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The primary objective of this study is to introduce a stochastic framework based on generalized polynomial
chaos (gPC) for uncertainty quantification in numerical ocean wave simulations. The techniques we
present can be easily extended to other numerical ocean simulation applications. We perform stochastic
simulations using a relatively new numerical method to simulate the HISWA (Hindcasting Shallow Water
Waves) laboratory experiment for directional near-shore wave propagation and induced currents in a
shallow-water wave basin. We solve the phased-averaged equation with hybrid discretization based
on discontinuous Galerkin projections, spectral elements, and Fourier expansions. We first validate the
deterministic solver by comparing our simulation results against the HISWA experimental data as well
as against the numerical model SWAN (Simulating Waves Nearshore). We then perform sensitivity anal-
ysis to assess the effects of the parametrized source terms, current field, and boundary conditions. We
employ an efficient sparse-grid stochastic collocation method that can treat many uncertain parameters
simultaneously. We find that the depth-induced wave-breaking coefficient is the most important param-
eter compared to other tunable parameters in the source terms. The current field is modeled as random
process with large variation but it does not seem to have a significant effect. Uncertainty in the source
terms does not influence significantly the region before the submerged breaker whereas uncertainty in
the incoming boundary conditions does. Considering simultaneously the uncertainties from the source
terms and boundary conditions, we obtain numerical error bars that contain almost all experimental
data, hence identifying the proper range of parameters in the action balance equation.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

We first present an overview of the action balance equation
along with the numerical model, a description of the HISWA
experiment, and a review of the stochastic modeling approach
we employ. We then present the objectives of this work and the
organization of the rest of the paper.

1.1. Phase-averaged equation and source terms

We model ocean waves through the spectral ocean wave
equation (Holthuijsen, 2007; Young, 1999) also referred to it as
phased-averaged model. We solve for the energy density (or action
density) to obtain important statistical wave parameters, such as
the significant wave height, mean wave period, etc. The phase-
averaged model is well suited for slowly varying wave fields, such
as ocean waves in deep water, and it is more appropriate for large
spatial domains (Battjes, 1994). In contrast, the model simulating
the surface elevation in space and time is called phase-resolving,
and is more efficient for waves in a small region of the sea such
as a harbor (Battjes, 1994). The spectral ocean representation is
essentially a superimposition of many different linear harmonic
waves to represent complex ocean surface waves.

Today, most operational ocean codes employ the phase-
averaged model. Some of the most well-known codes are SWAN
(Simulating Waves Near-Shore) available from http://
www.swan.tudelft.nl/, ECWAM (European Center Wave Model)
available from http://www.ecmwf.int/, and NOAA’s WAVEWATCH
available from http://polar.ncep.noaa.gov/waves/. These estab-
lished operational wave codes employ up to third-order of finite
difference discretization in Tolman (1995) for spatial derivatives.
To be able to construct arbitrary order of discretization with this
new scheme is its biggest advantage over the traditional discretiza-
tion methods. Although finite difference on structured mesh is an
established and efficient method and relatively easy to implement,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2014.12.001&domain=pdf
http://www.swan.tudelft.nl/
http://www.swan.tudelft.nl/
http://www.ecmwf.int/
http://polar.ncep.noaa.gov/waves/
http://dx.doi.org/10.1016/j.ocemod.2014.12.001
mailto:yildirim@stanford.edu
http://dx.doi.org/10.1016/j.ocemod.2014.12.001
http://www.sciencedirect.com/science/journal/14635003
http://www.elsevier.com/locate/ocemod


16 B. Yildirim, G.E. Karniadakis / Ocean Modelling 86 (2015) 15–35
it is not well suited for complex geometries, e.g. in coastal applica-
tions. Recent effort to use finite difference on unstructured mesh
for spectral wave model can be found in the work of Zijlema
(2010). On the other hand, the finite element (FE) and finite vol-
ume (FV) methods that work on a general grid offer an accurate
and efficient algorithm. Recent works have incorporated these
methods into the wave models to handle complex coastal bound-
aries (Hsu et al., 2005; Qi et al., 2009).

1.2. High-order numerical model

Recently we introduced a new numerical method for the spec-
tral ocean wave equations (Yildirim and Karniadakis, 2012), which
is distinctively different from previous approaches (Booij et al.,
1999; Hsu et al., 2005; Qi et al., 2009; Zijlema, 2010) and employs
high-order discretization. Specifically, we compute the spectral
space derivatives by Fourier-collocation while we discretize the
physical space using a discontinuous Galerkin (DG) method
(Yildirim and Karniadakis, 2012; Karniadakis and Sherwin, 1999;
Hesthaven and Warburton, 2007; Cockburn et al., 2000). The DG
discretization in geophysical space is performed on an unstruc-
tured grid to handle the complex boundaries. The overall scheme
has exponential convergence rather than algebraic convergence
typical of low-order schemes. We have verified the exponential
convergence in both the geophysical and spectral spaces in previ-
ous work (Yildirim and Karniadakis, 2012). The low-order methods
associated with strong numerical dissipation and phase errors
smear out the amplitude of solution and shift the position of it.
In long time integrations, the accumulated numerical dissipation
and phase errors become so large that accurate simulation is not
possible. Numerical diffusion test case for first order scheme pre-
sented in Booij et al. (1999) shows that first-order scheme is not
suitable for the long distance wave propagation. High-order dis-
cretization is particularly effective for long-time integration, which
is typically required to eliminate the associated dissipation and
phase errors in the deep ocean wave simulations.

1.3. HISWA tank experiment

The HISWA experiment (Dingemans, 1987; Dingemans et al.,
1986) is a laboratory experiment conducted for random, short-
crested waves to validate numerical spectral ocean models
(Holthuijsen et al., 1989). This is benchmark experiment that pro-
vides measurements for comparisons with simulations and it is
one of the most comprehensive works for wave propagation in a
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Fig. 1. HISWA experiment: sensor locations and bathym
laboratory. It includes three different bathymetry shapes as (1) a
flat basin, (2) a simple one (fully cylindrical bar), and (3) a compli-
cated one (semi-cylindrical bar with a rounded head), as well as
many different operating and boundary conditions. The water level
is set to 40 cm from the flat bottom. We chose the complex shape
bathymetry (semi-cylindrical with rounded head; see its depth
contours in Fig. 1(left)) for this study. The shape of the submerged
breakwater can be exactly generated by using the transformations
given in Dingemans et al. (1986).

In particular, we consider case me35, where ‘3’ and ‘5’ denote,
respectively, bathymetry of semi-cylindrical bar with round over
and a specific input in (Dingemans et al., 1986). The input case 5
has specified incoming waves with relatively wide JONSWAP spec-
trum (Hasselmann et al., 1973) and significant wave height of
10 cm, peak period of 1.25 s, and directional spreading of 25�.
The peak enhancement factor of JONSWAP spectrum c is chosen
3.3 with the spreading widths ðrA ¼ 0:07;rB ¼ 0:09Þ. Case 5 is con-
sidered here because this case contains most of the processes that
also occur in nature. The current field has been measured at 81
points on a grid of 3 by 3 m at half the water depth. The experi-
ment was done on a relatively large rectangular basin
26 m� 34 m. The wave maker generates waves from left (along
x = 0 line, see Fig. 1) to the right. This experiment has been used
to validate the SWAN model (Ris, 1997).

1.4. Stochastic modeling and uncertainty quantification (UQ)

The spectral wave models contain source terms to represent
important wave physics (wave generation, white-capping, depth-
induced breaking, and bottom friction) and wave interactions (tri-
ads, quadruplets). Among them, we know the exact mathematical
expression only for nonlinear wave interactions (quadruplets)
(Hasselmann, 1962) but for computational efficiency we have to
adopt suitable approximations (Lin and Perrie, 1998; van Vledder
et al., 2000; Lavrenov, 2003; van Vledder, 2006; Cavaleri et al.,
2007); for the rest of the source terms we employ other empirical
models, see Appendix A. In our work, we have adopted a bottom
friction parametrization of the source terms from WAMDI Group
(1988) using the so-called third-generation ocean wave prediction
model, source term parametrization of triad interactions from
Eldeberky (1996) and of depth-induced breaking from Battjes and
Janssen (1978) and Battjes and Stive (1985). Although waves in
the HISWA experiment are not generated by wind, we point out
that wind input dominates (as a single source of energy into the
system) in the modeling of wind-generated waves (Komen et al.,
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1994; Janssen, 2004; Holthuijsen et al., 1989). The most recent
modelings were reviewed by the WISE Group lead by Cavaleri
et al. (2007). The parametrization of the source terms is one of
the main sources of uncertainty in the spectral ocean wave model.
Other sources of uncertainty include bathymetry, current field, and
boundary conditions. Data assimilation techniques are usually
applied to estimate such uncertain parameters, but this requires
specific field measurements, which may not always be available.
Here, we will use sensitivity analysis to assess the effect of most
of the parameters in the spectral ocean wave model in the context
of the HISWA experiment. Specifically, in the source terms we use
as uncertain parameters the depth-induced breaking, bottom fric-
tion, and triad-wave interaction coefficients. We also model as ran-
dom processes the current field and the incoming boundary
conditions. We will first consider the source terms, current field,
and incoming boundary condition randomness individually, and
subsequently we will include randomness in the source terms
and current field at first, and later in the source terms and boundary
conditions, in order to perform uncertainty quantification.

Most previous works involving stochastic modeling have been
based on Monte-Carlo methods, see Ponce and Ocampo-Torres
(1998), Abdalla and Cavaleri (2002), Bouws and Battjes (1982),
Bonekamp et al. (2002) and Roulston et al. (2005) and optimization
algorithms in Krasnopolsky et al. (2002), Tolman et al. (2005),
Tolman and Krasnopolsky (2006) and Tolman and Grumbine
(2013). For example, Abdalla and Cavaleri (2002) investigated the
effects of wind gustiness and air density variability on wave growth
using Monte Carlo simulation with ECWAM. Bouws and Battjes
(1982) applied Monte Carlo sampling for refraction of water waves
using initial values of wave frequencies and directions of propaga-
tion as random variables. Bonekamp et al. (2002) performed Monte
Carlo simulation for the Charnock (1955) parameter using an atmo-
sphere-wave coupled version of ECMWF. Monte Carlo (MC) is
straightforward to apply but it is a computationally demanding
method since a large number of cases need to be run for achieving
a moderate to high accuracy. MC methods typically converge as
1=

ffiffiffiffi
K
p

, where K is the number of realizations (Fishman, 1996). Xiu
(2010) shows for the viscous Burger’s equation (1D), to get the same
accuracy of gPC for the converged solutions (up to three significant
digits) obtained by a fourth-order expansion with only five realiza-
tions, MC method has to run about 10,000 MC realizations. Plant
and Holland (2011) and Plant and Holland (2011) applied the
Bayesian network model to handle boundary, bathymetry, and
parameter uncertainties. Singular-Vector perturbation methods,
also referred as optimal perturbations, using linear tangent propa-
gator to project small perturbations along with trajectory of the
nonlinear equations from initial time t0 to some future time t. They
are successfully used in numerical weather prediction (NWP) mod-
els for uncertainty prediction (Buizza and Palmer, 1995; Hartmann
et al., 1995; Palmer et al., 1997; Gelaro et al., 1997). Perturbation
methods have a low computational cost similar to gPC methods.
Main disadvantage of perturbation methods (Ehrendorfer and
Tribbia, 1997) is that the smallness assumption for introduced per-
turbations (typically less than 10 percent) around the linearization.
The variability of some wave parameters is quite large that pertur-
bation methods may not perform well.

