test functions based upon (29) and (30), employed in the development of the DPG scheme, as

V N
h = {

v: v
∣∣

Ie
∈ V N(Ie), e = 1,2, . . . , Nel

}
, (43)

and

VN
h = {

v: v
∣∣

Ie
∈ VN(Ie), e = 1,2, . . . , Nel

}
. (44)

In our discontinuous spectral element method, we seek an approximate solution to (1) on e-th time-element in the form

ue
N(t) =

N∑
Cn P̃η,0

j

(
xe(t)

)
, (45)
n=1
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Fig. 4. Discontinuous spectral method for FFVP: log-linear L2-error of the approximate solution to tDν
T u(t) = f (t), t ∈ [0,1], versus N , the polynomial order

in (41), corresponding to ν = 1/10 and 9/10: (top-left) the exact solution uext(t) = (T − t)10, (top-right) the exact solution uext(t) = (T − t)6 sin(π(T − t)),
(bottom-left) the exact solution uext(t) = (T − t)13/2 sin(π(T − t)4/3), and (bottom-right) the exact solution uext(t) = (T − t)6 exp[(T − t)2] + (T − t)8+5/7 +
(T − t)10+1/3.

which ∀ϑe(t) ∈ VN
h satisfies the following bilinear form originated from projecting (1) onto ϑe(t) in the time-interval Ie =

[te−1/2, te+1/2] as

(
t+e−1/2

Dν/2
t ue

N(t), tDν/2
t−e+1/2

ϑe(t)
)

Ie
− ϑe(t−

e+1/2)(�t)1−ν
e

(1 − ν)Γ (1 − ν)
�ue

N(te−1/2)� = (
f (t),ϑ(t)

)
Ie

−He, (46)

beginning form the first element, i.e., e = 1, and marching element-by-element along the time-axis to the e = Nel . Here,
(�t)e emerges the time length of the element Ie . We note that the only difference between the scheme (46) and the
discontinuous spectral (single-element) method in (32) is the history term He appearing on the right-hand side of (46). We
shall explain how this term represents an extra history-load included in (46). We first write He in the following convenient
and computationally efficient form as

He = ϑe(t)Fe(t)
∣∣t=t−e+1/2

t=t+e−1/2
−

(
Fe(t),

d

dt
ϑe(t)

)
Ie

, (47)

where Fe(t) is the history function associated with element Ie

Fe(t) =
e−1∑
ε=1

N∑
δ=0

τδ(t − s)δ+1−νu(δ)ε
N (s)

∣∣s=t−ε+1/2

s=t+ε−1/2
(48)

in which τδ = −1/[Γ (1 − ν)
∏δ

m=0(m + 1 − ν)] is decaying with rate (δ − ν)!, δ = 0,1, . . . , N , and u(δ)ε
N represents the

δ-th derivative of the solution in Iε to be only evaluated at the boundaries of Iε . We recall that the approximate solution
in each element is obtained in terms of the basis functions which are Jacobi polynomials in (29) whose derivatives can
be obtained recursively thanks to their hierarchical structure. Hence, Fe(t) is a polyfractonomial of degree N + μ, where



M. Zayernouri, G.E. Karniadakis / Journal of Computational Physics 257 (2014) 460–480 471
μ = 1 − ν ∈ (0,1), defined in [1]. Furthermore, we note that when we take Nel = 1 in the DSEM scheme, the history-load
term He = 0, then the scheme becomes identical to the DSM scheme (32). In Appendix B, we provide the complete deriva-
tion of the scheme (46).

Remark 4.5. In order to shed light on the interpretation of such history term in (48) we obtain an alternative representation
for the history term (see Appendix B) as

He = −
e−1∑
ε=1

(
s0
ε
Dν

t uε∗
N (t),ϑe(t)

)
Ie

∣∣s0
ε=t−ε+1/2

s0
ε=t+ε−1/2

, (49)

where we have continuously extended the solution uε
N from the corresponding element Iε to the present element Ie ,

denoted by uε∗
N , such that uε∗

N |Iε = uε
N . Such a representation implies that the history of the present element Ie respects

the structure of the fractional ODE (1) on the left-hand side. Therefore, assuming any time-continuous extension of the past
solution in Iε to Ie , an extra load term emerges as a history contribution to the present element.

