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Fairings are nearly neutrally buoyant devices, fitted along the axis of long circular risers to
suppress vortex-induced vibrations (VIV) and possibly reduce the drag force. Here we
study numerically how VIV can be practically eliminated by using free-to-rotate fairings.
Since the rotational inertia is low for the fairings, direct numerical simulations based on
standard fluid–structure interaction algorithms may fail because of the so-called added
mass effect. To resolve this problem we introduce fictitious methods and successfully
stabilize the simulations. We then investigate the effect of rotational friction Cf on the
stabilization effect of the fairings. In particular through two-dimensional (2D) simulations
we find that when the Reynolds number is low (Re¼100), Cf¼0 is the most effective
choice in suppressing VIV. Moreover, at this low Reynolds number there exists a critical
value of Cf around which large oscillations and non-symmetric trajectories are observed.
On the other hand, at higher Reynolds number (Re¼500) a different behavior emerges, i.e.
VIV are suppressed continuously as Cf increases. At Re¼1000, we perform 3D simulations
to investigate the effects of three-dimensionality of the flow on the vibration and rotation
responses. In this work we quantify numerically for the first time various salient features
of free-to-rotate devices for VIV suppression and relate them to modified flow structures
in the near wake.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In deepwater offshore oil operations, riser interference and vortex-induced vibrations (VIV) are severe problems for
risers, umbilicals and tendons in areas of strong currents. Such industry demands have greatly motivated the investigations
of various methods for suppressing vortex-induced vibrations either experimentally (Cimbala and Garg, 1991; Owen et al.,
2001; Assi et al., 2009, 2010, 2011; Korkischko and Meneghini, 2010) or numerically (Dong et al., 2008; Baek and
Karniadakis, 2009), over the past decades. In theory, an effective VIV suppression device should not only eliminate the
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Fig. 1. Coordinate system and symbol definition for fairing and cylinder motions. Here we use green to represent the cylinder and red to represent the
fairing, while the contact forces are marked by blue. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)

Y. Yu et al. / Journal of Fluids and Structures 54 (2015) 679–700680
vortex shedding, but also help in reducing the drag force thereby resolving the concern of the loads caused by strong
currents. To get a comprehensive review of solutions for VIV suppression, we refer the readers to the works of Zdravkovich
(1981) and Every et al. (1982) and the references therein. Among all these VIV suppression solutions, free-to-rotate
suppressors such as splitter plates and fairings with different shapes are widely studied and employed to mitigate VIV and
avoid interference as they reduce both drag forces and VIV (Cimbala and Garg, 1991; Assi et al., 2009, 2011). Assi et al. (2009)
found that with a pair of parallel plates installed on the sides of the cylinder, the maximum VIV suppression and drag
reduction occurred, and the level of rotational friction between the fairing and the cylinder played an important role.
Specifically, the rotational damping and friction needs to be high enough to stabilize the device and achieve a better
suppression performance. This requirement draws attention to the importance of parametric studies in fairing design and
analysis. Hence, the critical parameters for fairing stability and performance need to be identified, and the effects of varying
Reynolds number needs to be investigated. However, experimentally the hydrodynamic performance evaluation for fairings
is done by tank testing, which is expensive and very difficult to find model basis availability. On the other hand, although the
rotational friction is found to be a critical factor in the fairing effectiveness, it is difficult to determine it in the experimental
tests. Therefore, computational fluid dynamics (CFD) can be employed as a helpful tool for fairing design and analysis,
because it avoids schedule issues with testing, reduces the cost of testing, and provides possibilities of investigating the
effect of varying rotational friction. In the present work we will contribute to the understanding of a type of fairing (see
Fig. 1) employed in industry, by running fluid–structure interaction (FSI) simulations with our general purpose spectral
element solver NEKTAR. To the authors’ best knowledge, this is the first thorough numerical study of the VIV suppressing
performances for varying rotational damping and friction coefficients, and also for a fairing with a pair of parallel plates
attached. In the real world applications, the Reynolds number is higher than 10 000, hence requiring careful treatments and
also large computational costs in CFD. To gain some insights on the fairing effectiveness while keeping the computational
model simple, in this paper we will focus primarily on low Reynolds cases (Re¼100 and 500), which can be simulated as
two-dimensional problems. To evaluate the three-dimensional effects, we also conduct 3D simulations for the case
Re¼1000, which reveals similar trends as the ones observed in 2D simulations at Re¼500.

In the numerical simulations, we are going to adopt the partitioned method where the fluid–structure interaction system
is split into separate fluid and structure solvers, because of its better computational scalability and software modularity.
However, the partitioned procedure in the fairing simulations is problematic, because of the so-called added-mass effect
(Causin et al., 2005). Especially when the structure is light, or when the fairing has low rotational inertia, the added-mass
effect becomes stronger and severely affects the stability of the fluid–structure interaction (FSI) procedure. To resolve these
instabilities, a strong coupling is required to impose continuity at the interface at each time step. A number of approaches
have been developed more recently to accelerate the convergence of the partitioned algorithm, including the Robin-Robin
scheme (Astorino et al., 2009; Badia et al., 2008; Roux and Garaud, 2009), the interface artificial compressibility (Degroote
et al., 2010, 2011), the stabilized explicit method (Burman and Fernández, 2007, 2009), and our fictitious methods (Baek and
Karniadakis, 2012; Yu et al., 2013). In this work, we will adopt and generalize the fictitious methods, by developing a similar
modified governing equation for the fairing rotational equation. In this new fictitious inertia method, additional acceleration
terms are introduced in the structure solver to balance the added-mass effect caused by low rotational inertia and to provide
further stabilization for problems with large fairing rotations.

The paper is organized as follows. In Section 2 we describe the FSI governing equations and discretization methods:
firstly the governing equations of cylinder and fairing models are derived in Section 2.1 from conservation laws; then the



Fig. 2. Left: mesh and geometry for fluid solver, in the smaller domain simulations. Right: detailed mesh near the fairing and cylinder and structure
geometries; here we use green to represent the cylinder and red to represent the fairing. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)

Fig. 3. Fluid mesh in the larger domain simulations.
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numerical methods for the fluid and solid models are described in Sections 2.2.1 Sections 2.2.2, respectively; lastly, in
Section 2.3 we introduce the fictitious inertia method in the solid model, and summarize the FSI coupling procedure at each
time step for the full partitioned algorithm. Various tests are performed in Section 3 to investigate the related numerical
issues as well as to validate the numerical method. To demonstrate the effect of our method and investigate the optimal
fictitious coefficient, in Section 3.1 we apply the fictitious method with varying coefficients, and compare the averaged
subiteration numbers required for each time step. In Section 3.2, elements with different polynomial orders are employed,
to study the grid convergence of the spectral element method. With the optimal fictitious coefficients, in Section 4 we
provide a thorough parametric study on the fairings, with emphasis on their performances in VIV suppression and drag
force reduction. The critical parameters for fairing stability and performance, i.e., the rotational damping and friction, are
identified with two-dimensional (2D) simulations at Re¼100 and Re¼500, and with three-dimensional (3D) simulations at
Re¼1000. For the later case, the 2D and 3D simulation results are also compared to investigate the 3D effect. We end in
Section 5 with a brief summary. Additional details on the expression for friction between the cylinder and fairing are
derived in the appendix.
2. Formulation