In the current work we will use the generalized polynomial
chaos (gPC) framework (Ghanem and Spanos, 1991; Xiu and
Karniadakis, 2002), and more specifically the stochastic collocation
approach (Xiu and Hesthaven, 2005). The generalized polynomial
chaos framework is already popular in many engineering applica-
tions for uncertainty quantification but has not been used in quan-
tifying uncertainty in ocean modeling. An exception is some recent
work in Thacker et al. (2012) that addresses uncertainties of inflow
boundary conditions from the Caribbean Sea in the Gulf’s surface
elevation field. That work was limited to two dimensions in the
parameter space and employed different equations and types of
uncertainties from the ones we address herein. In particular, gPC
(Xiu and Karniadakis, 2002) is an extension of the classical
polynomial chaos (PC) method (Ghanem and Spanos, 1991). The
generalization is introduced by using the Askey scheme for
hyper-geometric orthogonal polynomials (Xiu and Karniadakis,
2002). In the gPC approach we basically expand the random inputs
in terms of orthogonal polynomials chosen according to the den-
sity function of the stochastic inputs. To solve the stochastic differ-
ential equations efficiently it is better to involve a collocation
projection in the parametric space – this is the stochastic colloca-
tion method. Hence, applying this projection on each collocation
point in random space leads to deterministic governing equations
but evaluated at specific (rather than random as in Monte Carlo)
points in the parameter space. In summary, in order to perform
stochastic simulations using the collocation approach we need
two ingredients: (1) a deterministic solver, and (2) the collocation
points; the latter are typically roots of the corresponding gPC basis.
The important statistical parameters can be readily post-processed
from the ensemble. C will present the details of gPC expansion and
stochastic collocation methods.

In multi-dimensions, the stochastic collocation method can be
constructed by the tensor product of one-dimensional gPC basis
using multi-dimensional random variables. However, the number
of deterministic runs (N) from the tensor-product construction
can be prohibitively expensive ðOðNdÞÞ for large dimensions (d).
To this end, the Smolyak grid (see Appendix C) consists of a subset
of tensor-product collocation points (Smolyak, 1963 (Sparse-
GridTutorial available at http://page.math.tu-berling.de/garcke/
paper/sparseGridTutorial.pdf) to cope with the curse of dimension-
ality at least for a moderate number of random variables. Specifi-
cally, here we employ the sparse grid based on Clenshaw–Curtis
quadrature (Clenshaw and Curtis, 1960). The stochastic collocation
simulation requires many deterministic runs of the high-order
spectral ocean wave code (Yildirim and Karniadakis, 2012) while
the number of runs depends on the level and dimensions of the
sparse grid. In this work, we used the uncertainty quantification
program (PUQ) available at http://memshub.org/site/memosa-
docs/puq for generating collocation points for random variables,
facilitating job submissions on HPC, and post-processing the
ensemble to obtain important statistical parameters such as mean
and standard deviation.

1.5. Objectives

In previous work (Yildirim and Karniadakis, 2012) we verified
and validated the new high-order method for the action balance
equation for: (1) numerical diffusion in geographical space against
the finite difference code SWAN (Booij et al., 1999), the finite ele-
ment code FE-WAVE (Hsu et al., 2005), and the finite volume code
FVCOM-SWAVE (Qi et al., 2009); (2) current-induced (four cases:
following, opposing, and slanting currents with two different
angles) shoaling and refractions in deep water (Phillips, 1966;
Longuet-Higgins and Stewart, 1961); (3) depth-induced shoaling
and refractions in shallow water (Ris, 1997; Booij et al., 1999);
(4) duration-limited growth in deep water (Janssen, 2004); (5)
fetch-limited growth in deep water (Breugem and Holthuijsen,
2007; Young and Verhagen, 1996; SWAMP Group, 1985); (6)
depth-induced wave breaking, (Battjes and Janssen, 1978), (7)
depth-induced wave breaking and triad interactions (Wood et al.,
2001).

In the current work, the governing equation includes the direc-
tional (due to depth and current variations) and frequency deriva-
tives (due to current field variation) in addition to all three source
terms (depth-induced breaking, bottom friction, and triads) for the
HISWA simulation. The primary purpose of this work is to perform

http://page.math.tu-berling.de/garcke/paper/sparseGridTutorial.pdf)
http://page.math.tu-berling.de/garcke/paper/sparseGridTutorial.pdf)
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a systematic stochastic analysis to assess the adequacy of the
parametrization of the source terms, the effect of the current field,
and the inlet boundary conditions in the context of the HISWA
experiment. This analysis may identify a proper parametric range
to be used in other cases as well.

The paper is organized as follows. First, we briefly present the
action balance equation (phased-averaged model) in Section 2
and also briefly describe the new high-order scheme in Section 3.
Following this section, we present numerical simulation results
for various resolutions on a fixed mesh to show the convergence
of the scheme. Next in Section 5, we apply stochastic collocation
to the HISWA simulation to quantify the uncertainty in such
important wave parameters as the significant wave height ðHsÞ,
mean wave period ðTm01Þ, mean wave direction ð�hÞ, and energy
spectra ðEðf ÞÞ. Specifically, we first treat the source parameters
(depth-induced breaking, bottom friction, and triads) as random
inputs. Subsequently, we add space-dependent random perturba-
tions to the current field and study the combined effects of the ran-
dom current processes with the random source terms. In the last
part of Section 5, we introduce space-dependent random perturba-
tions to the incoming boundary condition and we examine the
combined effect of uncertain boundary conditions with uncertain
source terms. Finally, we present a brief summary in Section 6.
In Appendix A we include some details on the parametrization of
the source terms, the details of the numerical discretization that
the deterministic code implements is presented in Appendix B,
and Appendix C describes the stochastic simulation tools used in
this study.

2. Governing equation

The action balance equation (Booij et al., 1999) for ocean waves
in the Eulerian framework can be written as

@Nðh;r; x; y; tÞ
@t

þ @cxNðh;r; x; y; tÞ
@x

þ @cyNðh;r; x; y; tÞ
@y

þ @chNðh;r; x; y; tÞ
@h

þ @crNðh;r; x; y; tÞ
@r

¼ Sðh;r; x; y; tÞ
r

; ð1Þ

where Nðh;r; x; y; tÞ is the action density defined as the ratio of
energy Eðh;r; x; y; tÞ to relative frequency r (N ¼ E=r), cx and cy

are the propagation velocities of wave energy in physical ðx� yÞ
space, and ch and cr are the propagation velocities in spectral
h 2 ½�p;p�; r 2 ½0;1�ð Þ space. The explicit expressions of propaga-

tion velocities ðcx; cy; ch; crÞ can be found in Whitham (1974),
Holthuijsen (2007) and Yildirim and Karniadakis (2012)). The
source term Sðh;r; x; y; tÞ accounts for wave generation, dissipation,
and wave interaction mechanisms (see Appendix A). The bottom
friction process ðSb;frÞ with bottom friction coefficient Cbfr ¼ 0:067,
the depth-induced breaking process Sbr with c ¼ 0:73, the scaling
coefficient (after Battjes and Janssen, 1978) aBJ ¼ 1:5, and the triad
interactions (Snl3) with the scale factor aEB ¼ 0:5 are all represented
in our model. We also refer the interested readers to WAMDI Group
(1988), Komen et al. (1984), Young and Verhagen (1996),
Holthuijsen (2007) and Yildirim and Karniadakis (2012) for an in-
depth discussion of modeling the source terms.

3. Numerical discretization

We present a concise description of the numerical discretiza-
tion of phased-averaged ocean wave equation in Appendix B,
which we summarize in this section. We use the discontinuous
Galerkin (DG) (Hesthaven and Warburton, 2007; Hesthaven et al.,
2007; Karniadakis and Sherwin, 1999) method for the geographical
space. The spatial discretization is defined on an arbitrary triangle
domain to support the unstructured grids, which are most suitable
grids for the wave problems on the complex bathymetry and
coastal boundaries. The details can be followed on Appendix B.4.

The directional domain extends from �p to p. We use Fourier-
collocation to discretize the directional derivative in Eq. (1). The
solutions in many applications may have a very narrow directional
spreading; an example is cosmðhÞ directional spreading. We see that
most of the energy contained in only a very narrow region for
higher values of m. The Fourier-collocation employs equi-spaced
distribution in the directional domain. We have to employ very
high resolution to capture the very narrow region and, depending
on the solution steepness, the number of collocation points can
be so large that we cannot afford to run such simulations. Alterna-
tively, we define a mapping to cluster the Fourier-collocation points
around a specified region (local refinement). We have found that
this mapping can save us up to eight times in the number of collo-
cation points in the directional domain. In case that they are many
wave fields in the domain or directional peaks keep moving, then
the discretization needs a fully adapted directional discretization.
The current code is only supporting the static grid that can cluster
the grid points around a single specific point. Dynamic grid and
multi-points support will be implemented in the future.

The frequency domain ranges from 0 to1. We usually truncate
the semi-infinite domain into a finite domain as ½f min; f max�. The
numerical boundary condition in this domain is non-reflecting.
The straightforward Fourier-collocation method cannot be applied
for non-periodic boundary conditions. However, we can still use a
Fourier-collocation with an Absorbing Boundary Layer (ABL) for the
wave problem of which the energy spectra asymptotically goes
to zero toward the tails. Fourier-collocation has been shown to
have advantages over the more traditional Chebyshev method
(Boyd, 1988) in the truncated domain. We have used the Absorbing
Boundary Layer (ABL) approach (If et al., 1987) to enforce periodic-
ity at the frequency domain ends. To this end, we added a modified
term to the main Eq. (1) to solve the problem in an extended
domain ½f min � ML; f max þ MR� that we obtained by adding the
absorbing layers ML and MR, respectively, on the left (f min) and the
right (f max). The modified term takes zero values inside the domain
and hence we solve the Eq. (1) backwards. The Absorbing Boundary
Layer function defined in Yildirim and Karniadakis (2012) controls
the modified term in the absorbing boundary layers and introduces
heavy dissipation to smear out the solution. The current code is
able to generate logarithmic distribution for the frequency direc-
tion when the domain is free of a current field. To define logarith-
mic distribution in frequency direction for a problem that has a
current field with non-zero gradient, we should propose a similar
mapping as it is done for the directional grid. Similar to a tan map-
ping B.5 used for the directional grid, a log mapping (Boyd, 2001)
can create a logarithmic distribution around the specific frequency
in the frequency grid. Since the current code can not generate a
logarithmic distribution in the frequency direction for the certain
cases, the application of the code is limited for general applica-
tions. The disadvantage of using uniform grid that deploys the finer
frequency grid to resolve the high-gradients (in frequency direc-
tion) is that it will over-resolve the smooth regions, wasting com-
puter resources and increasing computation time. To be more
efficient, this new scheme should define a mapping in frequency
grid that generates a logarithmic distribution of points.