In order to obtain the corresponding linear system, we choose η = χ = ν/2, and by substituting (45) into the scheme
(46), and taking ϑe(t) = P̃ 0,χ

k (xe(t)) for k = 0,1, . . . , N and e = 1,2, . . . , Nel , we obtain

N∑
n=0

Ce
n

{∫
Ie

t+e−1/2
Dν/2

t P̃ν/2,0
n

(
xe(t)

)
tDν/2

t−e+1/2
P̃ 0,ν/2

k

(
xe(t)

)
dt + (−1)n+1(�t)1−ν

e κv

}

=
∫
Ie

f (t) P̃ 0,ν/2
k

(
xe(t)

)
dt − κv(�t)1−ν

e

(
ue−1

N

)R −He,k,

in which κv = 1/[(1 − ν)Γ (1 − ν)], and hence by Lemma 3.1, we obtain

N∑
n=0

Ce
n

{
Λkn

∫
Ie

we(t) P̃ν,−ν/2
n

(
xe(t)

)
P̃−ν/2,ν

k

(
xe(t)

)
dt + (−1)n+1(�t)1−ν

e κv

}

=
∫
Ie

f (t) P̃ 0,ν/2
k

(
xe(t)

)
dt − κv(�t)1−ν

e

(
ue−1

N

)R −He,k,

where we(t) = (t − te−1/2)
−ν/2(te+1/2 − t)−ν/2 and the term (ue−1

N )R represents the solution we have already obtained for
in element Ie−1, which is evaluated at the right boundary. We note that for e = 1, (u0

N )R is equal to the initial condition
u(0) = uD . The corresponding linear system in element Ie is then obtained as

Se
ce = 
Fe (50)

where Se denotes the corresponding N × N local stiffness matrix in Ie whose entries are obtained as

Se[k,n] = Λkn

∫
Ie

we(t) P̃ν,−ν/2
n

(
xe(t)

)
P̃−ν/2,ν

k

(
xe(t)

)
dt + (−1)n+1(�t)1−ν

e κv (51)

in which Λkn is explicitly given in (36). In (50), we also compute the local load-vector 
Fe of size N as

Fe[k] =
∫
Ie

f (t) P̃ 0,ν/2
k

(
xe(t)

)
dt − κv(�t)1−ν

e

(
ue−1

N

)R −He,k, (52)

in which He,k is given by

He,k = Fe
(
t−

e+1/2

) + (−1)k+1 Fe
(
t+

e−1/2

) −
(

Fe(t),
d

dt
P̃ 0,ν/2

k

(
xe(t)

))
Ie

. (53)

Remark 4.6. Similarly to DSM, the stiffness matrix Se in DSEM scheme is also a full matrix, whose entries similarly follow
the property Se[k,n] = (−1)k+nSe[n,k]. By the same argument, due to the weight function we(t) appearing as a result of
the choice of the basis and test functions the entries of Se can be computed exactly using a standard quadrature rule. By
performing local element operations and considering an affine mapping from of the physical element to the standard one,
we can efficiently compute the entries of Se as
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Fig. 5. Condition number of the stiffness matrix obtained in DSM/DSEM in terms of the polynomial order N and corresponding to different values of the
fractional order ν . We observe that the condition number grows roughly as N3−ν .

Se[k,n] = Λkn

∫
Ie

we(t) P̃ν,−ν/2
n

(
xe(t)

)
P̃−ν/2,ν

k

(
xe(t)

)
dt

= J · Λkn

+1∫
−1

(1 − x)−ν/2(1 + x)−ν/2 Pν,−ν/2
n (x)P−ν/2,ν

k (x)dx

= J · Sst
e [k,n], (54)

where J = [(�t)e/2]1−ν represents the Jacobian of the transformation and S st denotes the stiffness matrix on the standard
element in the interval [−1,1], obtained as

Sst[k,n] = Λkn

N+1∑
j=1

Pν,−ν/2
n (x j)P−ν/2,ν

k (x j)ρ
−ν/2,−ν/2
j , (55)

in which x j ’s are the standard Gauss–Lobatto–Jacobi (GLJ) quadrature points in the interval [−1,1] and ρ j represent the
corresponding weights. The relation (55) shows that in order to compute Se in each element, we only need to obtain S st

e
once and multiply it to the corresponding Jacobian in each element. Clearly, on a uniform mesh where (�t)1 = (�t)2 =
· · · = (�t)Nel = T /Nel , the stiffness matrix is invariant in each element and we compute it only once for the entire of the
simulation.