In this section we will describe the formulation for VIV of a rigid, spring mounted cylinder, which is covered with fairings
as shown in Fig. 1. The cylinder is free to respond in both cross-flow and stream-wise directions. The fairing moves following
the cylinder, with an additional degree of freedom because it can rotate around the cylinder axis subjected to the
hydrodynamic torque. The equations for fairing and cylinder motions will be derived, and our fluid–structure interaction
procedure with fictitious methods will be employed to solve these equations. The geometry and mesh used in the following
derivations and simulations are shown in Figs. 2 and 3. To be more specific, the flow is simulated in two 2D domains: a
smaller domain ½�5;20� � ½�5;5� for Re¼100 and Re¼500, and a larger domain ½�10;40� � ½�10;10� for Re¼500 and
Re¼1000. For Re¼1000 case, 3D simulations are also conducted on an extruded 2D domain ½�10;40� � ½�10;10� � ½0;3�. A
solid cylinder of radius 0.5 is placed at the origin with a fairing surrounding the cylinder. At the inlet, a uniform steady flow
with U1 ¼ 1 is imposed, and at the outlet we employ zero Neumann boundary condition. Along the crossflow direction, a
periodic boundary condition is applied. Therefore, we are simulating the motions of an array of cylinders which are arranged
in the crossflow direction. The domain in Fig. 2 is of length 10 in the y direction, which yields a gap size between each two
neighboring cylinders as 10, while the larger domain in Fig. 3 gives a larger gap of size 20. Here we adopt a fairing geometry
as suggested in the industrial use: the fairing is composed by two parts: firstly the circular body part, which covers 3

4 of the
cylinder and centered at the cylinder center with radius 0.6; the other part is a pair of parallel plates attached to the top and
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bottom points of the fairing circular part (see the red part in Fig. 1). As shown in the right plot of Fig. 2, in the initial
configuration the plates are parallel to the stream-wise direction, with a length of 1.0, i.e., one cylinder diameter D. The mass
on fairing is assumed to be evenly distributed, and therefore in the initial configuration the fairing's center of gravity locates
at ð0:085;0Þ.

2.1. Cylinder and fairing models

The cylinder is assumed to be subjected to vortex-induced vibration with two degrees of freedom (DOF) in the (x, y)
plane. The fairing is in contact with the cylinder and is free to rotate. There is a small gap between the fairing and cylinder
with a single point of contact, where the fairing is pressed against the cylinder. As shown in Fig. 1, the system allows body
motions with five degrees of freedom, including the cylinder's horizontal and vertical motions (cx and cy), and the fairing's
horizontal, vertical motions (fx and fy) and rotational angle (θ). Here we define the following symbols to be used in the
equations of motions:
�
 CGc;CGf : gravity center of cylinder and fairing, respectively.

�
 a: distance from CGc to CGf.
�
 fc: coefficient of friction between the cylinder and fairing.

�
 Fchx; Fchy: hydrodynamic force applied on the cylinder in the x and y directions, respectively.

�
 kx; ky: cylinder spring constant in the x and y directions, respectively.

�
 Ffhx; Ffhy: hydrodynamic force applied on the fairing in the x and y directions, respectively.

�
 If: fairing rotational inertia about CGf.
�
 mc;mf : mass of cylinder and fairing, respectively.

�
 Mfh: hydrodynamic angular momentum applied on the fairing about CGf.
�
 R: cylinder radius.

�
 β: contact angle.

�
 Fn: cylinder-fairing normal contact force.

�
 Ft: cylinder-fairing tangential contact force.
To derive the equations of motions for the cylinder and fairing, we make the following assumptions:
1.
 There is no damping from the structure in translational and rotational directions.

2.
 The cylinder and the fairing are always in touch and have only one contact point.

3.
 The tangential contact Force Ft between the cylinder and the fairing is related to the normal contact force Fn following

Ft ¼ f cFn, where fc is proportional to the sign function of ∂θ=∂t with a constant sliding friction coefficient Cf, i.e.,

f c ¼ Cf sgn
dθ
dt

� �
: ð2:1Þ

Here Cf can be seen as an index for the rotational damping and friction. More details about this formula are provided in
Appendix A.

Based on these assumptions, the equations of motions for the cylinder are written about CGc:

mc
∂2cx
∂t2

þkxcx�Fn cos βþ f c sin β
� �¼ Fchx;

mc
∂2cy
∂t2

þkycy�Fn sin β� f c cos β
� �¼ Fchy; ð2:2Þ

and the equations of motions for the fairing are written about CGf:

mf
∂2f x
∂t2

þFn cos βþ f c sin β
� �¼ Ffhx;

mf
∂2f y
∂t2

þFn sin β� f c cos β
� �¼ Ffhy: ð2:3Þ

From Fig. 1 we can see that the gravity centers of the cylinder and fairing are geometrically related as

cx ¼ f x�a cosθ;
cy ¼ f y�a sin θ: ð2:4Þ

Substituting these expressions into (2.2), the equations of motion for cylinder become

mc
∂2f x
∂t2

þa
∂θ
∂t

� �2

cos θþ∂2θ
∂t2

sin θ

 !" #
þkx f x�a cosθ

� ��Fn cosβþ f c sinβ
� �¼ Fchx;
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mc
∂2f y
∂t2

þa
∂θ
∂t

� �2

sin θ�∂2θ
∂t2

cos θ

 !" #
þky f y�a sin θ

h i
�Fn sinβ� f c cosβ

� �¼ Fchy: ð2:5Þ

In addition, we can derive another equation from the conservation of angular momentum. The total angular momentum If €θ
about CGf should be equivalent to the resultant angular momentum exerted by cylinder-fairing contact force and the
hydrodynamic angular momentum Mfh from the fluid. To be more specific, the torque of the cylinder-fairing normal contact
force Fn about CGf is a sin ðβ�θÞ, and the torque of the cylinder-fairing tangential contact force Ft is �ða cos ðβ�θÞþRÞ.
Therefore, we have the resultant angular momentum as

MfhþFna sin ðβ�θÞ�Ftða cos ðβ�θÞþRÞ:
By substituting the relation Ft ¼ f cFn, the conservation of angular momentum can be expressed as