We compute the spectral derivatives for each grid point ðhi;riÞ
in the spectral space. Each grid point now has an equation in geo-
graphical space. We then applied discontinuous Galerkin (DG) dis-
cretization (Hesthaven and Warburton, 2007; Hesthaven et al.,
2007; Karniadakis and Sherwin, 1999) to this equation. We refer
the interested readers to Yildirim and Karniadakis (2012) for
details of spatial discretization of the action balance equation.

With regards to temporal discretization, we employed second-
and third-order (Gottlieb and Shu, 1998), as well as the
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fourth-order explicit (5-stages) (Spiteri and Steven, 2001) Strong
Stability Preserving Runge–Kutta (SSP-RK) schemes.
4. Validation studies

4.1. Numerical simulation ðS ¼ Sb;fr þ Sbr þ Snl3Þ

The computational domain in geophysical space (see Fig. 2(a))
½ð0;30Þm� ð�45;45Þm� is discretized into 48 triangular elements
in conjunction with a spectral collocation grid whose frequency
axis ranges from 0.4 Hz to 3.0 Hz with resolution 0.04 Hz (equi-
spaced grid along the frequency direction), and the directional
domain lying in ½�60�;60�� with resolution about 4� around the
center and about 20� around the tails. The directional collocation
points are generated by local refinement using the arctan mapping
as given in Yildirim and Karniadakis (2012); which clusters the col-
location points around the center. The directional domain size
½�60�;60�� is sufficient to resolve most of the energy for the
me35 case that has directional spreading width given as 25�. We
used a left absorbing boundary layer width as 0.2 Hz and a right
one as 1.0 Hz, which effectively extended the frequency domain
from ½0:4;3:0� Hz to ½0:2;4:0� Hz.

We applied the incoming energy spectrum on the left boundary
using the JONSWAP spectrum (see Eq. (7)) with directional spread-
ing model cosmðh� h0Þ (Holthuijsen, 2007), where h0 is the refer-
ence incoming wave direction and we set m ¼ 4 based on the
given directional width of 25�. The JONSWAP spectrum
(Holthuijsen, 2007; Hasselmann et al., 1973) of peak frequency f p

used here of 0.8 Hz, scale parameter a ¼ 0:0154, peak-width
parameters ra ¼ 0:07 and rb ¼ 0:09 are chosen to represent the
significant height of 10 cm for the incoming wave boundary condi-
tion. The centered reference direction (h0) in the directional distri-
bution is interpolated from measurement locations 1–2–3 (along
the y-axis, see Fig. 1) and projected on the left boundary. We
assume that in the computational boundary outside the ray A
and ray D lines (see Fig. 1) the reference direction (h0) is zero.
The lateral boundaries are naturally reflective, but in our imple-
mentation we do not take this into account, which is not significant
in this case (me35) since in the experiment wave generators send
x (m)
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m
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Fig. 2. Computational mesh (48 triangular elements) used for the HISWA simulation. The
dashed region, and the collocation points on this mesh are represented by blue circles
referred to the web version of this article.)
waves perpendicular (not obliquely) to the left boundary; hence,
we specified zero energy along these boundaries. This is inherently
a dissipative process and pollutes the numerical solution inside the
domain. We extended the lateral boundaries ymin to�45 and ymax to
45 for minimizing the numerical boundary pollution in the region
of interest (see dashed region in Fig. 2(a)). The experiment was
designed to minimize any reflection on the right end and hence
we set non-reflecting boundary conditions at this end. We set
the initial condition to zero energy in the domain for all runs.

The interpolated current field from the experiment was
provided by N. Booij from Digital Hydraulics Holland (private com-
munication). This current field is interpolated to the collocation
points (see Fig. 2(a) right)) in the simulation. The current field of
the computational grid outside the experimental area is assumed
to be zero; the current vector field is shown in Fig. 1 (right).

Bottom friction and depth-induced wave breaking are the
important dissipation processes with nonlinear wave-wave inter-
actions (only triads). The source parameters are chosen based on
the suggestion of Ris (1997) whose results we used here for the
SWAN comparison. Our numerical simulation results verified that
the important wave parameters are insensitive to quadruplet inter-
actions (Snl4), which is also observed in the work of Ris (1997). Qua-
druplet interactions are turned off for the HISWA simulation in the
entire paper.

The computation is carried out by marching in time (our imple-
mentation currently supports only unsteady computation) to reach
a steady state solution. To this end, we march the unsteady
solution with the time step 0.025 s up to the final time 35 s. The
Runge–Kutta second-order time integration scheme is employed
for all cases in the entire paper. In space, first-, third-, and fifth-
order of the Jacobi polynomials are expanded over the triangular
elements in the computation of this section.

The measurement locations of 26 stations are given in
Fig. 1(left). We have measurements for the significant wave height
Hs and mean wave period Tm01 for all 26 locations, but for the mean
wave direction �h we have only seven locations (1, 2, 3, 17, 24, 25,
26). The comparison is made on horizontal line Rays C and B rather
than all measurement locations (Rays A, B, C, D) to simplify the
presentation. Extensive results on the Rays A–D can be found in
dashed region (on left) is the experimental region. The mesh (right) is a zoom at the
. (For interpretation of the references to colour in this figure legend, the reader is
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Fig. 4. Energy spectra for the station 24 are presented from HISWA experiment,
RIS97 from Ris (1997) (obtained by the earlier version of SWAN code a more than a
decade ago), a recent data (2014) from Structured and Unstructured SWAN codes,
and DG code (p = 3).
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Yildirim (2012). The four rays cover 24 stations and exclude only
two stations 12 and 17. The energy spectra are compared for eight
locations (5, 3, 13, 15, 16, 19, 24, 26) in this study.

We used the same directional and frequency resolutions while
employing three different Jacobi polynomial orders expanded over
the triangles. The plots of integrated parameters ðHs; Tm01 and �hÞ
on ray C and energy spectra Eðf Þ of station 24 are presented in
Fig. 3. They demonstrate significant improvement from the first-
order to the third-order polynomials. The high-order polynomial
results (p = 3, 5) in Fig. 3 have clearly improved the integrated
parameters ðHs; Tm01 and �hÞ on the ray C measurement locations
and energy spectra on station 24. For further comparisons, specif-
ically on results of the integrated parameters on ray A, B, and C
locations and energy spectra of seven locations, we refer the inter-
ested readers to Yildirim (2012).

The results given in Fig. 3 agree well with the experiment for
the significant wave height and mean wave period for the third-
and fifth-orders of Jacobi polynomials. The reference SWAN
simulation is taken from Ris (1997). The high-order method pre-
dicts these two statistical parameters better than SWAN, specifi-
cally on Rays B, C, and D (see Yildirim, 2012). However, neither
code predicts the mean wave direction accurately on the stations
behind the bar, i.e. in stations 24, 25, 26.

The data used to compare here are taken from an older version
of the SWAN code (Ris, 1997) because of their availability. We note
however that the SWAN code has now enhanced capability, e.g. in
solving the ocean wave equation more accurately than before.
Fig. 4 adds the data from the most recent (2014) SWAN structured
and unstructured codes for the comparison. The new run of SWAN
for the HISWA experiment case simulate the energy spectra around
main and secondary peaks as accurate as DG code and much better
than its older version.
Fig. 3. Verification of accuracy: comparison of simulation results (three different polyno
(Tm01), (c) mean wave direction (�h) on ray C, and (d) energy spectra at station 24 agains
5. Uncertainty quantification

Possible sources of uncertainty include modeling errors for the
complex and unresolved physics, initial and boundary conditions,
geometry and physical properties of the medium. In this study,
we will focus on uncertain inputs related to the parametrization
of the source terms in the action balance equation, the form of
the current field, and the incoming boundary conditions.

In the action balance equation, important wave physics (gener-
ation, dissipation, and nonlinear wave interactions) is represented
parametrically through the source terms, see Appendix A. The
numerical ocean wave community has been actively doing
research to improve this representation (WAMDI Group, 1988;
mial orders (p = 1, 3, 5)) for (a) significant wave height (Hs), (b) mean wave period
t experimental and Ris, 1997 results.
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Cavaleri et al., 2007), and improvements in the source terms are
reflected in the so-called first-, second-, and third-generation
ocean wave models; among them, the third-generation is still the
most common model. For the various contributions to the source
terms, we have an exact mathematical expression for only the qua-
druplet wave-wave interactions (Hasselmann, 1962, 1963a,b).
Hence, they can be solved exactly as done by Hasselmann and
Hasselmann (1985), Snyder et al. (1993), Lin and Perrie (1998)
and Benoit (2005) but this leads to excessive computational cost.
The rest of the important contributions, including dissipation
(white-capping, depth-induced breaking, and bottom friction)
and triads have no explicit mathematical expressions and they
are modeled empirically in WAMDI Group (1988) through effective
parameters. Specifically, we will treat the parameters c and aBJ in
the depth-induced wave breaking source term, the bottom friction
coefficient Cbfr in the bottom friction term, and the triad coefficient
aEB in the triad interaction term as random variables.

All runs of our deterministic solver employed third-order Jacobi
polynomials on the triangular spectral elements (see mesh in
Fig. 2(a)). The time integration scheme, boundary condition, and
spectral space size and resolution are all kept the same as in the
previous section.

5.1. Sensitivity analysis of source term parameters

The elementary effect method (Morris, 1991) provides a mea-
sure of sensitivity from a small number of model evaluations.

Let us consider a function F that has k independent input
parameters such that

F ¼ f ðX1;X2; . . . ;XkÞ;

where X ¼ ðX1;X2; . . . ;XkÞ varies in a k-dimensional cube with p
level, which selects sampling locations on each dimension. The ele-
mentary effect is defined as:

dðXiÞ ¼
FðX1;X2; . . . ;Xi�1;Xi þ M; . . . ;XkÞ � FðX1;X2; . . . ;XkÞ

M
; ð2Þ

where M is a value chosen equal to p=ð2ðp� 1ÞÞ for even p. In this
method we choose randomly r sample points among p levels
(r < p). The number of r samples can be considerably smaller than
p, and hence the method needs k� r output evaluations to compute
the sensitivity. The random r sample points can be taken from the
Smolyak grid (Smolyak, 1963). The elementary effect method uses
two measures for mean ðlÞ and standard deviation ðrÞ of r elemen-
tary effects of each input. The mean ðlÞmeasures the relative influ-
ence factor of each input. The mean of r sampling elementary effects
is defined (for input Xi) as

li ¼
1
r

Xr

j¼1

d XðjÞi

� �
: ð3Þ

The standard deviation r assesses nonlinear effects of the input
parameters (Xk) (Saltelli et al., 2008). The software PUQ that we
use has the capability of post-processing output functions to com-
pute the mean and standard deviations of r sampled elementary
effects for the input parameters.