In addition, we study the condition number of the stiffness matrix in the DSEM and DSM schemes versus the fractional
order ν and polynomial order N in Fig. 5. This plot shows that as ν decreases the condition number of the stiffness matrix
increases. It can be attributed to the fact that the singularity in the definition of the fractional derivative in (1), also the
ones appearing in the weight functions w(t) (DSM) and we(t) (DSEM) become stronger as the fractional order ν possesses
smaller values. It would suggest that the global character of the fractional differential operator in our problem becomes
more significant at smaller ν , leading to higher stiffness condition numbers. However, we notice in Fig. 5 that as ν → 1, we
recover the standard condition number of the stiffness matrix corresponding to the integer-order (non-fractional) problem.

4.3. Numerical tests for DSEM

The L2-error of the approximate solution to FIVP 0Dν
t u(t) = f (t), t ∈ [0,1], using discontinuous spectral element method

(DSEM), corresponding to ν = 1/2 is shown in Fig. 6, where the exact solution is uext(t) = t10. We compare the log-linear
plot of p-refinement on the left to the h-refinement, where we observe the exponential convergence in the p-refinement
and the algebraic convergence in the h-refinement. We show the algebraic convergence rate to be −1.673 in the log-log
L2-error plot on the right for p = 1 (linear element).

Next, we are going to examine the effect of the fractional order ν ∈ (0,1) on the order of algebraic convergence, where
we require the exact solution to possess enough smoothness. To this end, we present the log-log L2-error plot of the
approximate solution to FIVP 0Dν

t u(t) = f (t), t ∈ [0,1], obtained using DSEM and corresponding to ν = 1/10 and 9/10
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Fig. 6. DSEM for FIVP: L2-error of the approximate solution to FIVP 0Dν
t u(t) = f (t), t ∈ [0,1], corresponding to ν = 1/2; (left) log-linear plot of p-refinement

compared to the h-refinement versus the degrees of freedom N; and (right) log-log plot of the error versus the number of elements Nel . Here, the exact
solution is uext(t) = t10.

Fig. 7. DSEM for FIVP: log-log L2-error plot of the approximate solution to FIVP 0Dν
t u(t) = f (t), t ∈ [0,1], corresponding to ν = 1/10 and 9/10 versus the

number of elements Nel . Here, the exact solution is uext(t) = t6+5/11.

in Fig. 7. The exact solution in this numerical test is uext(t) = t2+1/10, and the algebraic order of convergence obtained is
−1.115 and −2.066 corresponding to ν = 1/10 and 9/10 respectively, when piecewise linear basis functions are employed.
In the other test (Fig. 7; right), we employ piecewise cubic basis functions and we observe the convergence order to be
−3.687 and −2.841 corresponding to ν = 9/10 and 1/10 respectively.

In the next test case, we address the issue of the long-time integration. Moreover, we observe that in some cases when
the exact solution does not possess enough smoothness p-refinement may not be the best choice of improving the finite
element space V N . Accordingly, we take the FIVP 0Dν

t u(t) = f (t), t ∈ [0,10], where ν = 1/2, for long-time integration in
which the exact solution is uext(t) = t1+1/10. The L2-error of the approximate solution to the aforementioned problem
using DSEM is shown in Fig. 8. The h-refinement top plot exhibits algebraic convergence with rates −1.890 and −1.643
corresponding to ν = 1/10 and 9/10 respectively. In the middle plot, the log-linear plot of the error versus the number of
degrees of freedom N , compared to the p-refinements is shown. We observe that the aforementioned h-refinements are
shown to be lower and upper bounds for the decay of the error in the p-refinements. If we now increase the smoothness
in the exact solution as presented in the lower plot, we recover the exponential convergence using p-refinement where we
partition the domain into Nel = 5 elements.

Finally, we examine the idea of memory fading/truncation in the calculation of the history term (47). In this technique we
do not take all the past elements into account at the expense of losing accuracy, and instead, an effective history length is
chosen to calculate (47). Such an effective length is well-known to be dependent mainly on the fractional order ν . In fact,
the greater ν in 0Dν

t u(t) the less history length is needed since as ν → 1, we approach 0Dν
t → d/dt , which is completely

a local operator for which no history is required. To this end, we solve 0Dν
t u(t) = f (t), t ∈ [0,1], partitioning the domain