If
∂2θ
∂t2

�Fn a sin β�θ
� ��af c cos β�θ

� ��Rf c
� �¼Mfh: ð2:6Þ

Combining the equations of motion for the fairing (2.3) and the equations for cylinder (2.5), we obtain a system with
5 equations consisting of 5 unknowns ðf x; f y;θ;β; FnÞ:

mc
∂2f x
∂t2

þa
∂θ
∂t

� �2

cos θþ∂2θ
∂t2

sin θ

 !" #
þkx f x�a cosθ

� ��Fn cosβþ f c sinβ
� �¼ Fchx; ð2:7aÞ

mc
∂2f y
∂t2

þa
∂θ
∂t

� �2

sin θ�∂2θ
∂t2

cos θ

 !" #
þky f y�a sin θ

h i
�Fn sinβ� f c cosβ

� �¼ Fchy; ð2:7bÞ

mf
∂2f x
∂t2

þFn cos βþ f c sin β
� �¼ Ffhx; ð2:7cÞ

mf
∂2f y
∂t2

þFn sin β� f c cos β
� �¼ Ffhy; ð2:7dÞ

If
∂2θ
∂t2

�Fn a sin β�θ
� ��af c cos β�θ

� ��Rf c
� �¼Mfh: ð2:7eÞ

2.2. Fluid–structure interaction

The right hand sides in the governing equations (2.7) for cylinder and fairing indicate that the motions of cylinder and
fairing are subjected to the hydrodynamic forces and hydrodynamic angular momentum. On the other hand, the motions of
cylinder and fairing in turn change the fluid domain and the boundary conditions. Therefore, this is a coupled fluid–
structure interaction problem whose domain Ω is composed of two parts: the fluid subdomain Ωf ðtÞ occupied by the fluid,
and the structure subdomain Ωs occupied by the cylinder and fairing. There is a common boundary between the two
subdomains, which is the fluid–structure interface ΣðtÞ ¼Ωf ðtÞ \ Ωs. For the structure kinematics we solve the system (2.7)
with the Newton–Raphson procedure. On the other hand, the fluid problem is solved with the spectral element solver
NEKTAR (Karniadakis and Sherwin, 2005). The Navier–Stokes equation is stated in an arbitrary Lagrangian–Eulerian
framework (Hughes et al., 1981) since the fluid domain is changing with the movement of the cylinder and fairing. Roughly
speaking, we aim to solve for three sets of variables in this FSI system: the fluid velocity uðx; tÞ, the fluid mesh velocity
wðx; tÞ, and the 5 structure unknowns ðf x; f y;θ;β; FnÞ. Here x¼ xðtÞ and X are the position vectors in the deformed
configuration and initial configuration, respectively. In the current work, we will use the partitioned procedure as employed
by Baek and Karniadakis (2012) and Yu et al. (2013) to solve the fluid–structure interaction problem. To ensure the
continuity on the interface, subiterations are employed at each time step. In the following Sections, we will denote the
subiteration number by the subscript k, and the time step number by the superscript n.

2.2.1. Fluid solver
In the fluid model we employ the incompressible Navier–Stokes equation:

∂u
∂t

þ u�wð Þ �∇u¼ �∇p
ρf

þν∇2u in Ωf tð Þ; ð2:8aÞ

∇ � u¼ 0 in Ωf ðtÞ; ð2:8bÞ
combined with the initial condition

uðx; t ¼ 0Þ ¼ u0ðxÞ in Ωf ð0Þ; ð2:9Þ
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and the Dirichlet boundary conditions on the interface, i.e.,

u¼ ∂η
∂t

on Σ tð Þ; ð2:10Þ

which enforces the continuity of velocities. Here, w, p, ρf, and ν stand for the mesh velocity, pressure, fluid density, and the
kinematic viscosity, respectively; η is the displacement of the specific point at the cylinder or fairing surface, which can be
calculated from the structure simulation results as

ηðx; tÞ ¼

cxðtÞ
cyðtÞ

 !
þX on cylinder;

cxðtÞ
cyðtÞ

 !
þ

cos θðtÞ � sin θðtÞ
sinθðtÞ cosθðtÞ

 !
X on fairing:

8>>>>><
>>>>>:

ð2:11Þ

At each time step, the mesh position x will be obtained from the integration of the mesh velocity. To generate the mesh
velocity w, we define a “lifting” from the structure displacement on the interface: given the displacement on the interface
ηjΣ , we employ a harmonic extension mapping from the initial fluid configuration Ωf ð0Þ to the current configuration Ωf ðtÞ.
The mesh velocity w satisfies

∇2w¼ 0 in Ωf ðtÞ; ð2:12aÞ

w¼ ∂η
∂t

on Σ tð Þ; ð2:12bÞ

which is endowed with vanishing boundary conditions on the other boundaries:

w¼ 0 in ∂Ωf ðtÞ \ ΣðtÞ: ð2:13Þ

To solve Eqs. (2.8) and (2.12) numerically, we employ the Navier–Stokes solver NEKTAR (Karniadakis and Sherwin, 2005)
in which the spectral element method with Jacobi polynomial basis is used to represent the fluid velocity, fluid pressure and
mesh velocity. To integrate in time, we use a high-order splitting scheme with three parts: first the nonlinear terms are
treated explicitly, then the pressure is obtained by a Poisson equation solver, and finally the viscous terms are treated
implicitly (Karniadakis et al., 1991). In the strongly coupled FSI system, at time step n and subiteration step k, we solve for un

k
and pnk from previous time step results un� i and previous subiteration solution un

k�1 (Baek and Karniadakis, 2011):

~un�PJ
i ¼ 1 αiun� i

Δt
¼ �Nn

k�1; ð2:14aÞ

~~un� ~un

Δt
¼ �∇pnk

ρf
; ð2:14bÞ

γun
k�

~~un

Δt
¼ ν∇2un

k ; ð2:14cÞ

where

Nn
k�1 ¼ ðun

k�1�wn�1Þ �∇un
k�1; ð2:15Þ

and

un
k ¼

∂ηnk
∂t

on Σ tð Þ; ð2:16Þ

∂pnk
∂nf

¼ �ρf
∂2ηnk
∂t2

þν∇�∇� un
k�1þNn

k�1

 !
� nf on Σ tð Þ: ð2:17Þ

Here J denotes the time integration order, and αi, γ are the corresponding coefficients of the J-th order backward
differentiation formulas (Karniadakis and Sherwin, 2005). In (2.17), nf is the normal vector of fluid subdomain pointing
outward on the interface ΣðtÞ.