We present the mean values of the input elementary effects for
the significant wave height and mean wave period on ray C, and
mean wave direction on ray B, C in Fig. 5. The values of the elemen-
tary effects signify the degree of importance of each input sensitiv-
ity for a specific output. As seen in Fig. 5, the elementary effect
values are very low for the three outputs at the front stations. This
clearly shows that the numerical solution is not sensitive to the
parametrization of the source terms there.

The elementary effect values of the significant wave height Hs in
Fig. 5(a) shows that the most important parameter at all locations
is c, i.e. the parameter of depth-induced breaking. The importance
ranking among other remaining inputs Cbfr ;aBJ;aEB depends on the
location. The triad coefficient aEB becomes the dominant parameter
if we look at the elementary effect values of mean wave period Tm01

in Fig. 5(b). The depth-induced parameter c follows the triad
coefficient in importance. Hence, it follows that variations in the
bottom friction coefficient Cbfr and the other depth-induced
parameter aBJ affect the mean wave period output equally. The
depth-induced coefficient c is the dominant parameter again for
the sensitivity of the mean wave direction output �h as seen in
Fig. 5(c) and (d). The remaining parameters Cbfr ;aEB, and aBJ have
about the same order of influence on the mean wave direction.

The main conclusion from the sensitivity analysis performed
here is that the elementary effects of each input for the three out-
puts ðHs; Tm01; �hÞ are not uniform in physical space and, therefore,
we shall not exclude any of the parameters to reduce the dimen-
sionality of parametric space in this study. We refer the interested
reader to Yildirim (2012) for further discussion of results on sev-
eral other locations.

5.2. Uncertainty in source terms

The parameters in the source terms associated with depth-
induced wave breaking, bottom friction, and triads are all non-zero
in the code for the HISWA simulation. The depth-induced breaking
term has two parameters treated as random variables: the scaling
factor aBJ 2 ½1:0;2:0� with mean value of 1.5 and the wave breaking
coefficient c 2 ½0:6;1:0�with mean value of 0.8. The bottom friction
coefficient Cbfr 2 ½0:038;0:096�with mean value of 0.067 is the only
random variable in the bottom friction term. The value of 0.038 is
recommended for swell conditions by the JONSWAP experiment
(Hasselmann et al., 1973) and 0.067 by Bouws and Komen (1983)
for fully developed wave conditions in the shallow-water. It is also
worth to note that, based on more recent observations, a recent
work of Zijlema et al. (2012) shows that the lower value for swell
should be preferred for both applications. The tuning parameter of
the triad source term aEB 2 ½0:0;1:0� with the mean value 0.5 is the
final random variable in the source terms.

Here we will assume that the uncertainty is based on a uniform
distribution of parameter values on a chosen range (see the above
for the ranges). The range of the parameters here are chosen from
the values found in the literature. Although the ranges can be more
freely chosen, the cost of choosing an unwise short-range that
under represents the true parametric range or a large-range that
wastes the computational resources since more collocation points
(each point in the random space requires a full deterministic sim-
ulation) will be needed to get a specified accuracy. For this reason,
the uncertainty estimates are still inherently subjective. To exam-
ine convergence in parametric space, the mean (l) and standard
deviation ðrÞ of the solution are evaluated by using the second-,
third,- and fourth-order gPC expansion. The four random variables
using the Smolyak sparse grid (of level 2, 3, and 4) require 41, 137,
and 401 deterministic runs, respectively, for the second-, third-,
and fourth-order gPC expansions see Yildirim (2012). The mean
values of the three parameters converge even for first-order gPC
expansions. The third- and fourth-order expansions do not
improve the statistical quantities (the mean and the standard devi-
ation) in the significant wave height. However, the third-order
improves the standard deviation in the mean wave period and
the mean wave direction. The fourth-order expansion changes
slightly the statistical quantities of all three wave parameters. This
confirms the convergence of the expansion. Another observation
from the standard deviation calculations of all three outputs is that
the highest uncertainty is associated with the region behind the
bar. The standard deviation values start rising at x > 12 m, see
Fig. 1.



Fig. 5. Effects of uncertainty in the source terms: elementary effect values for (a) significant height (Hs), (b) mean wave period (Tm01), and (c, d) mean wave direction (�h) for four
parameters of the source terms (Cbfr ;aBJ ; c;aEB).

Fig. 6. Uncertainty in source terms: Comparison of simulation results for (a) significant wave height Hs , (b) mean wave period Tm01, and (c, d) mean wave direction �h
(confidence interval within 95% (l� 2r)) against experimental data. We use fourth-order expansion for the sparse grid in the source parameters (Cbfr ;aBJ ; c;aBJ).
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We present the error bar plots with a confidence interval 95%
ðl� 2rÞ around the mean value for stations on rays C and B in
Fig. 6. These confidence intervals do not cover the experimental
results for the stations on ray A (not presented here). As mentioned
before, the standard deviations have low values along ray A. The
real issue is that the numerical solution does not match well with
that of the experiment due to the fact that we have current field
data available for only the physical region but not for the
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larger-size computational domain. As mentioned earlier, we
extended our lateral boundaries from y� 13 m to y� 45 m. The
current field is assumed to be zero in this extended region
ð�45 m 6 y < �13 m; 45 m P y > 13 mÞ. This discrepancy might
be the reason for the numerical solution not matching well the
measurements along the stations of ray A. The error bars on ray
C for significant wave height and mean wave period are given in
Fig. 6. They confirm that the confidence interval of 95% covers well
the experiment results. Furthermore, we observed that the confi-
dence intervals vary greatly at the region x P 15 behind the sub-
merged breaker. The scarcity of measurement locations (only 7
out of 26) for the mean wave direction makes this judgment harder
as to whether or not the confidence intervals (see bottom plots in
Fig. 6) cover the experimental measurements. The confidence
interval only covers the measurement location on ray B (see ray
B subplot in Fig. 6). We see again that the area behind the breaker
is the most uncertain region for the mean wave direction. The sta-
tions on rays B and C have the largest standard deviation values of
the mean wave direction in this region due to the relatively
Fig. 7. Uncertainty in the source terms: Comparison of simulation results (confidence inte
fourth-order expansion for the sparse grid in the source parameters (Cbfr ;aBJ ; c;aBJ).
complex bathymetry and the strong current gradient along the B
and C. We note that the mean wave direction is treated here as a
line moment (

R
hDðhÞdh) rather than as a circular moment

(
R

Sinð2hÞDðhÞdh). For small deviation this is not a problem, but
for large directional errors this can be a problem (Kuik et al., 1988).

We also present the error bar plots within 95% confidence inter-
vals for the energy spectra of the selected stations on rays B and D
in Fig. 7. The numerical simulation and experimental results are
compared for the energy spectra of stations on ray B (5, 13, 16,
24) and ray D (3, 15, 19, 26). The left-column and right-column
subplots are arranged such that the left plots are for the stations
on ray B and the right plots are for the stations on ray D in
Fig. 7. The mean value of the energy spectra of stations (red dots)
match the experimental spectra better on ray B than the stations
on Ray D for the primary peaks. The secondary peaks arise in the
numerical simulation but are not as pronounced as in the measure-
ments. The numerical simulation overestimates the primary fre-
quency for station 13 but underestimates the peak frequency at
station 16. Additionally, the numerical solution overestimates the
rval within 95% (l� 2r)) against experimental data for the energy spectra. We use
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secondary peaks for these two stations. The error bars (left-
columns) of energy spectra in Fig. 7 show that the confidence
intervals capture the measured spectra. Although using a wide
range of proper coefficients, the mismatching solutions with the
experimental data indicate the inadequacy of the chosen
parametrization itself. We point out that the proposed method
here only covers the uncertainty introduced through the
parameters in a specific model and not any model uncertainty.

As for the stations on ray D, the numerical simulation predicts
that the first peaks would be slightly off along the frequency axis
for the stations (15, 19) (see right-column plots in Fig. 7). The stan-
dard deviation values are relatively large around the secondary
peaks for these stations. The confidence intervals seem to cover
well the experimental results as seen in the right-column plots
in Fig. 7.

5.3. Uncertainty in current field

Next, we consider the two-dimensional current field~u ¼ ðux;uyÞ
as stochastic input in this section, and we employ the Karhunen–
Loeve (K–L) decomposition (Loeve, 1977) with a Gaussian correla-
tion function to represent it. The corresponding random process, a
function of space, is obtained by adding perturbations via the K–L
expansion terms to the experimental realization �uðx; yÞ, i.e.,

uðx; y;xÞ ¼ �uðx; yÞ þ d
X1
i¼1

ffiffiffiffi
ki

p
wiðx; yÞniðxÞ; ð4Þ

where uðx; y;xÞ denotes the random processes, �uðx; yÞ is the current
mean, fniðxg is a set of uncorrelated random variables with zero
mean and unit variance and d is a scalar to control the magnitude
of the perturbation. Also, fwiðxÞg and fkig are the eigenfunctions
and eigenvalues of the covariance kernel Ruuðx1; x2Þ, that isZ

Ruuðx1; x2Þwiðx2Þdx2 ¼ kiwiðx1Þ: ð5Þ

We use here the Gaussian correlation function:

Ruuðx1; x2Þ ¼ exp �3
ðx1 � x2Þ2

l2
c

" #
; ð6Þ

where lc denotes the correlation length. This length lc determines
the dimension of random space. The random perturbation in Eq.
(4) is in practice truncated to P finite dimension. The desired num-
ber of finite dimensions M can be chosen by a specified percentage

of the perturbation energy
PP

i¼0ki

.PM
i¼0ki � 100

� �
. We use here

three different correlation lengths relative to domain size: 30 m,
25 m, and 20 m. The resultant number of dimensions of the random
space to capture 90% of the energy (ju � uj) for the three correlation
lengths can be seen in Table 1. The current field vector components
Table 1
Required number of random dimensions for correlation lengths 30 m, 25 m, and 20 m.

Corr. len. ðlcÞ 30 25 15
Num. of dimension 4 5 7

Table 2
Required number of runs using the Smolyak grids (level 2, 3, and 4) for the random
process current field. Runs 8801 and 30801 were not executed but given here for
completeness.

Corr. len. ðlcÞ Level 2 Level 3 Level 4

lc ¼ 30 (ndim = 4� 2) 145 849 3937
lc ¼ 25 (ndim = 5� 2) 221 1581 8801
lc ¼ 25 (ndim = 7� 2) 421 4117 30801
ux and uy are treated as two separate independent random pro-
cesses; this doubles the size of the random space dimension given
in Table 1. The number of runs using the Smolyak grid (level 2, 3,
and 4) are presented in Table 2 for the three different correlation
lengths and three different levels.