into Nel = 10 non-overlapping uniform elements when the fractional order is ν = 1/10. As shown in Fig. 9, in order to get
the convergence down to machine precision, higher modes demand longer history lengths; therefore we need to include
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Fig. 8. Long-time integration: L2-error of the approximate solution to FIVP 0Dν
t u(t) = f (t), t ∈ [0,10], corresponding to ν = 1/2 obtained using the discon-

tinuous spectral element method (DSEM); (top) log-log plot of the h-refinement versus the number of elements Nel ; (middle) log-linear plot of the error
versus the number of degrees of freedom N , compared to the p-refinement; and (bottom) log-linear plot of the error versus the polynomial order in each
element in the p-refinement. Here, the exact solution for the top and the middle plots is uext(t) = t1+3/7, and we add to the regularity of the exact solution
in the bottom plot where uext(t) = t10.

the whole history to achieve such an accuracy. We emphasize that such a phenomenon is independent of the discretization
method and is solely due to the global nature of the fractional differential operators.

5. Summary and discussion

We have developed exponentially accurate spectral methods of Petrov–Galerkin (PG) type for the fractional initial-value
problems 0Dν

t u(t) = f (t) and the fractional final-value problem tDν
T u(t) = g(t), ν ∈ (0,1), subject to Dirichlet initial/final

conditions. We have employed the recently developed spectral theory in [1] for fractional Sturm–Liouville problems, which
provided the corresponding basis and test functions utilized in our schemes. We introduced the corresponding fractional
basis functions, called Jacobi polyfractonomials, as the eigenfunctions of the FSLP of first kind (FSLP-I). Moreover, we employed
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Fig. 9. History fading in DSEM: the L2-error of the numerical solution to FIVP 0Dν
t u(t) = f (t), t ∈ [0,1], corresponding to ν = 1/10 and different polynomial

order p, versus the number of the past elements considered in computation of history function (48). Here, the exact solution is uext(t) = t6.

another space of test functions as the span of polyfractonomial eigenfunctions of the FSLP of second kind (FSLP-II). In the
aforementioned PG spectral methods, the basis functions satisfy the initial/final conditions exactly.

Subsequently, we developed a Petrov–Galerkin discontinuous spectral method (DSM) for the aforementioned FIVPs and
FFVPs, and finally extended DSM to a discontinuous spectral element method (DSEM) for carrying out efficient longer time-
integrations, but also performing possible discontinuity capturing and adaptive refinement. In both discontinuous schemes,
we employed the basis and test functions which were asymptotic eigensolutions to FSLP-I & -II, belonging to the Jacobi
family polynomials.

We presented a variety of numerical tests in each case to exhibit the exponential convergence of PG, DSM, and DSEM
using p-refinement; we also investigated the algebraic convergence in DSEM when h-refinement is performed. In these
numerical tests, we considered the exact solution to the FIVPs/FFVPs to be monomials t p , smooth functions tq sin(πt), and
fractional functions t p/q sin(πtr/s), where p, q, r and s were integers, or any combination of them. In DSEM, we furthermore
highlighted the flexibility of the scheme in long-time/adaptive integration.

We have also analyzed the computational complexity of these methods. For example, in Fig. 5 we present the condition
number of the stiffness matrix in DSM and DSEM, which seems to grow roughly as N3−ν . For the case of PG spectral
method, we recall that the stiffness matrix is diagonal due to the orthogonality property of the fractional bases.

We conclude the paper by comparing the performance of the developed schemes with the finite difference method
(FDM) developed in [31], where the fractional derivative 0Dν

t u(t) is represented as

0Dν
t u(t) = 1

Γ (2 − ν)

k∑
j=0

b j
u(tk+1− j) − u(tk− j)

(�t)ν
+ rk+1

�t , (56)

where rk+1
�t � Cu(�t)2−ν and b j := ( j + 1)1−ν − j1−ν , j = 0,1, . . . ,k; a central difference method has been employed to

approximate the kernel in the fractional derivative.
In Fig. 10, we have solved (1) using DSEM for having the T = 10; we plot the normalized L2-error versus the number of

the elements (= T /�t) corresponding to the fractional order ν = 1/10 and ν = 9/10. In DSEM, we utilized both piecewise
linear (p = 1) and piecewise cubic (p = 3) basis functions. First, we observe that when ν = 1/10, DSEM (p = 1) performs
slightly better than FDM in terms of the rate of the convergence in the range of h-refinement examined (see Fig. 10; left).
By increasing the fractional order to ν = 9/10, we obtain a good agreement between the rate of convergence in FDM and
DSEM (p = 1). However, increasing the polynomial order p (from 1 to 3), DSEM leads to a noticeable faster convergence
rate.

