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We consider elliptic stochastic partial differential equations (SPDEs) with random coeffi-
cients and solve them by expanding the solution using generalized polynomial chaos
(gPC). Under some mild conditions on the coefficients, the solution is ‘‘sparse’’ in the ran-
dom space, i.e., only a small number of gPC basis makes considerable contribution to the
solution. To exploit this sparsity, we employ reweighted l1 minimization to recover the
coefficients of the gPC expansion. We also combine this method with random sampling
points based on the Chebyshev probability measure to further increase the accuracy of
the recovery of the gPC coefficients. We first present a one-dimensional test to demon-
strate the main idea, and then we consider 14 and 40 dimensional elliptic SPDEs to dem-
onstrate the significant improvement of this method over the standard l1 minimization
method. For moderately high dimensional (�10) problems, the combination of Chebyshev
measure with reweighted l1 minimization performs well while for higher dimensional
problems, reweighted l1 only is sufficient. The proposed approach is especially suitable
for problems for which the deterministic solver is very expensive since it reuses the sam-
pling results and exploits all the information available from limited sources.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Due to the great interest in uncertainty quantification (UQ) for computational engineering applications in the past decade,
several new methods have been proposed for the numerical solution of stochastic partial differential equations (SPDEs). For
example, generalized polynomial chaos (gPC), [1,2] and its extensions, e.g., multi-element generalized polynomial chaos (ME-
gPC) [3,4] have been successfully applied to a stochastic flow and other problems, where the number of uncertain parame-
ters is not too large. Alternatively, probabilistic collocation method (PCM) based on sparse grid integration/interpolation [5–7]
is also very popular due to its simplicity. Different adaptivity strategies [8–10] have further improved the efficiency of these
types of methods. Another way of implementing adaptivity based on the analysis of variance (ANOVA) has also been very
effective, e.g., [11–14], and can potentially be used in high-dimensions if sufficient sparsity in the representation of the solu-
tion exists.

In this paper we consider problems which exhibit sparsity, i.e., the quantity of interest is ‘‘sparse’’ in random space, and
hence the solution can be accurately represented with only a few terms when linearly expanded into a stochastic, e.g., gPC,
basis. This is similar to adaptive gPC approach [15]. It is also similar to dimension reduction methods, where the aim is to
retain only the most important dimensions, hence the solution can be approximated economically without significantly
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sacrificing accuracy [9,10,13,16]. For many high-dimensional problems, careful analysis has shown that the number of basis
functions with large coefficients is small relative to the cardinality of the full basis. For example, it has been shown in [17,18]
that under some mild conditions, solutions to elliptic SPDEs with high-dimensional random coefficients admit sparse repre-
sentations with respect to gPC basis; see also [19,20].

Doostan and Owhadi [21] proposed a method for gPC expansion of sparse solutions to SPDEs based on compressive
sampling techniques. This method is non-adapted, provably convergent and well suited to problems with high-dimen-
sional random inputs. They applied it to an elliptic equation with random coefficients and demonstrated good results.
Their approach provides a more flexible method than the sparse grid method in that the number of the sampling points
at a different level of the sparse grid method is fixed once the dimension is decided while number of the sampling points
of this method is arbitrary (but of course generally speaking, more samples will lead to more accurate results). For exam-
ple, in one of our numerical examples in this paper, where d ¼ 40, i.e., 40 random variables are considered, level 1 sparse
grid method requires 81 samples while level 2 sparse grid method needs 3281 samples. In dynamic data-driven applica-
tions, e.g., weather forecast, petroleum engineering, ocean modelings, the system can be extremely complicated and the
simulation is very costly, and only a small number, e.g., Oð100Þ, of simulations can be afforded. Therefore, it is impossible
to obtain more accurate results than level 1 sparse grid or even the level 1 sparse grid may not be applicable when the
dimension is really high. Hence, the compressive sampling technique provides a feasible approach for such type of prob-
lems provided that based on physical knowledge, mathematical analysis or experience, the solution is sparse in random
space. Our main improvement of the method proposed by Doostan and Owhadi is that by employing the reweighted
procedure, which is popular in compressive sensing [22–24], we can greatly enhance the accuracy of the approximated
solution. Furthermore, we combine the technique of selecting sampling points based on Chebyshev measure [25] to
enhance the performance of the results.