Similar to the Navier–Stokes equation, at each time step the mesh velocity is obtained by solving the Laplace equation
(2.12) with the spectral element method. The current configuration xðtÞ is updated from:

xn�PJ
i ¼ 1 α̂ ixn� i

Δt
¼
XJ
i ¼ 1

^̂α iwn� i: ð2:18Þ

Here α̂ i and ^̂α i are the coefficients for the corresponding time integration schemes, as given by Karniadakis et al. (1991). For
more details about the fluid solver, we refer the interested readers to the works of Yu et al. (2013).
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2.2.2. Structure (cylinder and fairing) solver
We discretize the structure system (2.7) in time with the Newmark scheme: for the object function a(t), based on the

current value an, previous time step values an�1, velocity approximation _an�1 and acceleration approximation €an�1, we can
approximate the acceleration and velocity at the n-th step as

_an ¼ _an�1þΔt ð1�D1Þ €an�1þD1 €a
n

� 	
; ð2:19aÞ

€an ¼ 1
Δt2D2

an�an�1�Δt _an�1�Δt2

2
1�2D2ð Þ €an�1

� �
; ð2:19bÞ

where we have used “�” to denote the approximated temporal derivative. Depending on the requirements of accuracy and
stability, different values can be set for the parameters ðD1;D2Þ. In the following, we will use the parameters ðD1;D2Þ
¼ ð0:5;0:25Þwhich lead to a second-order scheme. Substituting into (2.7), we obtain the discretized formulation for cylinder
and fairing equations in the strongly coupled FSI system at time step n and subiteration step k:

mc
€f x

� 	n
k
það _θ

n
k

� 	2
cos θn

kþ €θ
n

k sin θn
k Þ


 �
þkx f x

� �n
k�a cosθn

k

h i
� Fnð Þnk ð cosβn

kþ f c
� �n

k�1 sinβ
n
k Þ ¼ Fchxð Þnk�1; ð2:20aÞ

mc
€f y

� 	n
k
það _θ

n
k

� 	2
sin θn

k� €θ
n

k cos θ
n
k Þ


 �
þky f y

� 	n
k
�a sin θn

k

h i
� Fnð Þnk ð sinβn

k� f c
� �n

k�1 cosβ
n
k Þ ¼ Fchy

� �n
k�1; ð2:20bÞ

mf
€f x

� 	n
k
þ Fnð Þnk ð cos βn

kþ f c
� �n

k�1 sin βn
k Þ ¼ Ffhx

� �n
k�1; ð2:20cÞ

mf
€f y

� 	n
k
þ Fnð Þnk ð sin βn

k� f c
� �n

k�1 cos β
n
k Þ ¼ Ffhy

� �n
k�1; ð2:20dÞ

If €θ
n

k� Fnð Þnk a sin ðβn
k�θn

k Þ�a f c
� �n

k�1 cos ðβ
n
k�θn

k Þ�R f c
� �n

k�1

h i
¼ Mfh
� �n

k�1; ð2:20eÞ

where the hydrodynamic forces and angular momentum are updated from the following expressions:

Fchxð Þnk�1

Fchy
� �n

k�1

 !
¼
I
Σ tð Þc

nf � ½�pnk�1Iþ2ρf νð∇un
k�1þ ∇un

k�1

� �T Þ� ds; ð2:21Þ

Ffhx
� �n

k�1

Ffhy
� �n

k�1

0
@

1
A¼

I
Σ tð Þf

nf � ½�pnk�1Iþ2ρf νð∇un
k�1þ ∇un

k�1

� �T Þ� ds; ð2:22Þ

Mfh
� �n

k�1 ¼
I
Σ tð Þf

rðxÞ � ½�pnk�1Iþ2ρfνð∇un
k�1þ ∇un

k�1

� �T Þ� ds; ð2:23Þ

where Σ tð Þc is the interface between fluid and cylinder, Σ tð Þf is the interface between fluid and fairing, and rðxÞ is a vector
pointing from x to the fairing gravity center at the current configuration.

2.3. Fictitious FSI stabilization method

In industrial applications, the values of fairing rotational inertia If are generally very low. In this case, the convergence of
partitioned procedure is problematic because of the so-called added-mass effect (Causin et al., 2005). When the added-mass
effect is strong, due to the time lag between solid and fluid the energy balance of the coupling algorithm may be broken,
rendering the simulations unstable unless special treatments are introduced in the FSI algorithm (Burman and Fernández,
2009; Förster et al., 2007; Badia et al., 2008; Yu et al., 2013). In this work, additional acceleration schemes are employed to
enhance the convergence rate. To be more specific, the Aitken acceleration (Mok et al., 2001; Kuttler and Wall, 2008; Deparis
et al., 2006) and the fictitious methods (Baek and Karniadakis, 2012; Yu et al., 2013) are used. The combination of these two
approaches was shown to be successful in the previous study by Yu et al. (2013).

The main idea of the Aitken relaxation in the fluid solver (Mok et al., 2001; Borazjani et al., 2008) is to perform under-
relaxation at each sub-iteration step. At time step n and subiteration step k, we obtain the results ~cnk from the unrelaxed ones
cnk and a relaxation parameter τk, based on the following rule:

~cnk ¼ τk ~c
n
k�1þð1�τkÞcnk : ð2:24Þ

Here τk is updated according to the Aitken rule as described by Mok et al. (2001):

τk ¼ τk�1þ τk�1�1ð ÞðQ k�1�Q kÞ � Q k

JQ k�1�Q k J
2 where Q k ¼ ~cnk�1�cnk : ð2:25aÞ

To obtain a better control on the convergence rate, we can set the relaxation parameter τk within a range ½τmin; τmax�,
depending on the specific applications (Baek and Karniadakis, 2012).
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On the other hand, in the fictitious inertia method additional terms are introduced in (2.6) to balance the added-mass
operators. At time step n and subiteration step k, the discretized moment equation for fairing (2.20e) is replaced by

If ð1þ f IÞ €θ
n

k� Fnð Þnk ½a sin ðβn
k�θn

k Þ�a f c
� �n

k�1 cos ðβ
n
k�θn

k Þ�R f c
� �n

k�1� ¼ Mfh
� �n

k�1þ If f I
€θ
n

k�1; ð2:26Þ

where fI is the fictitious inertia coefficient. Here we note that when the subiteration converges, we have €θ
n

k � €θ
n

k�1.
Therefore, the scheme (2.26) with fictitious inertia method should converge to the same results as the original scheme of Eq.
(2.20) at the end of each time step. Moreover, as discussed by Yu et al. (2013), the fictitious method works the best if it
approximates an exact coupled algorithm, which happens when If f I is close to the actual added-mass operator. In the
applications with complicated geometries such as the fairings here, we cannot obtain any reasonable analytical value for the
optimal fictitious coefficient If. Therefore, we will investigate this optimal coefficient from numerical tests in Section 3.1.