In addition to the fast convergence of the high-order methods developed in this work, we show that the computational
cost (number of operations) in PG, DSM and DSEM asymptotically increases as O(N), O(N3), O(N2

el N
3), respectively, where

N represents the polynomial order employed, and Nel denotes the number of elements. In contrast, the computational
cost of FDM grows as N2

g , where Ng stands for the number of the grid-points in the computational domain. Moreover, we
compute the CPU time (in seconds) required for solving (1) corresponding to ν = 1/10, 1/2, and 9/10 in Table 1, where the
exact solution is uext(t) = t6 and the integration time T = 1. We developed all codes in Wolfram Mathematica 8.0.4.0.

Although the implementation of FDM is simpler than the schemes developed in this study, it turns out that FDM becomes
computationally prohibited, especially when we ask for slightly higher accurate results and ν is not necessarily close to zero.
For instance, in order to reach the L2-error of order 10−6 using FDM, we needed to include Ng = 7500 grid-points when
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Fig. 10. Finite difference method versus discontinuous spectral element method (DSEM); L2-norm error (normalized by the L2-norm of the exact solution)
of the approximate solution to 0Dν

t u(t) = f (t), T = 10, corresponding to (left) ν = 1/10 and (right) ν = 9/10.

Table 1
CPU time (seconds) on an Intel (Xeon X5550) 2.67 GHz processor, corresponding to PG spectral method, DSM, DSEM, and FDM for solving 0Dν

t u(t) = f (t),
u(0) = 0, and the exact solution is uext(t) = t6. Here, N denotes the expansion order in PG spectral method, DSM, and DSEM with Nel = 2 (in each element),
also Ng represents the number of grid-points in FDM, and the simulation time is set to T = 1.

L2-norm error PG spectral method DSM DSEM (Nel = 2) FDM

(ν = 1/10)

O(10−4) (N = 6) 0.0749885 (N = 5) 0.251108 × (Ng = 48) 0.048815

O(10−5) × × (N = 5) 0.390158 (Ng = 180) 0.24374

O(10−6) (N = 7) 0.0969855 (N = 6) 0.344162 (exact) (N = 6) 0.652402 (exact) (Ng = 640) 3.74287

(ν = 1/2)

O(10−4) (N = 6) 0.0584915 (N = 5) 0.235509 (N = 4) 0.256461 (Ng = 340) 0.966354

O(10−5) × × (N = 5) 0.374215 (Ng = 1600) 23.0223

O(10−6) (N = 7) 0.073489 (N = 6) 0.336951 (exact) (N = 6) 0.565914 (exact) (Ng = 7500) 480.12

(ν = 9/10)

O(10−4) (N = 6) 0.076988 (N = 5) 0.244935 × (Ng = 3000) 74.5901

O(10−5) × × (N = 5) 0.389906 (Ng = 23 000) 3348.96

O(10−6) (N = 7) 0.097985 (N = 6) 0.343947 (exact) (N = 6) 0.645917 (exact) Running out of memory

ν = 1/2. By increasing the fractional order to ν = 9/10, Mathematica ran out of memory and the error level 10−6 was not
achieved. In fact, it highlights the strong sensitivity of the CPU time in FDM on the fractional order ν , in addition to the
accuracy dependency of FDM on ν as shown in (56). In contrast, the corresponding memory allocation and CPU time in our
schemes were considerably less than what needed in FDM. As shown in Table 1, while we exactly capture the solution by
just setting the polynomial order to N = 6 in DSM and DSEM in all cases, the CPU time taken in FDM to reach the error
level 10−6 (when ν = 1/2) was almost 6500 times larger than that in PG spectral method, 1500 times larger than CPU time
in DSM, and 850 times larger than that in DSEM. We also performed the CPU time comparison shown in Table 1 for the
four test cases shown in Fig. 1, and we obtained similar results.
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Appendix A. Derivation of the discontinuous spectral method (DSM)

Let I = [0, T ] be the time-domain and ϑ(t) ∈ VN be an arbitrary test function. Then, we obtain a variational form for the
solution u(t) by multiplying (1) by ϑ(t) and integrating in I as(

0Dν
t u(t),ϑ(t)

) = (
f (t),ϑ(t)

)
. (A.1)
I I
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On the left-hand side, by the definition of the left-sided fractional derivative we have