This paper is organized as follows. In Section 2 we briefly review the main theorems of compressive sensing method as
well as the reweighted procedure and the sampling strategy based on Chebyshev probability measure. In Section 3 we de-
scribe the set up of the problem of which numerical tests are performed. In Section 4, we present the results of numerical
tests of 1D, 14D and 40D (in random space) linear elliptic SPDEs.
2. Brief review of l1 minimization

2.1. Basic concepts

Consider an underdetermined linear system of equations Wc ¼ u, where W (the ‘‘measurement matrix’’) is an m� N ma-
trix with m < N (usually m� N), and c and u (the ‘‘observation’’) are vectors of length N and m, respectively. In order to find
a ‘‘sparse’’ solution, we consider the following optimization problem:
ðPh;�Þ : min
c
kckh subject to kWc � uk2 6 �; ð2:1Þ
where we introduce the tolerance � to make (Ph;�) more general since in data-driven systems there may be noise in the obser-
vations. The sparsity of the solution c is best described by the ‘0 ‘‘norm’’ (number of nonzero entries of c):
kck0 ¼
def jfi : ci – 0gj;
as smaller ‘0 ‘‘norm’’ indicates more sparse c. In order to avoid the NP-hard problem of exhaustive search to solve (P0;�), a
type of greedy algorithm called orthogonal matching pursuit (OMP) can be employed [26]. However, this single-term-at-a-
time strategy can fail badly, i.e., there are explicit examples (see [27–29]) where a simple k-term representation is possible,
but this approach yields an n-term (i.e., dense) representation. Alternatively, one can relax the ‘0 ‘‘norm’’ to l1 norm, there-
fore replace (P0;�) with a convex optimization problem (P1;�), which is the l1 minimization method in compressive sensing. If
the solution is ‘‘nearly sparse’’ instead of ‘‘sparse’’, i.e., the zero entries of c are replaced by relatively small numbers which
will only change Wc a little, we can still use ðPh;�Þ by considering this small change as ‘‘noise’’ in the observation. In the prob-
lems we consider in this paper, the exact solutions are always nearly sparse. Next, we recall two fundamental concepts in the
l1 minimization.

Definition 2.1 (Mutual coherences [26,30]). The mutual coherence lðWÞ of a matrix W 2 Rm�N is the maximum of absolute
normalized inner-products of its columns. Let Wj and Wk be two columns of W. Then,
lðWÞ¼def max
16j;k6N;j–k

jWT
j Wkj

kWjk2kWkk2
: ð2:2Þ
In other words, the mutual coherence measures how close W is to orthogonal matrix. It is clear that for a general matrix A,
0 6 lðAÞ 6 1:
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For instance, if A is unitary matrix, then lðAÞ ¼ 0. However, since we always consider the case of m < N in compressive sens-
ing, lðWÞ is strictly positive. It is understood that a measurement matrix with smaller mutual coherence can better recover a
sparse solution by compressive sensing techniques, e.g., Lemma 3.4 of [21].

Definition 2.2 (Restricted isometries [31]). Let W be a matrix with a finite collection of vectors ðWjÞj2J 2 Rm as columns, where
J is a set of indices. For every integer 1 6 s 6 jJj, we define the s-restricted isometry constant ds to be the smallest quantity
such that WT obeys
ð1� dsÞkck2
2 6 kWT ck2

2 6 ð1þ dsÞkck2
2 ð2:3Þ
for all subsets T � J of cardinality at most s, and all real coefficients ðcjÞj2T . Here WT is the submatrix of W with column indices
j 2 T so that
WT c ¼
X
j2T

cjWj:
In other words, for any s-sparse vector c (the number of non-zero entries is at most s), ds measures whether WT behaves
like an orthonormal matrix. Informally, the matrix W is said to have the restricted isometry property (RIP) if ds is small for s
reasonably large compared to m.