The scaling factor d in the K–L expansion (4) is chosen such that
we have perturbation magnitude of 25% with respect to the mea-
sured current �uðx; yÞ. To this end, we took the d values as 0.0225
for the velocity x-component (ux) and 0.0175 for the velocity y-
component (uy). The three different correlation lengths are run
for the levels 2 and 3 in this section (we do not present these
results here). We observed that the mean and the standard devia-
tion values along the stations have quite close values for level 2
and level 3; we chose level 3 in the Smolyak grid for all the runs
in this section. We have used a relatively large correlation length
in order to keep the random space dimensions sufficiently low so
that we perform these simulations within a reasonable time. We
first study the influence of the correlation length on the standard
deviation of the three wave parameters. The values of standard
deviation of significant wave (see Yildirim, 2012), mean wave
period, and mean wave direction do not change much for the three
correlation lengths (lc ¼ 30 m;25 m;20 m). The values of the nor-
malized standard deviation (divided by the mean) for the signifi-
cant wave height and the mean wave period are mostly below
2%. This indicates that introducing a perturbation of magnitude
25% in the current leads to very small uncertainty for these two
quantities. The small variations in wave parameters due to some-
what large perturbations in current velocity should be expected
since the present current field is the result of gradient in radiation
stresses, leading to weak currents.

All the error bar plots have confidence intervals within 95%
ðl� 2rÞ. The significant wave height results (see Yildirim, 2012)
show that uncertainty is very small for the stations on rays B, C,
and D. The stations on ray A show larger uncertainty, which may
be due to boundary conditions. This issue will be investigated in
the following sections. As mentioned earlier, the physical bound-
aries have been extended along the y-axis, and we assumed the
current field to be zero in this extended region. We introduced ran-
domness only in the physical region in the stochastic simulation.
Therefore, this ad hoc assumption might cause a relatively larger
uncertainty on the stations of ray A.

The random current process has produced very small error bars
(see Yildirim, 2012) on all the stations for the mean wave period.
Ris (1997) performed similar HISWA simulation with the SWAN
code but with the current set to zero and demonstrated that the
effects of current on the significant wave height and mean wave
period are much less pronounced than expected. We also obtained
this result in our stochastic simulations; perturbations of the cur-
rent field with magnitude 25% changed only slightly the wave
parameters ðHs; Tm01Þ. On the other hand, we have seen a larger
variation in the mean wave direction for almost all stations on rays
A–D. This is also in agreement with the results of Ris (1997), who
stated the importance of the current field in order to obtain the
correct mean wave direction. In particular, Ris (1997) turned off
the current field in the numerical simulation and observed that
the results of mean wave direction deviated greatly from the
experimental values. Extensive results from the current perturba-
tion are presented in Yildirim (2012); they demonstrate that the
current has also a negligible effects on the energy spectra for this
specific simulation.

5.4. Uncertainty in boundary conditions

The SWAN simulation prescribes the incoming wave boundary
conditions based on the HISWA experimental values at locations
1, 2, and 3. The observed wave conditions at the front stations
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are not uniform while the mean wave directions for stations 1, 2,
and 3 are �5:6�, 1:3�, and �3:6�, respectively. Similarly, the signif-
icant wave heights observed on stations 1, 2, and 3 are 11.06 cm,
10.33 cm, and 10.04 cm. We have neglected those variations on
the boundary so far and imposed the JONSWAP spectrum on the
left boundary condition with the peak frequency (f p0 ¼ 0:8 Hz)
and the incoming wave direction (h0 ¼ �4:0�); the JONSWAP spec-
trum is defined as
EJONSWAPðh; f Þ ¼ A1 cosmðh� h0ÞaPMg2ð2pÞ�4f�5 exp � 5
4

f
f PM

� ��4
� �

c
exp �1

2

f=f p0�1
l

� �2
h i

; jh� h0j 6 90�;

0; jh� h0j > 90�;

8><
>: ð7Þ
where c is a peak-enhancement factor and l is a controlling
parameter of spectrum width, and A1 is defined as
Cðm=2þ 1Þ=½Cðmþ 1Þ=2Þ

ffiffiffiffi
p
p
� (m controls the width parameter in

a directional spectrum, see Holthuijsen (2007) for the details).
The relevant parameter values for the JONSWAP spectrum used
here are given in Section 4.1.

We consider non-uniform boundary conditions at the left
boundary modeled as random processes. To this end, we will take
the peak frequency f 0 and incoming wave direction h0 as the ran-
dom processes and incorporate them into the left boundary. We
employ the K–L decomposition of a Gaussian correlation function
to represent the random processes of the peak frequency f p0ðx; yÞ
and of incoming mean wave direction h0ðxL; yÞ. The random process
of incoming peak frequency can be written as

f p0ðxL; y;xÞ ¼ �f p0ðxL; yÞ þ d
X1
i¼1

ffiffiffiffi
ki

p
wiðxL; yÞniðxÞ; ð8Þ

where f p0ðxL; y;xÞ denotes random processes of incoming peak fre-
quency and �f p0ðxL; yÞ is the incoming peak frequency mean. The
incoming peak frequency mean is taken as 0.8 Hz.

Similarly, we can write the K–L expansion for the incoming
wave direction as

h0ðxL; y;xÞ ¼ �h0ðxL; yÞ þ d
X1
i¼1

ffiffiffiffi
ki

p
wiðxL; yÞniðxÞ; ð9Þ

where h0ðxL; y;xÞ is random process of incoming wave direction
and �h0ðxL; yÞ is incoming wave direction mean. The incoming wave
direction mean is assumed to be �4:0�. Here fnðxÞg is a set of
uncorrelated random variables, and fwiðxÞg and fkig are the eigen-
functions and eigenvalues of the covariance kernel Rbbðx1; x2Þ, that isZ

Rbbðx1; x2Þwiðx2Þdx2 ¼ kiwiðx1Þ: ð10Þ

We use here the Gaussian correlation function:

Rbbðx1; x2Þ ¼ exp �3
ðx1 � x2Þ2

l2
c

" #
; ð11Þ

where lc denotes the correlation length. Note that Rbb is defined only
for the left boundary (½xL ¼ 0; y ¼ ð�45;45Þ�). The random processes
are introduced to the computational grid nodes at the left boundary.
The boundary condition in our high-order ocean wave code is line-
arly interpolated to the Gauss–Lobatto quadrature points of bound-
ary face from these grid nodes. The correlation length lc determines
the dimension of random space, here we set it to 15 m, i.e., equal to
triangle edge length on the boundary side. The dimension of the
above covariance kernel in this case is the number of left boundary
grid nodes, which is seven. The resulting dimension of the random
space capturing 100% of the energy (see Section 5.3) for this corre-
lation length is seven for each random process. The total dimension
of the random space will be 14 accounting for both processes.

The perturbation scale is d in the K–L expansions in Eqs. (8) and
(9) based on the variation of mean wave direction and significant
wave heights of experiment at the sites 1, 2, and 3. The mean wave
direction is chosen as �4�, which is equal to the average observa-
tional values between site 1 (�5:6�) and 3 (�3:6�); site 2 has an
observational value of 1:3�. The perturbation scale for the mean
wave direction is chosen as 5.0 so that the perturbation lies
between �8� and 2�. As for peak frequency random process, the
perturbation scale is taken as 0.08 to have a variation correspond-
ing to perturbation of 10%; this is based on the variation of
observed significant wave heights at sites 1, 2, and 3, which are
respectively 11.06 cm, 10.33 cm, and 10.04 cm.

The mean and the standard deviations are well converged for
level 2 and level 3 gPC expansions. We chose level 3 for the
Smolyak grid for this section. The dimension of random space
will be 14 for level 3 expansion, which requires 4117 determin-
istic runs.

We present the error bar plots (only on ray B and C) for the
three statistical wave parameters (Hs; Tm01; �h) in Fig. 8. All the error
bar plots shown here have confidence intervals within 95%
(l� 2r). The first important observation is that we have larger
uncertainties at the locations before the breaker than we observed
due to the uncertainty in the source term parametrization for the
significant wave height parameter (see plots (a) in Figs. 8 and 6).
The significant wave height error bars are smaller at the locations
stationed behind the submerged breaker (x > 15 m). Since depth-
breaking is the dominant process in the HISWA experiment, it is
not surprising to see that variations in the boundary have been
damped across the submerged bar. For ray A, which is not affected
so much from the changing bathymetry, there is large variation
everywhere (results not shown here, see Yildirim (2012)). The ran-
dom boundary conditions strongly affect the mean wave period
results as seen in Fig. 8(b). We have treated the incoming mean
wave direction also as a random process. Accordingly, we see large
variation about the mean around the ray B and C stations in
Fig. 8(c) and (d); the variations are increased after the submerged
breaker. We observe large variations around the front stations,
which were not observed due to uncertainties in source terms
and current field.

5.5. Uncertainty of source and boundary condition

Next we study the combined effect of randomness in the source
terms and boundary conditions. The four random variables of the
source terms (aBJ; c;Cbr , and aEB) follow a uniform probability dis-
tribution within the range specified in Section 5.2. The dimension
of random space is the sum of 14 random variables from the K–L
expansions of the random processes of the incoming peak and
wave direction (see Eqs. (8) and (9)) and the four random variables
in the source parametrization. The total number of deterministic
runs for level 3 and the eighteen variables is 8509. Our results
are presented in Figs. 9–11. The experimental values of significant
wave height are all contained within 95% confidence interval along
the rays A–D as seen in Fig. 9. The confidence intervals are signif-
icantly modified for the stations along ray A and the front stations



Fig. 8. Uncertainty in boundary conditions: Comparison of simulation results for (a) significant wave height Hs , (b) mean wave period Tm01, and (c, d) mean wave direction �h
(within 95% Confidence Interval (l� 2r)) against experimental data. We use third-order expansion for the sparse grid in the random process of boundary parameters (h0ðx; yÞ
and f pðx; yÞ) with correlation length = 15 m.

Fig. 9. Uncertainty in source term and boundary conditions: Comparison of simulation results for significant wave height Hs (within 95% Confidence Interval (l� 2r)) against
experimental data. We use third-order expansion for the sparse grid in the random process of boundary parameters (h0ðx; yÞ and f pðx; yÞ) with correlation length = 15 m and in
the source parameters (Cbfr ;aBJ ; c;aEB).
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along rays B–D due to the boundary random processes. However,
the stations beyond ðx > 15 mÞ on rays B–D have almost the same
level of confidence intervals as in the source uncertainty only case.
The measured values of mean wave period are all contained within
95 percent confidence interval along the rays A–D. The confidence
intervals of ray A and front stations of rays B–C are strongly influ-
enced by the boundary random processes relative to those of
source uncertainty (see plot (b) in Figs. 6 and 10 for ray C).



Fig. 10. Uncertainty in source term and boundary conditions: Comparison of simulation results for mean wave period Tm01 (within 95% Confidence Interval (l� 2r)) against
experimental data. We use third-order expansion for the sparse grid in the random process of boundary parameters (h0ðx; yÞ and f pðx; yÞ) with correlation length = 15 m and in
the source parameters (Cbfr ;aBJ ; c;aEB).

Fig. 11. Uncertainty in source term and boundary conditions: Comparison of simulation results for mean wave direction �h (within 95% Confidence Interval (l� 2r)) against
experimental data. We use third-order expansion for the sparse grid in the random process of boundary parameters (h0ðx; yÞ and f pðx; yÞ) with correlation length = 15 m and in
the source parameters (Cbfr ;aBJ ; c;aEB).
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However, here these influences in Fig. 10 are extended to the
stations downstream of the submerged breaker for the mean wave
period, which is not the case in the significant wave height results.
Here, the incoming mean wave direction is treated as random
process at the boundary. The mean wave direction results along
ray A–D show now larger confidence intervals than those due to
source uncertainty (see Fig. 6); the results are presented in
Fig. 11. The incorporation of boundary random processes into
the left boundary along with source uncertainty enlarges the
confidence intervals at all stations along rays A–D.