(
0Dν

t u(t),ϑ(t)
)

I =
T∫

0

1

Γ (1 − ν)

d

dt

t∫
0

u(s)ds

(t − s)ν
ϑ(t)dt

= ϑ(t)

Γ (1 − ν)

t∫
0

u(s)ds

(t − s)ν

∣∣∣∣t=T

t=0
−

T∫
0

1

Γ (1 − ν)

t∫
0

u(s)ds

(t − s)ν
d

dt
ϑ(t)dt

= ϑ(T )

Γ (1 − ν)

T∫
0

u(s)ds

(T − s)ν
−

T∫
0

1

Γ (1 − ν)

t∫
0

u(s)ds

(t − s)ν
d

dt
ϑ(t)dt

= ϑ(T )

Γ (1 − ν)

0+∫
0

u(s)ds

(T − s)ν
+ ϑ(T )

Γ (1 − ν)

T∫
0+

u(s)ds

(T − s)ν
−

T∫
0

1

Γ (1 − ν)

t∫
0

u(s)ds

(t − s)ν
d

dt
ϑ(t)dt (A.2)

where by carrying out the integration-by-parts in ϑ(T )
Γ (1−ν)

∫ 0+
0

u(s) ds
(T −s)ν and assuming the exact solution u ∈ C1[0, T ] we obtain

ϑ(T )

Γ (1 − ν)

0+∫
0

u(s)ds

(T − s)ν
= 0 = ϑ(T )T 1−ν

(1 − ν)Γ (1 − ν)

(
uD − u

(
0+)) + ϑ(T )

Γ (1 − ν)

0+∫
0

(T − s)1−ν du(s)

ds
ds (A.3)

where the second integral term in (A.3) is also identically zero. Now, by substituting the exact solution u(t) by the approx-
imate uN (t), we obtain

ϑ(T )

Γ (1 − ν)

0+∫
0

u(s)ds

(T − s)ν
≈ ϑ(T )T 1−ν

(1 − ν)Γ (1 − ν)

(
uD − uN

(
0+))

(A.4)

where (uD − uN (0+)) �= 0, however, as N → ∞ this jump discontinuity approaches zero. Now, by substituting (A.4) in (A.2),

replacing u by uN , and finally subtracting a zero term ϑ(0+)
Γ (1−ν)

∫ 0+
0+

uN (s) ds
(0+−s)ν , we obtain(

0Dν
t u(t),ϑ(t)

)
I ≈ (

0Dν
t uN(t),ϑ(t)

)
I

= ϑ(T )T 1−ν

(1 − ν)Γ (1 − ν)

(
uD − uN

(
0+)) + ϑ(T )

Γ (1 − ν)

T∫
0+

uN(s)ds

(T − s)ν
− ϑ(0+)

Γ (1 − ν)

0+∫
0+

uN(s)ds

(0+ − s)ν

−
T∫

0

1

Γ (1 − ν)

t∫
0

uN(s)ds

(t − s)ν
d

dt
ϑ(t)dt

= ϑ(T −)T 1−ν

(1 − ν)Γ (1 − ν)

(
uD − uN

(
0+)) + ϑ(t)

Γ (1 − ν)

t∫
0+

uN(s)ds

(t − s)ν

∣∣∣∣t=T

t=0+

−
T∫

0

1

Γ (1 − ν)

t∫
0

uN(s)ds

(t − s)ν
d

dt
ϑ(t)dt

= (
0+Dν

t uN(t),ϑ(t)
)

I + ϑ(T −)T 1−ν

(1 − ν)Γ (1 − ν)

(
uD − uN

(
0+))

,

where by Lemma 3.1(
0Dν

t uN(t),ϑ(t)
)

I = (
0+Dν/2

t uN(t), tDν/2
T ϑ(t)

)
I − ϑ(T )T 1−ν

(1 − ν)Γ (1 − ν)
�uN(0)� , (A.5)

which completes the derivation of the DSM spectral method for FIVPs by substituting (A.5) into (A.1).
For the derivation of the DSM scheme (42) for FFVPs, we repeat the above steps where this time the jump discontinuity

occurs at the final condition. However, we realize that there exists an easier way to do so that is performing the change of
variable t̃ = T − t in (A.5) and Lemma 3.1.
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Appendix B. Derivation of the discontinuous spectral element method (DSEM)