In summary, at the n-th time step, we solve the FSI system following the fixed point algorithm:
1.
 Set

ðSolidÞ f x
� �n

0 ¼ f x
� �n�1

; ðf yÞn0 ¼ ðf yÞn�1; θn
0 ¼ θn�1

; βn
0 ¼ βn�1

; Fnð Þn0 ¼ Fnð Þn�1; ð2:27aÞ

ðFluidÞ un
0 ¼ un�1; pn0 ¼ pn�1: ð2:27bÞ
2.
 for k¼ 1: kmax, do
(a) (Solid) Solve the cylinder/fairing equations (2.26) with hydrodynamic forces generated as in (2.21) and (2.22) and

hydrodynamic angular momentum as in (2.23), then update the cylinder/fairing results

ððf xÞnk ; ðf yÞnk ;θn
k ;β

n
k ; Fnð Þnk Þ:

(b) (Solid) From ð f x
� �n

k ; f y
� 	n

k
;θn

k ;β
n
k ; Fnð Þnk Þ, calculate the velocity and acceleration approximations based on the Newmark

scheme (2.19a).
(c) (Solid) Generate ηnk at the fluid–structure interface following (2.11) and approximate velocity approximation _ηn

k and
acceleration approximation €ηn

k . Pass these approximations to the fluid solver.
(d) (Fluid) Update the velocity boundary condition un

k ¼ _ηn
k and the pressure boundary condition ∂pnk=∂nf ¼ �ρf €ηn

kþ
�

ν∇� ∇� un
k�1þNn

k�1Þ � nf at the interface.
(e) (Fluid) Solve the Navier–Stokes equation (2.14), and obtain updated velocity and pressure ðun

k ; p
n
k Þ.

(f) (Fluid) Apply the Aitken relaxation on un
k to obtain the relaxed velocity ~un

k .
(g) (Fluid) Calculate the normal stress �½�pnk Iþρfνð∇ ~un

kþ ∇ ~un
k

� �T Þ�nf at the interface.
(h) (Fluid) Pass the normal stress at the interface to the structure solver.
(i) (Fluid) Check convergence: if

J ~un
k� ~un

k�1 J ; Jpnk�pnk�1 Joϵ; ð2:28Þ

set k¼ kmax and update the results as

ðSolidÞ f x
� �n ¼ ðf xÞnk ; ðf yÞn ¼ ðf yÞnk ; θn ¼ θn

k ; β
n ¼ βn

k ; Fnð Þn ¼ ðFnÞnk ; ð2:29aÞ

ðFluidÞ un ¼ ~un
k ; p

n ¼ pnk : ð2:29bÞ

Else, continue to the ðkþ1Þ-th subiteration.

3.
 (Mesh) Update the mesh velocity boundary condition at the interface with wn ¼ _ηn.

4.
 (Mesh) Obtain the mesh velocity wn by solving (2.12).

5.
 (Mesh) Update the mesh positions for the fluid subdomain using the numerical integration as in (2.18).

6.
 Go to time step nþ1.

3. Numerical tests

In this section, we present a series of numerical tests on the fairings' suppression of vortex-induced vibrations, to validate
the numerical method employed in this paper. With these tests, we aim to demonstrate the capability of our fictitious
inertia method in stabilizing the fluid–structure interaction simulations, and to investigate the grid convergence by
increasing the polynomial order of the spectral elements. On the smaller domain shown in the left plot of Fig. 2, we consider
cases with two Reynolds numbers based on the cylinder diameter D¼1: Re¼100 and Re¼500. All the simulations are
performed with the physical and numerical parameters summarized in Table 1 unless stated otherwise. All the parameters
are in non-dimensional units. Note that the mass ratio between cylinder and fairing is mc=mf ¼ 6, which is consistent with
the settings in industrial use.



Table 2
Averaged subiteration number for VIV test for Cf¼0. When Re¼100, Δt ¼ 0:0025; when Re¼500, Δt ¼ 0:0005.

Re¼100

fI 0.0 0.5 1.0 1.5 2.0(opt) 2.5 3.0 4.0 5.0 7.0 10.0 15.0
Avg subiter No conv 13.8 10.1 8.6 7.7 7.9 8.0 8.0 8.1 8.2 8.3 8.6

Re¼500

fI 0.0 0.5 1.0 1.5 2.0 2.5(opt) 3.0 4.0 5.0 7.0 10.0 15.0
Avg subiter No conv 12.8 9.3 7.9 7.5 7.3 7.7 8.2 8.3 8.7 9.3 9.7
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Fig. 4. Pressure change between each two subiteration steps in the first time step, when Re¼100 and Cf¼0.0. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this article).

Table 1
Non-dimensional parameters used in the numerical simulations.

Parameter Value

Cylinder diameter D 1.0
Fairing circular part diameter 1.2
Free-stream velocity U 1.0
Cylinder natural frequency fN 0.215
Reduced velocity Un ¼U=f ND 4.65
Cylinder mass mc 6.0
Fairing mass mf 1.0

Cylinder spring constant kx ; ky ¼ 4π2mcf
2
N

10.949

Fairing rotational inertia If 0.6
Cylinder-fairing gravity center distance a 0.0851
Fluid density ρf 1.0
Element polynomial order 3

Y. Yu et al. / Journal of Fluids and Structures 54 (2015) 679–700 687
3.1. Effect of fictitious method

Before performing the simulations, we first investigate the numerical performance of our fictitious inertia method and
look for the optimal fictitious coefficient. With Cf¼0, various values of fI from 0.0 to 15.0 are tested and the averaged
subiteration numbers needed for each fI are compared in Table 2. The optimal fictitious coefficient fI will be employed in all
the simulations in Section 4.
3.1.1. Re¼100
For the case Cf¼0 and time step size Δt ¼ 0:0025, we study systematically various values of fI. To demonstrate the effect

on accelerating the convergence, we take the average of subiteration numbers over one vortex shedding cycle (Strouhal
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period) as a comparison index. In the first part of Table 2 we list these averaged subiteration numbers with different
fictitious coefficients, where the value nearest to the optimal is marked by “(opt)”. To illustrate the effect of various fictitious
coefficients more clearly, in Fig. 4 we plot the pressure changes of each subiteration in the first time step, for four cases with
different If. From the results we can see that when no fictitious method is applied (fI¼0.0), the subiteration diverges in the
first time step. Therefore, the fictitious inertia method helps stabilizing the simulations and accelerating the subiteration
convergence. Among all cases, the best performance is achieved when fI¼2.0, which would be the coefficient we employ for
all the Re¼100 simulation cases in Section 4.