The energy spectra for ray B and D stations are given in Fig. 12.
The confidence intervals within 95 percent are amplified at the
front stations. The confidence intervals contain almost all measure-
ment values from the experiment.



Fig. 12. Uncertainty in source term and boundary conditions: Comparison of simulation results for energy spectra (confidence interval within 95% (l� 2r)) and experimental
data. We use third-order expansion for the sparse grid in the source parameters (Cbfr ;aBJ ; c;aBJ) and in the K–L expansion coefficients of incoming peak frequency (f pðx; yÞ) and
(h0ðx; yÞ) mean wave direction as random process.
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6. Summary and conclusions

We have validated a new high-order scheme proposed in
Yildirim and Karniadakis (2012) using the HISWA experiment.
We used a coarse triangular mesh in which different Jacobi polyno-
mial orders ðp ¼ 1;3;5Þ are expanded over the triangular elements.
The first-order of Jacobi polynomial expansion was too low to cap-
ture the important wave parameters of the HISWA experiment. The
third- and fifth-orders of the Jacobi polynomials significantly
improved the result on the same coarse mesh.

We have also performed sensitivity analysis of the source term
parameters used in this simulation. We looked at three different
outputs: (1) significant wave height, (2) mean wave period, and
(3) mean wave direction. The depth-induced breaking parameters
c and aBJ , bottom friction coefficient Cbfr , and triad parameter aEB all
seem important either for some region of the domain or for one of
the three wave outputs. The sensitivity results suggested to keep
the parametrization of the three source terms as random inputs
for uncertainty quantification.

We conducted stochastic simulations to quantify the uncer-
tainty in the HISWA simulation. We considered randomness in
the source term parametrization, current field, and boundary
condition in this study. The source term uncertainty and random
current field were individually treated first and then combined.
We used the second-, third-, and fourth-order expansion of gPC
for stochastic simulation with random inputs for the source
parametrization. We compared the mean and standard deviations
of the three wave parameters (see Yildirim, 2012 for detailed
results). The results suggested that the third-order expansion
was converged. We have only shown plots of confidence intervals
within 95% in Fig. 6 for ray B, C stations; the complete set of results
can be found in Yildirim (2012). We see that the confidence inter-
vals within 95% captured well the experimental results for the sig-
nificant wave height and mean wave period (see plots (a) and (b) in
Fig. 6). As for the mean wave direction (see plots (c) and (d) in
Fig. 6), the stations after the wave breaker have shown larger con-
fidence interval variations. But the confidence intervals within 95%
did not contain the experimental results at ray C or ray D (not
shown here). The rightmost measurement on ray C (see plot (d)
in Fig. 6) can be covered by the confidence intervals 99%
ðl� 3rÞ. We remark that the source term parametrization has
small influence on the three wave parameters on the stations of
ray A or on the stations before the wave breaker ðx < 12Þ.

The confidence intervals within 95% of the energy spectra are
shown in Fig. 7. The intervals are significantly larger around the pri-
mary and secondary peaks for all stations. The energy spectra from
the experiment are also well contained by the confidence intervals
from the stochastic simulation for the source random input.
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The current field has a direct influence on depth-induced and
current-induced wave refraction and shoaling. We introduced a
random current field by using the Karhunen–Loeve expansion of
the exponential Gaussian correlation function. The correlation
length determines the dimension of random space. We have tested
three different correlation lengths: 30 m, 25 m, and 20 m; these
results are not presented here but they can be found in Yildirim
(2012). We briefly mention that the standard deviation of the three
important wave parameters ðHs; Tm01; �hÞ did not make a signifi-
cant difference between level 3 and level 4 expansion from the
Smolyak grid. We chose the correlation length as 25 m and used
the level 3 from the Smolyak grid for stochastic simulation of the
random current input. Perturbations with magnitude of about
25% were introduced to x and y velocity components of the exper-
imental current field. Although it is a relatively large perturbation
of the current field, the confidence intervals (see the results in
Yildirim (2012)) did not induce any noticeable differences in the
significant wave height or the mean wave period.

The error bars of energy spectra were slightly changed around
the primary peaks at the stations (see detailed results in Yildirim
(2012)) where strong current gradients were present. For this per-
turbation level, the uncertainty of source term parametrization still
has a much larger effect than the random current field input on the
wave parameters and energy spectra.

The incoming wave direction and peak frequency at the left
boundary were treated as random processes. The error bar plots
are presented for the three important integrated parameters in
Fig. 8. An important observation is that we see larger variation
around ray A stations and the front stations of ray B–D for the inte-
grated parameters (only ray C and B results are presented here).
The variations are relatively smaller toward the downstream sta-
tions for the significant wave height and mean wave periods. How-
ever, we see larger error bars on the downstream stations for the
mean wave direction.

We also performed stochastic simulations by considering com-
bined sources of uncertainty. First we combined two random
sources (source and current) to perform a stochastic simulation.
The resulted error plots (not shown here) reflect the same level
of uncertainty as the one resulted from parametrization of the
source only. This, in turn, implies the dominance of the uncertainty
from the source terms. Adding to the uncertainty from boundary
conditions to both fields (source and current) will increase the
dimension of the random space on a level that we cannot afford
the computational cost. Since the uncertainty of the current field
barely changes the overall outcome, the relevant statistics for the
integrated wave parameters can be obtained by dropping the
uncertainty of the current field and combining two random sources
from the source term parametrization and boundary condition.
Hence, such stochastic simulation will yield the combined uncer-
tainty from all the inputs (source terms, current field, and bound-
ary condition). The error bars with confidence intervals within 95%
are shown in Figs. 9–11. The confidence intervals covered well the
observational values from the experiment except the value on the
experimental station of ray D for the mean wave direction. Fig. 12
shows that the confidence intervals contained well the experimen-
tal measurements for the energy spectra for the probe stations.
Wherever a large variation of the confidence intervals occurs (such
as around the first and secondary peaks) it signifies the sensitivity
of a solution to the input parameters.
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Appendix A. Source terms

A.1. Triad wave-wave interactions (Snl3)

The Lumped Triad Approximation (LTA) by Eldeberky (1996) is
the simplest expression for triad wave interactions. The approxi-
mation is

Snl3ðh;rÞ ¼ S�nl3ðh;rÞ þ Sþnl3ðh;rÞ; ðA:1Þ

and the positive term contribution is computed as

Sþnl3 ¼max 0;aEB2pccgJ2j sin bj E2ðh;r=2Þ � 2Eðh;r=2ÞEðh;rÞ
n oh i

;

ðA:2Þ

where aEB is a control parameter. The negative contribution of
source terms can be defined in terms of the positive one as

S�nl3 ¼ �2Sþnl3ðh;2rÞ: ðA:3Þ

The bi-phase parameter b is approximated by using the Ursell num-
ber Ur:

b ¼ �p
2
þ p

2
tanh

0:2
Ur

	 

; ðA:4Þ

and

Ur ¼ g

8
ffiffiffi
2
p

p2

HsT
2
m01

d2 : ðA:5Þ

The coefficient J (Madsen and Sørenson, 1993) can now be defined
as

J ¼
k2
r=2 gdþ 2c2

r=2

� �
krd gdþ 2

15 gd3k2
r � 2

5 r2d2
� � : ðA:6Þ
A.2. Depth-induced wave breaking (Sbr)

The mean rate of energy dissipation due to depth-induced
breaking is:

Dtot ¼ �
1
4
aBJQ b

~r
2p

	 

H2

max; ðA:7Þ

where the value of aBJ is of the order of one. The fraction of breaking
waves is represented by Qb, which is derived by assuming cumula-
tive probability distributions of all waves (Battjes and Janssen,
1978; Battjes and Stive, 1985) from the following relation:

1� Q b

log Qb
¼ �8

Hrms

H2
max

; ðA:8Þ

where Hrms is the root-mean-square of wave height and Hmax is the
maximum wave height for a given depth. The maximum wave
height is defined as Hmax ¼ cd. The breaker parameter c is chosen
as an default average value of 0.73 from the work of Battjes and
Stive (1985).

The depth-induced wave breaking source term (Eldeberky,
1996) can be modeled as

Sbrðh;rÞ ¼
Dtot

Etot
Eðh;rÞ: ðA:9Þ

Note that Sbr will have a negative sign due to Dtot .
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A.3. Bottom friction (Sbfr)

Bottom friction is modeled from WAMDI Group (1988) based on
further simplification of the bottom friction model of the JONSWAP
experiment (Hasselmann et al., 1973) as

Sbfrðh;rÞ ¼ �Cbfr
r2

g2sinh2ðkdÞ
Eðh;rÞ; ðA:10Þ

where Cbfr is the tunable bottom friction coefficient. The modeling
of the bottom friction source term assumes that the tangential
stress on the bottom can be modeled by a quadratic friction law
(Hasselmann and Collins, 1968), which can be interpreted in terms
of the bottom friction source term, leading to the above formulation
(Hasselmann et al., 1973). In the JONSWAP experiment
(Hasselmann et al., 1973) 10 swell cases were tested and showing
that the bottom friction coefficient changes from 0.03 to 0.16, with
a mean value of 0:038 m2 s�3. The bottom friction coefficient
Cbfr ¼ 0:067 m2 s�3 has been used by Bouws and Komen (1983)
for fully developed waves in shallow water. The coefficient Cbfr is
not constant but depends on the bottom amplitude Reynolds num-
ber and the bed roughness. We refer the interested readers to
Young’s book (Young, 1999) for further discussion and references.

Appendix B. Numerical discretization

We presented a detailed description of numerical discretization
of phased-averaged ocean wave equation in our previous work
(Yildirim and Karniadakis, 2012; Yildirim, 2012), which will be
summarized in this section. Let us now define the following fluxes
with the transformation of the frequency coordinate r! f

¼ p 2ðr�rminÞ
rmax�rmin

� 1
h i

:

E ¼ cxNðf; h; x; y; tÞ; F ¼ cyNðf; h; x; y; tÞ; G ¼ chNðf; h; x; y; tÞ;
H ¼ cfNðf; h; x; y; tÞ:

Using the above definitions, the action balance equation in flux
form is written as

@N
@t
þ @E
@x
þ @F
@y
þ @G
@h
þ Jfr

@H
@f
¼ S

r
; ðB:1Þ

where Jfr ¼ 2p=ðrmax � rminÞ.