Now, let Ie = [te−1/2, te+1/2] be the e-th time-element and ϑe(t) ∈ VN be an arbitrary test function. Then, we obtain the
corresponding variational form by multiplying (1) by ϑe(t), and integrating in Ie as(

0Dν
t u(t),ϑe(t)

)
Ie

= (
f (t),ϑe(t)

)
Ie
. (B.1)

On the left-hand side, by the definition of the left-sided fractional derivative we have

(
0Dν

t u(t),ϑe(t)
)

Ie
=

(
1

Γ (1 − ν)

d

dt

t∫
0

u(s)ds

(t − s)ν
,ϑe(t)

)
Ie

=
(

1

Γ (1 − ν)

d

dt

t−e−1/2∫
0

u(s)ds

(t − s)ν
,ϑe(t)

)
Ie

+
(

1

Γ (1 − ν)

d

dt

t+e−1/2∫
t−e−1/2

u(s)ds

(t − s)ν
,ϑe(t)

)
Ie

+
(

1

Γ (1 − ν)

d

dt

t∫
t+e−1/2

u(s)ds

(t − s)ν
,ϑe(t)

)
Ie

,

where by the same argument as in the derivation in Appendix A and also by the definition of the left-sided fractional
derivative in the last term we obtain(

0Dν
t u(t),ϑe(t)

)
Ie

≈ (
0Dν

t uN(t),ϑe(t)
)

Ie

= (
t+e−1/2

Dν
t ue

N(t),ϑe(t)
)

Ie
+ ϑe(t−

e+1/2)(�t)1−ν
e

(1 − ν)Γ (1 − ν)

(
ue−1

N

(
t−

e−1/2

) − ue
N

(
t+

e−1/2

))

+
(

1

Γ (1 − ν)

d

dt

t−e−1/2∫
0

u(s)ds

(t − s)ν
,ϑe(t)

)
Ie

(B.2)

where (�t)e = te+1/2 − te−1/2, and we have replaced u in the last first and the second term by uN and have left the last
term unchanged for the following argument. Now, by Lemma 3.1, and the definition of the jump discontinuity we obtain

(
0Dν

t uN(t),ϑe(t)
)

Ie
= (

t+e−1/2
Dν/2

t ue
N(t), tDν/2

t−e+1/2
ϑe(t)

)
Ie

− ϑe(t−
e+1/2)(�t)1−ν

e

(1 − ν)Γ (1 − ν)
�ue

N(te−1/2)� +He. (B.3)

We suppose that uN (t) is only unknown in the present element Ie and we have already solved for uN (t) in all the previous
(past) time-elements. Hence the time-interval [0, t−

e−1/2], appearing in the last integral in (B.2), in fact represents a time-

history interval. Consequently, we compute He in (B.3) by decomposing the time-history interval [0, t−
e−1/2] into the interior

past time-elements Iε ≡ [t+
ε−1/2, t−

ε+1/2] as

He =
(

1

Γ (1 − ν)

d

dt

t−e−1/2∫
0

uN(s)ds

(t − s)ν
,ϑe(t)

)
Ie

=
e−1∑
ε=1

(
1

Γ (1 − ν)

d

dt

t+ε−1/2∫
t−ε−1/2

uε
N(s)ds

(t − s)ν
,ϑe(t)

)
Ie

=
(

ϑe(t)
1

Γ (1 − ν)

e−1∑
ε=1

∫
Iε

uε
N(s)ds

(t − s)ν

)∣∣∣∣∣
t=t−e+1/2

t=t+e−1/2

−
(

1

Γ (1 − ν)

e−1∑
ε=1

∫
Iε

uε
N(s)ds

(t − s)ν
,

d

dt
ϑe(t)

)
Ie

(B.4)

where uε
N denotes the known solution we have already solved for, and is well-defined only in element Iε = [t+

ε−1/2, t−
ε+1/2].

We note that uε
N is a polynomial of degree N . Therefore, uε

N has N continuous derivatives in Iε . Accordingly, in order to

reduce the double integral appearing in the last term in (B.4), we carry out integration-by-parts in
∫

Iε

uε
N (s) ds
(t−s)ν N times to

obtain
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1

Γ (1 − ν)

e−1∑
ε=1

∫
Iε

uε
N(s)ds

(t − s)ν
=

e−1∑
ε=1

N∑
δ=0

τδ(t − s)δ+1−νu(δ)ε
N (s)

∣∣s=t−ε+1/2

s=t+ε−1/2

=
e−1∑
ε=1

F ε
e (t)

= Fe(t) (B.5)

where Fe(t) denotes the flux function associated to the element Ie in which τδ = −1
Γ (1−ν)

∏δ
m=0(m+1−ν)

. Now, by substituting

(B.5) we can efficiently compute the history term as

He = ϑe(t)Fe(t)
∣∣t=t−e+1/2

t=t+e−1/2
−

(
Fe(t),

d

dt
ϑe(t)

)
Ie

(B.6)

where the double integral in (B.4) renders a convenient one-dimensional form in (B.6). It completes the derivation for the
fractional discontinuous spectral element scheme given in (46).