3.1.2. Re¼500
For Reynolds number Re¼500 cases, a smaller time step size Δt¼0.0005 is employed to enhance the stability and

accuracy. We also investigate the optimal fictitious coefficient through performing numerical tests for the Cf¼0. The
averaged subiteration numbers over one vortex shedding cycle (Strouhal period) are computed for fI from 0.0 to 15.0, and
listed in the second part of Table 2. Here the value nearest to the optimal is also marked with “(opt)”. Since the subiteration
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Fig. 5. Computational results from increasing polynomial orders with Cf¼0.25 and Re¼500, on the larger domain. Left column: motion variables
ðcx; cy; θ; β; FnÞ; right column: total hydrodynamic drag/lift forces and fairing angular momentum. Upper row: amplitudes of vibration in each cycle. Middle
row: averages of cyclic response. Bottom row: frequencies of cyclic response. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this article.)
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is not converged when fI¼0.0, in this higher Reynolds number case the fictitious inertia method is also required to stabilize
the fluid–structure interaction simulations. On the other hand, the smallest subiteration number is obtained by fI¼2.5,
which is close to the optimal fictitious coefficient for the Re¼100 case. This implies that the added-mass operator does not
change much with the increase of Reynolds number. In the remaining simulations of Re¼500 cases, the fictitious inertia
method with fictitious coefficient fI¼2.5 will be applied.

3.2. Grid convergence

We now study the grid convergence of the fairing simulation following the method described by Mittal and Kumar (2003), by
comparing the results from elements with varying polynomial orders 2�6. Here the larger domain shown in Fig. 3 is employed,
and all tests are on the case of Re¼500 and Cf¼0.25. The amplitudes of vibration, the averages and frequencies in each cycle are
provided in the right column of Fig. 5 as functions of element order, with different colors and symbols representing the results of
different variables of ðcx; cy;θ;β; FnÞ. We can see that the responses from order 2 elements are almost the same as those from the
order 6 elements, i.e., the p–refinement does not change much of the simulation results. On the other hand, in the left column of
Fig. 5 we show the results of hydrodynamic forces and angular momentum, where the hydrodynamic forces are calculated as the
total forces on the whole structure system including the fairing and cylinder, and the hydrodynamic angular momentum is
calculated on the fairing only. Similarly, the results do not vary much while increasing the element polynomial order. Therefore in
the rest of the current paper we are going to employ the third order elements for all simulations, since this grid convergence test
shows that such a grid should have enough spacial resolution.

4. Simulation results

Before comparing the fairing performances from different values of Cf, we first study the typical VIV responses for the
fairing-cylinder system over a range of cylinder natural frequencies f N ¼ 0:5�0:1, which corresponds to reduced velocities
Un ¼ 2:0�10:0. At Re¼100, Cf¼0.25, the system amplitude and frequency responses are plotted as functions of increasing
Un in Fig. 6. We can observe similar results as those in the plain cylinder VIV cases (Williamson and Govardhan, 2004): the
largest oscillation amplitudes are achieved when the reduced velocity Un is around 4.65, and a departure from the fixed
body shedding frequency 0.168 can be seen for the resultant oscillation frequency in the direction transverse to the flow.

Next we present the simulation results from various friction coefficient Cf from 0.0 to 0.5 to study the influence of rotational
friction on the fairing effectiveness in suppressing VIV. Fig. 7 presents the instantaneous pressure coefficient contours and
velocity vectors when the cylinder is crossing the centerline from bottom to top, i.e., when the transverse velocity of cylinder
reaches the maximum. Here the pressure coefficient is defined with respect to the pressure at a upper stream point ð�5;0Þ as

Cp x; yð Þ ¼ 2ðpðx; yÞ�pð�5;0ÞÞ
ρf U

2
1

:

To provide a comparison and demonstrate the effects of fairing more clearly, Fig. 8 shows the instantaneous pressure coefficient
contours and velocity vectors obtained from plain moving cylinder, i.e., without any fairing. In Figs. 9 and 10 we show trajectories
of motions and forces along various values of friction coefficient, for Re¼100 and Re¼500, respectively, compared with the
response of a plain cylinder (in red). The amplitudes of vibration, the averages and frequencies in each cycle are provided in
Fig. 11 as functions of friction coefficient Cf for both Re¼100 (in the left column) and Re¼500 (in the right column), with
different colors and symbols representing the results of different variables of ðcx; cy;θ;β; FnÞ. Similarly, in Fig. 12 we show the
results of hydrodynamic forces and angular momentum.
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Fig. 7. Instantaneous pressure coefficient contours and velocity vectors for fairing cases, when the cylinder is crossing the centerline from bottom to top.
Left column: Re¼100; right column: Re¼500 (small domain). First row: Cf¼0.0; second row: Cf¼0.1; third row: Cf¼0.2; fourth row: Cf¼0.3.

Fig. 8. Instantaneous pressure coefficient contours and velocity vectors for plain cylinder cases, when the cylinder is crossing the centerline from bottom to
top. Left: Re¼100; right: Re¼500 (large domain).
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Fig. 11. Computational results of ðcx ; cy; θ; β; FnÞ from increasing Cf. Left column: Re¼100; right column: Re¼500 (small domain). Upper row: amplitudes of
vibration in each cycle. Middle row: averages of cyclic response. Bottom row: frequencies of cyclic response. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this article.)
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4.1. Re¼100

Comparing the velocity vectors in the left column of Fig. 7 with the results from the plain cylinder in Fig. 8, it can be
observed that in all the cases with fairing the instantaneous transverse velocities of cylinder are smaller than that from the
plain cylinder simulation. Regarding the pressure coefficient contours, when Cf¼0.2 the pressure contours show a region of
lower pressure developed along the upper side of the upper fairing plate especially, which indicates a stronger transverse
force in the same direction as the cylinder motion comparing with that in the lower Cf cases. As we further increase Cf to 0.3,
there also exists a lower pressure region near the cylinder and fairing. However, this region is attached at the tip of the
upper fairing plate instead of covering the whole upper side of the fairing plate as in the Cf¼0.2 case. This suggests that the
shear layers that stem from the cylinder are now attached to the tip of fairing plate, and this pattern has the effect of
stabilizing the near wake flow. Therefore, the transverse force developed in the Cf¼0.3 case should be smaller than that in
the Cf¼0.2 case. The above observations are further reinforced in Figs. 9 and 11. In the upper plot of Fig. 9 we can see that
the cylinder motion trajectories with fairing show lower amplitudes of vibration for both the streamwise and transverse
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Fig. 12. Computational results of total hydrodynamic drag/lift forces and fairing angular momentum from increasing Cf. Left column: Re¼100; right
column: Re¼500 (small domain). Upper row: amplitudes of vibration in each cycle. Middle row: averages of cyclic response. Bottom row: frequencies of
cyclic response. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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responses than those for a plain cylinder. However, this is not evident from computing the hydrodynamic forces. Although in
all cases the fairing helps reducing the amplitude of drag forces, when Cf o0:3 the hydrodynamic lift forces with fairing are
even higher than that computed for the plain cylinder. While comparing the effects of different Cf values, among all cases
Cf¼0.0 performs the best in suppressing VIV and reducing the drag force. On the other hand, in the left column of Fig. 11 it is
especially worth noticing that when Cf is around 0:15�0:2, the amplitudes of vibration and the averages of all variables
reach the maximum. Moreover, in the upper plot of Fig. 9 we can observe that only the Cf¼0.15 and Cf¼0.2 cases generates a
non-symmetrical cx�cy trajectory. Therefore, in this low Reynolds number case Cf ¼ 0:15�0:2 seems to be a critical value
for the dynamic responses.