Note that both the concepts of mutual coherence and restricted isometry describe the same property of the measurement
matrix, i.e., roughly speaking, how far sparse subsets of the columns of it are from being an isometry. This is a key idea in
compressive sensing, and to construct a measurement matrix with small mutual coherence or small restricted isometry con-
stant is crucial. In this paper we mainly concentrate on the latter when we refer to theoretical analysis. A well known the-
orem is the following:

Theorem 2.3 (Sparse recovery for RIP-matrices [32]). Assume that the restricted isometry constant of W satisfies d2s <
ffiffiffi
2
p
� 1. Let

c be an arbitrary signal with noisy measurements y ¼ Wc þ e, where kek2 < �. Then the approximation ĉ to c from l1 minimization
ðP1;�Þ satisfies
kc � ĉk2 6 C1�þ C2
rsðcÞ1ffiffi

s
p ; ð2:4Þ
where
C1 ¼
2a

1� q
; C2 ¼

2ð1þ qÞ
1� q

; q ¼
ffiffiffi
2
p

d2s

1� d2s
; a ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2s
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� d2s
p ; rsðcÞp ¼ inf

z:kzk06s
kc � zkp:
Remark 2.4. Notice that in Theorem 2.3 the bound for d2s is
ffiffiffi
2
p
� 1. There are sharper estimates for this bound, e.g. [33,34].

Since we are not concentrating on l1 minimization itself, we quote the original estimate by Candès [32].
Remark 2.5. Instead of Eq. (2.4), there is another form of estimate [21,26,30], which relates the error with the tolerance �
and the number of basis N and provides the probability of solutions satisfying the error bound.

In classical compressive sensing method, several choices of the measurement matrix are employed, e.g., Gaussian random
matrix, Bernoulli random matrix, etc. For SPDEs, we can expand the solution with gPC basis:
uðx; nÞ ¼
X

a

caðxÞwaðnÞ; ð2:5Þ
where x is the variable in the physical space and n is the random vector, wa are gPC basis functions, and a are the indices. For
each fixed x;u is a linear combination of the gPC basis, hence when different sampling points n1; n2; . . . ; are employed, Eq.
(2.5) can be cast into a linear system:
Wc ¼ u; ð2:6Þ
where each entry of the measurement matrix is Wi;j ¼ waj
ðniÞ with ni being sampling points in random space, and each entry

of vector u being ui ¼ uðx; niÞ, i.e., the output of the deterministic solver with sampling point ni. We call these ui samples of
the solution. In [21] the authors expanded the solutions with Legendre polynomial and used Monte Carlo points based on
uniform distribution. According to the law of large numbers and the orthogonality of the Legendre polynomials, the mutual
coherence converges to zero for asymptotically large random sample sizes m. Also, with this choice of sampling points, the
compressive sensing method can be considered as a post processing of Monte Carlo method and the benefit is that we can
arbitrarily increase the number of sampling points without wasting any realizations we already obtained. We note that the
nested sparse grid method can also reuse the sampling points of the lower levels while the number of additional samples
from one level to the next level is fixed.
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2.2. Reweighted l1 minimization

Candès et al. [22] proposed the reweighted l1 minimization, which employed the weighted norm and iterations to en-
hance the sparsity of the solution. This algorithm consists of the following four steps:

1. Set the iteration count l to zero and wð0Þi ¼ 1; i ¼ 1; . . . ;N.
2. Solve the weighted l1 minimization problem
cðlÞ ¼ arg min kW ðlÞck1 subject to kWc � uk2 6 �;
where W is a diagonal matrix with W ðlÞ
j;j ¼ wðlÞj .

3. Update the weights: for each i ¼ 1;2; . . . ;N,
wðlþ1Þ
i ¼ 1

jcðlÞi j þ s
:

4. Terminate upon convergence or when l reaches a specified maximum number of iterations lmax. Otherwise, increment l
and go to step 2.
Remark 2.6. According to [22], in step 3, the parameter s is introduced to provide stability and to ensure that a zero-valued
component in cðlÞ does not strictly prohibit a nonzero estimate at the next step. It should be set slightly smaller than the
expected nonzero magnitudes of c0, which is a sparse vector approximating c. Empirically, s is set around 0.1–0.001. In step
4, the convergence of c can be tested by comparing the difference between cðlÞ and cðlþ1Þ. Usually, lmax is set so that it controls
the number of iterations.