Now, we would like to shed more light on the meaning of such history term by re-representing the history term as

He = 1

Γ (1 − ν)

e−1∑
ε=1

{
ϑe(t−

e+1/2

) t−ε+1/2∫
t+ε−1/2

uε
N(s)ds

(t−
e+1/2 − s)ν

− ϑe(t+
e−1/2

) t−ε+1/2∫
t+ε−1/2

uε
N(s)ds

(t+
e−1/2 − s)ν

}

− 1

Γ (1 − ν)

e−1∑
ε=1

(∫
Iε

uε
N(s)ds

(t − s)ν
,

d

dt
ϑe(t)

)
Ie

. (B.7)

Next, we continuously extend the solution uε
N from the corresponding element Iε to the present element Ie , denoted by uε∗

N ,
such that uε∗

N |Iε = uε
N . In the simplest extension which also sounds natural is to take right-end value of uε

N and consider
this constant value in later elements upto Ie . Having such an extension defined, we can replace uε

N in (B.7) with uε∗
N and

re-write each expression in (B.7) in terms of the subtraction of two integrals as

t−ε+1/2∫
t+ε−1/2

uε
N(s)ds

(t−
e+1/2 − s)ν

=
t−e+1/2∫

t+ε−1/2

uε∗
N (s)ds

(t−
e+1/2 − s)ν

−
t−e+1/2∫

t−ε+1/2

uε∗
N (s)ds

(t−
e+1/2 − s)ν

, (B.8)

t−ε+1/2∫
t+ε−1/2

uε
N(s)ds

(t+
e−1/2 − s)ν

=
t+e−1/2∫

t+ε−1/2

uε∗
N (s)ds

(t+
e−1/2 − s)ν

−
t+e−1/2∫

t−ε+1/2

uε∗
N (s)ds

(t+
e−1/2 − s)ν

, (B.9)

and ∫
Iε

uε
N(s)ds

(t − s)ν
=

t∫
t+ε−1/2

uε∗
N (s)ds

(t − s)ν
−

t∫
t−ε+1/2

uε∗
N (s)ds

(t − s)ν
(B.10)

for any arbitrary t ∈ Ie . Now, by substituting (B.8)–(B.10) into (B.7), we obtain

He =
e−1∑
ε=1

{
ϑe(t)

Γ (1 − ν)

t∫
t+ε−1/2

uε∗
N (s)ds

(t − s)ν

∣∣∣∣t=t−e+1/2

t=t+e−1/2

− 1

Γ (1 − ν)

( t∫
t+ε−1/2

uε∗
N (s)ds

(t − s)ν
,

d

dt
ϑe(t)

)
Ie

}

−
e−1∑
ε=1

{
ϑe(t)

Γ (1 − ν)

t∫
t−ε+1/2

uε∗
N (s)ds

(t − s)ν

∣∣∣∣t=t−e+1/2

t=t+e−1/2

− 1

Γ (1 − ν)

( t∫
t−ε+1/2

uε∗
N (s)ds

(t − s)ν
,

d

dt
ϑe(t)

)
Ie

}
, (B.11)

where by inverse integration-by-parts we obtain
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He =
e−1∑
ε=1

(
1

Γ (1 − ν)

d

dt

t∫
t+ε−1/2

uε∗
N (s)ds

(t − s)ν
,ϑe(t)

)
Ie

−
e−1∑
ε=1

(
1

Γ (1 − ν)

d

dt

t∫
t−ε+1/2

uε∗
N (s)ds

(t − s)ν
,ϑe(t)

)
Ie

(B.12)

and by definition of the left-sided fractional derivative we obtain

He = −
e−1∑
ε=1

(
s0
ε
Dν

t uε∗
N (t),ϑe(t)

)
Ie

∣∣s0
ε=t−ε+1/2

s0
ε=t+ε−1/2

. (B.13)
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