In summary, when Re¼100 the fairing in all cases helps in reducing the displacement responses and the hydrodynamic
drag forces, but not the hydrodynamic lift forces applied on the cylinder and fairing. To achieve the best performance in VIV
suppression and drag reduction, Cf¼0.0 is the most effective choice. Moreover, there exists a critical value of the friction
coefficient Cf around 0:15�0:2: when Cf is lower than this value, larger values of Cf are less effective in VIV suppression. On
the other hand, when Cf exceeds this critical value, further increasing Cf will help more in suppressing the VIV.
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4.2. Re¼500 (small domain)

Similar to the results for Re¼100, when Re¼500 trajectories of motion and force for various values of friction coefficient
are presented in Fig. 10. Compared with the trajectory of the plain cylinder (in red), the fairing is found to suppress not only
the cylinder displacements but also the hydrodynamic forces. While considering the effect of different values of Cf, in the
right column of Fig. 11 the computations of responses suggest that a higher Cf is generally more effective in suppressing VIV
for the cylinder displacements and fairing rotational angle. In contrast to the findings in the Re¼100 cases, there exists no
obvious critical value of Cf in the Re¼500 cases. The trajectory patterns are more complicated for all fairing cases when
Re¼500, as all the cylinder motion trajectories are non-symmetric. On the other hand, the motion trajectory in the plain
cylinder case shows a more complicated behavior: a quasi-periodic flow occurs because of the secondary frequency in the
x displacement time trace, as displayed in the left plot of Fig. 13. To investigate the cause, we increase the cylinder gap size
from 10 to 20 and show the results in the right plot of Fig. 13: the secondary frequency disappears and the cylinder motion
becomes periodic. Therefore, this secondary frequency is generated from the effect of the periodic boundary condition in the
vertical direction i.e., the influences from neighboring cylinders. Therefore, the pressure contour and velocity vector results
of plain cylinder case for Re¼500 in Fig. 8 are generated from the simulation on the large domain as shown in Fig. 3. In the
next section, we will further investigate the results from this larger domain. The comparison of the velocity vectors in Fig. 8
and those in Fig. 7 also implies that the fairing helps reducing the magnitudes of cylinder transverse velocities. Comparing
the pressure coefficient contours at Re¼100 to that at Re¼500, we can see that when Re¼500 the lower pressure regions
are attached at the tip of the upper fairing plate, which is close to the pattern we observed in the Re¼100, Cf¼0.3 case.
Therefore, we can expect that the transverse forces are reduced in the fairing cases. Moreover, in the Re¼500 cases, when Cf
increases the low pressure region expands more to the tip of the lower fairing plate, which indicates a smaller
transverse force.

In summary, when Re¼500 the fairing helps to reduce both the displacement responses and the hydrodynamic forces,
and the device with higher Cf works more effectively. This finding is also consistent with the experiments in the works of
Assi et al. (2009, 2011) where fairings with different designs were employed and tested.
4.3. Re¼500 (large domain)

In this section, a larger domain as shown in Fig. 3 is employed, to diminish the influences of neighboring cylinder
interactions and outflow boundary conditions. For the plain cylinder case, the amplitude of cylinder transverse
displacement is slightly increased compared to the results from the smaller domain, namely from 0.516 to 0.575. Regarding
the fairing cases, this larger domain also generates approximately 10% larger vibration amplitudes for ðcx; cy;θ;β; FnÞ and
hydrodynamic forces. The increased rotational angle θ is problematic while updating the mesh in the arbitrary Lagrangian
Eulerian (ALE) framework (2.12) for the cases with Cf r0:15. As illustrated in the left plot of Fig. 14 where the simulation
starts from developed flow around the static cylinder and fairing at time 0, it can be observed that the amplitude of
rotational angle grows rapidly and reaches 0.24 at the time instant marked by a green circle. At that time instant, the right
plot of Fig. 14 demonstrates the updated mesh generated from ALE, in which the mesh is greatly distorted near the fairing
tips. The aspect ratios of the nearby elements become very small, which renders the simulation unstable. To resolve this
problem, we note that our fictitious inertia method (2.26) can not only balance the added-mass effect, but also play as a
relaxation for the rotational angle. When Cf¼0.15, we take a large fictitious coefficient If¼200 at the starting stage, then
graduatly decrease it to the optimal coefficient If¼2.5 after a periodic fluctuation is reached. On the other hand, if we further
investigate a smaller friction coefficient Cf¼0.1, the amplitude of θ reaches θ¼ 0:35 at the starting stage. To stabilize this
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case, a further larger fictitious coefficient If is required, which however greatly slows down the subiteration convergence as
can be seen in Table 2. Fortunately, we are less interested in the small friction coefficient cases since they are less effective in
suppressing VIV, as studied in the previous section. Therefore, in this section we concentrate on the simulation results for
Cf 40:1 cases.

To be consistent with the results in Fig. 8, we also define the pressure coefficient with respect to the pressure at ð�5;0Þ,
and observe the same patterns as that in the corresponding cases on small domain. Similar as the plots for small domain
results, in Fig. 15 we display the trajectories of motions and forces, and in Fig. 16 the amplitudes of vibration, the averages
and frequencies are plotted as functions of Cf. Comparing these plots with the results in Figs. 7–12 in the last section, we can
see that although the vibration amplitudes and trajectory patterns vary, the main observation in Section 4.2 still holds:
fairings with larger Cf are generally more effective in suppressing both the cylinder motions and hydrodynamic forces.
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4.4. Re¼1000 (2D and 3D simulations)