B.1. Fourier-collocation methods for the spectral derivatives

We use Fourier-collocation in a directional domain extending
from�p to p due to periodicity. The frequency direction ðrÞ is usu-
ally a truncated domain, which is non-periodic. This, in turn, makes
a standard Fourier-collocation along the frequency direction apply-
ing impossible. The numerical solution passing the boundaries
should not be reflected by the truncated ends to a computational
domain. A modification to apply the standard Fourier-collocation
for the derivative term along the frequency axis, using absorbing
boundary layer approach (If et al., 1987), was proposed in our pre-
vious work (Yildirim and Karniadakis, 2012), and it will be
described in Appendix B.3. Let us discretize the wave direction h
and the transformed frequency direction ðfÞ as

hk ¼ �pþ 2p
N

k 8k 2 ½0;1; . . . ;N � 1�;

fl ¼ �pþ 2p
N

l 8l 2 ½0;1; . . . ;N � 1�;

and then using Lagrangian interpolation (Gottlieb and Orszag, 1977;
Hesthaven et al., 2007), we can compute

@G
@h

����
h¼hk

¼
XN�1

j¼0

DkjGðf; hj; x; y; tÞ; ðB:2Þ
where Dkj is the differentiation matrix for Fourier-collocation. Sim-
ilarly, we obtain

@H
@f

����
f¼fl

¼
XN�1

j¼0

DljHðfj; h; x; y; tÞ: ðB:3Þ

The differentiation matrix (Hesthaven et al., 2007) for an even num-
ber of collocation points (Lagrangian polynomial if q ¼ 0) reads in a
dummy coordinate z (either h or f to obtain the above flux
derivatives)

Dq
ij ¼

2
N

XN=2

n¼0

1
cn

ðinÞq cos½nðzi � zjÞ�; q even
iðinÞq sin½nðzi � zjÞ�; q odd

(
ðB:4Þ

where c0 ¼ cN=2 ¼ 2 and cn ¼ 1, otherwise. For an odd number of
collocation points, the same differentiation matrix can be used by
setting cn ¼ 1 for all values of n.

B.2. Mapping in the spectral direction

The standard Fourier-collocation employs equi-spaced distribu-
tion in the directional domain. The number of collocation points
can be so large in case of a steep solution localized in a specific
region. While resolving the steep solution, one will over-resolve
the smoother part of the solution, wasting the computational
resources. Alternatively, we can define a mapping to cluster the
Fourier-collocation points around a specified region (local refine-
ment). This clustering can be achieved by employing a mapping
for a specified region.

The atan mapping (Boyd, 1987, 2001) can be defined in ½�p;p�
for the spectral direction

h ¼ gðv; LÞ ¼ 2 arctan½L tanð0:5vÞ� þ v0; ðB:5Þ

where v denotes computational space which permits the standard
Fourier-collocation method for differentiation, and the constant
parameter L controls the amount of clustering around the peak cen-
ter v0. Using a change of derivative coordinate transformation for
the mapping relation in Eq. (B.5), we obtain a new differentiation
matrix and compute the spectral direction derivatives with them
(Yildirim and Karniadakis, 2012; Yildirim, 2012).

We have found that this mapping can save us up to eight times
in the number of collocation points in the directional domain. The
derivation of new differentiation matrix and the demonstration of
computational savings for a narrow directional spectrum was dis-
cussed in our previous work (Yildirim and Karniadakis, 2012;
Yildirim, 2012).

B.3. Absorbing boundary treatment in frequency direction

The true boundary conditions for a truncated domain permit
incoming waves without any reflection back to the computational
domain. For the frequency direction, we have used the Absorbing
Boundary Layer (ABL) approach (If et al., 1987) to satisfy non-
reflective boundary conditions; this effectively enforces periodicity
at the truncated domain boundaries.

To impose the ABL approach, we add the term gðrÞ Nðh; x; y; tÞ
to the original equation Eq. (1), and hence the new modified action
balance equation is

@Nðh;r; x; y; tÞ
@t

þ @cg;xNðh;r; x; y; tÞ
@x

þ @cg;yNðh;r; x; y; tÞ
@y

þ @chNðh;r; x; y; tÞ
@h

þ @crNðh;r; x; y; tÞ
@r

þ gðrÞ � Nðh;r; x; y; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
modificationterm

¼ Sðr; h; x; y; tÞ
r

; ðB:6Þ
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where gðrÞ is the absorbing function, achieving zero values inside
the domain and non-zero values in the absorbing layers, damping
the numerical solution in these regions. The absorbing function
can be defined in the computational domain f in ½�p;p� as follows:

gðfÞ ¼ cL 1 � tanh½aLðfþ pÞ�ð Þ þ cR 1 þ tanh½aRðf� pÞ�ð Þ; ðB:7Þ

where c controls the magnitude of the absorbing functions, a deter-
mines the effective width of the absorbing layers, and L and R
denote the left and right layers. The parameter couples aL and aR

control the ABL widths. We refer the interested readers for the
details of the parameters to our previous work (Yildirim and
Karniadakis, 2012; Yildirim, 2012).

Using the collocation differentiation Eqs. (B.2) and (B.3) in the
flux form of action Eq. (B.1) with the above modification term,
we can define the term L as

Lðhk; fl; x; y; tÞ ¼
@G
@h

����
h¼hk

þ Jfr
@H
@f

����
f¼fl

þ gðrlÞNðhk;rl; x; y; tÞ

� Sðhl;rk; x; y; tÞ: ðB:8Þ
With the above definition, the flux form equation is written as
@N
@t
þ @E
@x
þ @F
@y
þ Lðhk; fl; x; y; tÞ ¼ 0; ðB:9Þ

B.4. Spatial discretizations

We will use discontinuous Galerkin (DG) (Hesthaven and
Warburton, 2007; Hesthaven et al., 2007; Karniadakis and
Sherwin, 1999) spectral element discretization for the geographi-
cal space. The discontinuous Galerkin formulation can be stated
as: Find an approximate solution Nh in the piece-wise polynomial
space VhðXÞ, defined as VhðXÞ 2 PkðXÞ

� �
where PkðXÞ denotes the col-

lection of polynomials of degree up to k in the element X such thatZ
X

@Nh

@t
vhdXþ

Z
X

@Eh

@x
vhdXþ

Z
X

@Fh

@y
vhdX

þ
Z

X
Lðhk; fl; x; y; tÞvhdX ¼ 0; 8vh 2 Vh; ðB:10Þ

where X is an arbitrary triangle element, and L in Eq. (B.8) is sum
of spectral space derivatives, the modification term, and physical
source terms which is defined above. Applying integration by parts,
we obtainZ

X

@Nh

@t
vhdX�

Z
X

Eh
@vh

@x
dX�

Z
X

Fh
@vh

@y
dXþ

Z
@X

Ehvh � ndS

þ
Z
@X

Fhvh � ndSþ
Z

X
Lðhk; fl; x; y; tÞvhdX ¼ 0: ðB:11Þ

To compute the above integrals on the standard triangle, we trans-
form an arbitrary triangle domain X to a standard triangle
(�1 6 n1 þ n2 6 1). To define orthogonal coordinates, we introduce
a collapsed coordinate transformation that allows us to construct
two-dimensional expansion functions for a triangle region the same
as in a structured region. The collapsed transformation is defined as
Karniadakis and Sherwin (1999)

g1 ¼
2ð1þ n1Þ

1� n2
� 1; g2 ¼ n2; ðB:12Þ

where g1 and g2 are new coordinates �1 6 g1;g2 6 1, see Fig. B.13,
removing coordinate dependency of bounds in a triangle domain
(�1 6 n1 þ n2 6 1) – see Yildirim and Karniadakis (2012) and
Yildirim (2012) for the details of the transformation and the final
form of the equation.

Seeking approximate solution Nh expanded by orthogonal
expansional functions and choosing test function vh as the same
orthogonal expansion functions (Galerkin projection) such as
Nh ¼
XP1

p¼0

XP2

q¼0

upqðtÞwpðg1Þwpqðg2Þ and ðB:13aÞ

vh ¼ wmðg1Þwmnðg2Þ; ðB:13bÞ

the complete polynomial space for a triangular region can be con-
structed fðpqÞj0 6 p; q; p 6 P1; pþ q 6 P2; P1 6 P2g. The orthogonal
expansion functions in terms of Jacobi polynomials are defined in
Karniadakis and Sherwin (1999):

wpðg1Þ ¼ P0;0
p ðg1Þ; wmðg1Þ ¼ P0;0

m ðg1Þ;

wpqðg2Þ ¼
1� g2

2

	 
p

P2pþ1;0
q ðg2Þ; wmnðg2Þ ¼

1� g2

2

	 
m

P2mþ1;0
n ðg2Þ:

ðB:14Þ

Inserting the approximate solution Nh (Nh 2 Vh) and test function vh

into the transformed form of Eq. (B.11) – now casted in transformed
coordinates g1 and g2 – using Jacobi polynomials wp and wpq defined
in Eq. (B.14), we will obtain the final approximated equation (see
Yildirim and Karniadakis, 2012; Yildirim, 2012). We choice the
upwind flux (see the other numerical flux options from Toro
(1999)) to replace the boundary flux terms in Eq. (B.11).

B.5. Numerical integration of spatial and spectral terms

The discretized equations will be now reduced to an ordinary
differential equation (ODE) for the expansion coefficients upq

Mpq;pq
dupqðtÞ

dt
¼ 1

Jxn

Spq þ Tpq � Epq � Fpq � Lpq
� �

; ðB:15Þ

where the mass matrix M, the stiffness vectors S and T, the edge
fluxes E and F, and numerical source term L are, respectively, the
result of integrated terms in the approximate final equation. Note
that the approximate equation is derived after applying the two
transformations, and replacing N with Nh and v with vh in Eq.
(B.11) (see Yildirim and Karniadakis, 2012; Yildirim, 2012 for the
details).

The mass matrix M is the result of the following quadrature
integration of the time term by using the orthogonality of Jacobi
polynomials

R
PmðxÞPnðxÞdx ¼ 0; m – n

� �
:

Mpq;pq ¼
2

ð1þ 2pÞð1þ pþ qÞ : ðB:16Þ

The one great advantage of using orthogonal polynomials is that the
inversion of mass matrix is trivial since it is diagonal. The remaining
integration terms (S;T;E, and F; L) need to be numerically com-
puted. The details can be found in our previous work (Yildirim
and Karniadakis, 2012; Yildirim, 2012). In summary, we use mixed
Gauss–Lobatto/Gauss–Radau quadrature to compute each integra-
tion term.

B.6. Numerical time discretization

With regards to temporal discretization, we employed second-
and third-order (Gottlieb and Shu, 1998), as well as the fourth-
order explicit (5-stages) (Spiteri and Steven, 2001) Strong Stability
Preserving Runge–Kutta (SSP-RK) schemes. The 2nd order SSP-RK
schemes used in the entire study Gottlieb and Shu (1998) and
Hesthaven and Warburton (2007)

v ð1Þ ¼ un þ Mt rðun; tnÞ;

unþ1 ¼ 1
2

un þ v ð1Þ þ Mt rðv ð1Þ; tn þ Mt
� �

; ðB:17Þ

where r is the right-hand side of Eq. (B.15), and Mt is the time step
size.