In this section, we study the three-dimensional (3D) flow around the fairing at Re¼1000, and the results will be
compared with those from the two-dimensional (2D) simulations. To generate a 3D fairing geometry, the 2D fairing
geometry depicted in the right plot of Fig. 2 is extruded along the z-direction, by a length of three times of the cylinder
diameter. The inflow and outflow boundary conditions are imposed similar to the 2D flow simulations, and the periodic
boundary condition is applied along the z-direction. The simulations are preformed on the 3D extrusion of the large
computational domain employed in Section 4.3, i.e., on a ½�10;40� � ½�10;10� � ½0;3� computational domain. We first
investigate the flow around a static fairing. In Fig. 17 we show the time traces of drag and lift force coefficients. A transition
phase from 2D to 3D flow can be observed: when the time is around 34, both the drag and lift force coefficients drop quickly
and the non-periodic traces begin to appear. Therefore, when the flow becomes 3D, using the 2D simulations tends to
overestimate the hydrodynamic drag and lift forces acting on the static fairing. To further investigate the development of 3D
effects, in Fig. 18 we display three instantaneous contours for the velocity in z� direction, at the y¼0 plane, with the
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Fig. 18. Transition to three-dimensionality (static configuration): instantaneous velocity contour in the z-direction on the y¼0 plane, where the two blank
strips are in fact the cylinder and fairing. (a) time t¼28, the flow is at 2D state; (b) time t¼48, the flow is at transition state; (c) time t¼175, the flow is at
fully developed 3D state.
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corresponding time instants marked by black lines in Fig. 17: (a) at 2D state, (b) at transition state and (c) at fully developed
3D state. We can see that in the transition state (b) the magnitudes of the velocity in z–direction are already of order Oð1Þ.
This observation further suggests that for Re Z1000 cases the 3D effects are non-negligible. Bearing this fact in mind, we
now study the flow around a moving fairing, with varying friction coefficients Cf from 0 to 0.5. Here a large rotational inertia
of fairing If¼6.0 is adopted, to avoid the failure of ALE formulation caused by the significant fairing rotation observed in
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Fig. 14. In 3D simulations, the vibration responses of fairing and cylinder are no longer periodic in time. To compare the
simulation results between the 2D and 3D cases, we employ the root-mean-square of the vibration responses as the
comparison index. In Fig. 19, the vibration responses of cx, cy and θ at Re¼1000 are displayed, which shows that the 2D
assumption increases the vortex shedding in the transverse direction and thereby results in higher vibration responses.
Moreover, the 3D effects also change the trend of vibration responses from increasing friction coefficient Cf. In 2D
simulations the root-mean-square of the resultant cylinder displacements and rotational angles increases when we use a
larger Cf, suggesting that among all the tests, the case with lowest friction coefficient Cf¼0.1 is the most effective one. On the
other hand, 3D simulations show opposite results: the vibration responses reach their minimums when using large friction
coefficient Cf¼0.5, which is more consistent with the previous observations from experiments (Assi et al., 2009) and from
our 2D simulation results in Section 4.3.1

5. Conclusion

In this paper, we investigate the effectiveness of a specific model for a fairing geometry for VIV suppression used by the
offshore oil industry in deepwater drilling, and numerically study its stabilization effect at different Reynolds numbers
Re¼ 100�1000. The simulations were mostly conducted in two-dimensions, however, three-dimensional effects were also
investigated for large Reynolds numbers Re¼500 and 1000. To resolve the numerical instabilities caused by the relatively
low rotational inertia of the fairings, we extended the fictitious mass method to the fictitious inertia method, which is
effective in stabilizing the FSI procedure in two ways: firstly, in balancing the added-mass effect, and secondly, when fairing
rotational angle is as large as 0.25, a large fictitious inertia If is needed for stabilization at the starting stage. Moreover, the
fictitious inertia method can be easily implemented in open source codes, e.g., OpenFOAM (http://www.openfoam.com). The
effects of varying the rotation friction between the riser and the fairing were investigated by comparing the vibration
responses at different friction coefficients Cf. We found that at a low Reynolds number Re¼100 there exists a critical value of
friction coefficient Cf, around which large oscillations and non-symmetric trajectories occur. On the other hand, at Re¼500 a
1 To complete the investigation, we have also tested the 3D simulations for Re¼500 and obtained almost the same results as what illustrated in Section
4.3. Here we omit the details to avoid redundancy.

http://www.openfoam.com
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different behavior emerges, i.e., VIV are suppressed continuously as Cf increases. When we further increased the Reynolds
number to Re¼1000, three-dimensionality becomes important and the vibration amplitudes are two to three times smaller
than their two-dimensional counterparts. Regarding the numerical aspects, we also found that a small computational
domain, i.e. gap size between cylinders, might lead to a quasi-periodic result for the plain cylinder case, hence a larger
domain is required to diminish the influence of periodic boundary conditions. However, in larger domain simulations, the
main observations on fairing performance still hold.

In ongoing work we address high Reynolds number flow simulations, e.g., Re¼10 000, which cannot be easily done with
direct numerical simulations (DNS) and large-eddy simulations (LES) are required. In particular we investigate the effect of
fairings which are non-continuous along the span of cylinder. Preliminary results suggest that the gap between adjacent
fairing segments may have a significant effect in further reducing VIV but also the drag force and may totally suppress the
vortex street, hence eliminating VIV all together. We will report a systematic study from these simulations in a future
publication.
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Appendix A. Expression for coefficient of friction between the cylinder and fairing

To evaluate the relative velocity of fairing with respect to the cylinder, we consider the expressions of cylinder/fairing
velocities at the contact point C. Since the cylinder does not rotate, every point on it has the same velocity as CGc. Therefore,
the tangential velocity of point C on the cylinder can be expressed as

∂cx
∂t

sin β�∂cy
∂t

cos β: ðA:1Þ

On the other hand, now we consider the fairing side. Along the x direction, we have the velocity of fairing gravity center CGf

as ∂f x=∂t, the relative velocity of CGc to CGf as að∂θ=∂tÞ sin θ, and the relative velocity of contact point to CGc as Rð∂θ=∂tÞ sin β.
Therefore, the velocity of point C along x direction is

∂f x
∂t

þa
∂θ
∂t

sin θþR
∂θ
∂t

sinβ; ðA:2Þ

and the velocity along the y direction can be similarly written as

∂f y
∂t

�a
∂θ
∂t

cos θ�R
∂θ
∂t

cosβ: ðA:3Þ

Based on (A.2) and (A.3), we have the tangential velocity of point C on the fairing as

∂f x
∂t

þa
∂θ
∂t

sin θþR
∂θ
∂t

sinβ
� �

sinβ� ∂f y
∂t

�a
∂θ
∂t

cos θ�R
∂θ
∂t

cosβ
� �

cosβ: ðA:4Þ

Combining (A.1) with the geometry relation (2.4), we can rewrite the tangential velocity expression on the cylinder side as

∂f x
∂t

þa
∂θ
∂t

sin θ
� �

sinβ� ∂f y
∂t

�a
∂θ
∂t

cos θ
� �

cosβ: ðA:5Þ

Subtracting (A.5) from the tangential velocity on the fairing side (A.4), we have the relative tangential velocity of fairing to
cylinder at point C as Rð∂θ=∂tÞ. Therefore, the coefficient of friction between the cylinder and fairing should be proportional
to the sign function of ∂θ=∂t. Note that sgn ∂θ=∂t

� �
is not a C1 function since it has a jump when ∂θ=∂t ¼ 0. In the numerical

simulations, this formulation might cause problems known as the Gibbs phenomena. Therefore, we employ a smoothed
expression for fc as

f c ¼ �Cf sgn
∂θ
∂t

� �
exp

�0:001
∂θ
∂t

�� ��
 !

in all the numerical simulations.
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