Fig. B.13. Transformation from the standard triangle to rectangular region from Karniadakis and Sherwin (1999).
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Our new scheme has three distinguished features: (1) imple-
mented on unstructured grid on physical space, (2) high accuracy
(exponential convergence) in all physical spaces (geophysical
space and spectral spaces), and (3) high-accuracy (2nd, 3rd, and
4th orders) in time integration schemes. The main distinction from
other methods (finite element, finite volume, finite differences)
(Booij et al., 1999; Hsu et al., 2005; Qi et al., 2009; Zijlema, 2010)
is to have exponential convergence rather than algebraic conver-
gence of low order methods. As an example, for a two-digit
increase in solution accuracy you need to increase mesh resolution
roughly 100 times for the first order scheme. On a fixed mesh spec-
tral element codes need only to double its polynomial order. The
computational cost of doubling polynomial order will be only 4
times more. The computation time increase for the first order
scheme, as roughly 100 times more in this case, scales at the best
linearly with the size of mesh.

The comparison of our numerical scheme and other low-order
methods: (1) SWAN first order and third order schemes (Booij
et al., 1999), (2) FE-WAVE’s finite element scheme (Hsu et al.,
2005), and (3) FVCOM-SWAVE’s finite volume scheme (Qi et al.,
2009) for numerical diffusion in deep water test case, introduced
in Booij et al. (1999), were presented in our previous work
(Yildirim and Karniadakis, 2012). The results showed that the
high-order scheme using Jacobi polynomials of 2rd, 4th, 6th and
8th orders and a very coarse triangular mesh introduces minimal
diffusion for the numerical diffusion test case. The result from
the high-order scheme applied on this test case was most closely
agreed with that of SWAN’s third order scheme.

The one important issue is the so-called Garden Sprinkler effect
(GSE) (Booij and Holthuijsen, 1987; Tolman, 2002; Janssen, 2008)
since it is particularly pronounced for spectral discretization due
to high accuracy of the scheme with minimal dissipation. The
detailed discussion of GSE and the remedy for the high-order
methods were proposed in our previous work (Yildirim and
Karniadakis, 2012). Summarizing this discussion, we proposed to
introduce selectively artificial dissipation to control GSE. The
review of these efforts for the spectral methods can be found in
Karniadakis and Sherwin (2005). In particular, one effective
approach proposed in Yildirim and Karniadakis (2012) is the use
of spectral vanishing viscosity (Tadmor, 1989), which is applied
to geophysics problems in Andreassen et al. (1994) and to turbu-
lence simulations in Karamanos and Karniadakis (2000). In our
present scheme, GSE is implicitly controlled by the upwind flux
in the DG formulation, an approach that suggested by Janssen in
Janssen (2008).
Appendix C. Stochastic collocation, Smolyak grid, and
Karhunen–Loeve (K–L) decomposition

This study uses stochastic collocation method in conjunction
with Smolyak quadrature and Karhunen–Loeve decomposition to
perform uncertainty quantification. We first explain the stochastic
collocation method, then show that the Smolyak quadrature
enables stochastic simulations for realistic computations with
multiple random parameters, and finally we discuss Karhunen–
Loeve decomposition to represent random processes.

C.1. Stochastic collocation

Collocation projection is applied to the stochastic differential
equations constructed by expanding the random parameters in
terms of orthogonal polynomials. The residual of equation is pro-
jected on collocation points, and the method assumes the residual
to be zero at the collocation points. Stochastic collocation methods
choose the quadrature points that are zeros of the orthogonal poly-
nomials used in representing the stochastic solution.

Let us assume that we have the simplest form of action balance
equation as function of time only:

dNðtÞ
dt
¼ �SðaÞ; ðC:1Þ

where a represent some parameter in the source term S. Introduc-
ing the random inputs to the source term for the parameter a, the
stochastic ordinary differential equation (ODE) reads:

dN̂ðt; ZÞ
dt

¼ �SðZÞ; ðC:2Þ

where Z represents the random variable input of a. Stochastic collo-
cation method projects the residual of the above stochastic ODE on
the collocation points in the ‘‘parametric’’ space Zi, which is a single
value of the parameter a chosen from the known probability of ran-
dom input distributions. The stochastic solution N̂ðt; ZÞ can be
expanded in terms of gPC polynomials (Ui) as

N̂ðt; ZÞ ¼
XK

i¼0

NðtÞUiðZÞ; ðC:3Þ

where NðtÞ is a deterministic solution. This expansion is inserted
into Eq. (C.2) to get the residual of the equation:

Rðt; ZÞ ¼ d
dt

XK

i¼0

NðtÞUiðZÞ
 !

þ SðZÞ: ðC:4Þ

Taking the inner product between the residual and direct delta
function dðZ � ZnÞ, we obtain the residual on the collocation points
such as

dðZ � ZnÞ;Rðt; ZÞð Þ ¼ d
dt

X
i¼0

KNðtÞ
Z

dðZ � ZnÞSðZÞdZ þ
Z

dðZ

� ZnÞSðZÞdZ; ðC:5Þ

Since stochastic collocation methods assume that this inner product
is zero, by using the Dirac delta function propertiesR

dðx� nÞ/ðnÞdn ¼ /ðxÞ, Eq. (C.5) becomes

0 ¼ d
dt

XK

i¼0

NðtÞ UiðZnÞ
 !

þ SðZnÞ: ðC:6Þ
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Fig. C.14. Quadrature nodes for two-dimensional ðd ¼ 2Þ random space. Red square
boxes (left) are the Clenshaw–Curtis quadrature (the extrema of Chebyshev
polynomials) for k ¼ 4. Total number of points is 65. The gray circles (left)
represents full tensor grid. The Smolyak sparse grid is the subset of full tensor grid.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table C.3
Comparison of the total number of quadrature points for various dimensions
ðN ¼ 2;4;8;12;50Þ and orders ðk ¼ 1;2;3;4Þ. The right two columns present the
total quadrature nodes of Smolyak sparse grid and tensor product construction.

Dimension (N) Order(k) Sparse grid Tensor grid

2 1 5 4
2 13 9
3 29 16
4 65 25

4 1 9 16
2 41 81
3 137 256
4 401 625

8 1 17 256
2 145 6,561
3 849 65,536

12 1 25 4,096
2 313 531,441
3 2,649 16,777,216

50 1 101 	 1:1� 1015

2 5,101 	 7:2� 1023

3 171,901 	 1:3� 1030
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Recognizing the gPC expansion of Nðt; ZnÞ as
PK

i¼0NðtÞ UiðZnÞ, we get
the final collocation equation as

dNðt; ZnÞ
dt

¼ �SðZnÞ; ðC:7Þ

where Zn is a specific value of the parameter a for the known ran-
dom input. This specific value Eq. (C.7) is a deterministic ODE as
is in Eq. (C.1). This is the essence of stochastic collocation methods,
that is, we only need deterministic equations to solve at a specified
set of collocation points (Zn) chosen carefully in the random space.

We need to interpolate the solution from the set of determinis-
tic solutions computed at the collocation points. The collocation
points can be any set of distinct points. We have not so far con-
strained the set of collocation points (Zn). But all points are equally
important and some are better than others for the accuracy. To see
this, let us expand a variable SðZÞ in terms of the gPC basis

N̂ðt; ZÞ ¼
XK

k¼0

n̂kðtÞ UkðZÞ; ðC:8Þ

where K is the order of expansion and n̂kðtÞ are the expansion coef-
ficients. Since we have the deterministic solutions (Nðt; ZjÞ) at
points Zj and interpolation condition N̂ðt; ZjÞ ¼ Nðt; ZjÞ, we can use
linear system

AT n̂ ¼ u ðC:9Þ

to solve the vector of the expansion coefficients n ¼ ð^̂n0; n̂1; . . . ; n̂NÞ
from M collocation points. The matrix A

A ¼ UiðZjÞ
� �

K�M ; 0 6 i 6 K; 1 6 j 6 M ðC:10Þ

is K �M matrix. This interpolation results in high accuracy if the set
of collocation points Zj are the zeros of the gPC orthogonal polyno-
mials (UiðZÞ) (quadrature points). Stochastic collocation simulation
follows five basic steps: (1) provide the probability distribution of
random inputs, (2) choose quadrature points for the random vari-
able (Zj) based on the gPC polynomials (the zeros of Jacobi, Hermite,
etc. polynomials), (3) run deterministic simulations for each ran-
dom parameter Zj, (4) obtain the expansion coefficients from the
linear system (C.9) to construct the stochastic solution, and (5)
post-process the stochastic solution to get important statistical
parameters (mean, standard deviation, etc.).

C.2. Smolyak sparse grid

The stochastic collocation points can be generated by using the
tensor product of one-dimensional gPC for multi dimensional
problems. From this construction, for dimensions ðdÞ (the number
of mutually independent random inputs) and the number of the
collocation points (m) the total deterministic runs will be md. The
total deterministic runs (md) become quickly too large for even
moderate size dimensional problems. One popular approach to
construct the collocation points is known as sparse grid collocation
methods (Smolyak, 1963; Garcke, 2007; Xiu, 2010). The Smolyak
sparse grid method is a smart way to select quadrature points from
the subset of the tensor grids. An example Smolyak sparse grid
superimposed on the full tensor grid is given in Fig. C.14. We refer
the interested readers for the details of derivation and different
applications to the work of Bungartz et al. (2004). The codes gen-
erating sparse grid are available for many numerical library and
packages.

Table C.3 presents the total number of collocation points from
the Smolyak Grid and tensor grids for various dimensions (N)
and the orders (k). The total quadrature points from tensor product
construction (md) for two-dimensions (d = 2) is indeed lower than
those of Smolyak grid. Smolyak grid does not have great advantage
over the tensor production up to dimensional of five. The total
number of nodes on the tensor grid (ðkþ 1ÞN) quickly becomes a
very large number for the higher dimensions as seen in
Table C.3. Instead using a Smolyak grid, significant computational
savings can be obtained for the higher dimensions (see Table C.3).

C.3. Karhunen–Loeve(K–L) decomposition

In the previous section, Table C.3 presented the number of
quadrature points in Smolyak grid for various dimensions and
orders. The number of nodes from Smolyak grid is moderate for
the lower orders of higher dimensions, and that many runs of
deterministic simulation is feasible on high performance comput-
ers. The total number of nodes from the Smolyak grid increases
strongly for the higher dimensions ðd > 20Þ, especially for high
orders ðk > 3Þ. For very high-dimensional problems ðd > 50Þ, the
total number of nodes from the Smolyak grid can also be very
large.

The source parametrization which has only a few free parame-
ters does not result in high dimensionality (d > 20) in random
space. On the computational mesh, random processes – which is
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a function of space – such as current and boundary conditions will
have very high degrees of freedom. To expedite the stochastic
simulation for the random processes we can consider the relevant
random process on each grid point as a random variable. It is a via-
ble option, but this increases the dimensionality to very high val-
ues. As a specific example, to model the current field in HISWA
experiment on our computational mesh in Fig. 2(b) we might
require about 500 random variables; each represents random var-
iable for the current at the collocation points on the computational
mesh. Low-order methods (finite volume, finite element) will even
have much higher degrees of freedom for the same problem.

To parametrize random processes due to very high dimension-
ality, some dimensionality reduction techniques are necessary.
Karhunen–Loeve (KL) (Loeve, 1977) is one of the most popular
approach with regards to this issue. The mathematical representa-
tion and derivation can be found in Section 5.3.
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