From the description of this algorithm, we notice that it repeats the l1 minimization for different weighted l1 norm in
different steps. Hence, when lmax is fixed, we actually need lmax additional optimization solves compared to the regular l1

minimization. A series of tests in [22–24] demonstrated remarkable performance and broad applicability of this algorithm
in the areas of sparse signal recovery, statistical estimation, error correction and image processing with not only sparse but
also nearly-sparse representations. Moreover, these tests showed that usually three or four iterations are enough to obtain
good performance. Notice that in this algorithm there is no requirement or modification for the measurement matrix, there-
fore it can be applied to any linear system including (2.6). Needell [35] provided an analytical result of the improvement in
the error bound by using the reweighted l1 minimization over the l1 minimization under some conditions:

Theorem 2.7 [35]. Assume that w satisfies the RIP condition with d2s <
ffiffiffi
2
p
� 1. Let c be an arbitrary vector with noisy

measurements y ¼ Wc þ e, where kek2 < �. Assume that the smallest nonzero coordinate g of cs satisfies g > 4a�0
1�q, where

�0 ¼ 1:2ðkc � csk2 þ 1ffiffi
s
p rsðcÞ1 þ � and kcs � ck1 ¼ rsðcÞ1. Then the limiting approximation from reweighted l1 minimization

satisfies
kc � ĉk2 6
4:1a
1þ q

�þ rs=2ðcÞ1ffiffi
s
p

� �
; ð2:7Þ
and
kc � ĉk2 6
2:4a
1þ q

�þ rsðcÞ1ffiffi
s
p þ kc � csk2

� �
; ð2:8Þ
where the definitions of a;q;rsðcÞp are the same as in Theorem 2.3.
In practice, we only use one to three reweighted iterations, Lemma 3.4 in [35] is more useful (see Appendix A).

2.3. Chebyshev measure for Legendre polynomials

According to the gPC theory, Legendre polynomial is the appropriate basis for the uniformly distributed random vari-
ables [2]. Therefore, if the system involves uniform random variables the solution can be expanded in terms of Legendre
polynomials and the selection of sampling points are based on the uniform distribution. With this setting, the mutual
coherence lðWÞ converges to zero almost surely for asymptotically large random sample size m as pointed out in [21],
and several theories were proposed to estimate the number of samples for different error level �. Noticing the special
structure of the measurement matrix W consisting of Legendre polynomial, Rauhut and Ward [25] proposed a sampling
strategy based on the Chebyshev measure dmðxÞ ¼ p�1ð1� x2Þ�1=2dx for recovering the Legendre sparse polynomials from
a few samples for 1D (random space) problem. We know that if a random variable X is uniformly distributed on ½0;p�, then
Y ¼ cos X is distributed according to the Chebyshev measure. Hence, in order to generate a sampling point based on
Chebyshev measure, we first generate a sampling point x according to U½0;p�, then y ¼ cosðxÞ is the point we need.
Equation (P1;�) is now modified as
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ðPCheb
1;� Þ : min

c
kck1 subject to kAWc � Auk2 6 �; ð2:9Þ
where A is an m�m diagonal matrix with Aj;j ¼ ðp=2Þ1=2ð1� n2
j Þ

1=4 and nj; j ¼ 1;2; . . . ;m are the sampling points based on
Chebyshev measure, wj;n ¼ Ln�1ðnjÞ and Ln is the nth order normalized Legendre polynomial. As was shown in [25], this strat-
egy can improve the accuracy of the recovery for 1-D (random space) problem. Moreover, this method can be extended to a
large class of orthogonal polynomials, including the Jacobi polynomials, of which the Legendre polynomials are a special
case. The main theoretical conclusion is the following:

Definition 2.8 ([25]). Let wj; j 2 ½N� ¼
deff1;2; . . . ;Ng be an orthonormal system of functions on D, i.e.,
Z

D

wjðxÞwkðxÞdmðxÞ ¼ dj;k; j; k 2 ½N�:
If this orthonormal system is uniformly bounded,
sup
j2½N�
kwjk1 ¼ sup

j2N
sup
x2D
jwjðxÞj 6 K ð2:10Þ
for some constant K P 1, we call the systems fwjg satisfying this condition bounded orthonormal systems.
Theorem 2.9 [25] RIP for bounded orthonormal systems. Consider the matrix W 2 Rm�N with entries
Wl;k ¼ wkðxlÞ; l 2 ½m�; k 2 ½N�;
formed by i.i.d. samples xl drawn from the orthogonalization measure m associated to the bounded orthonormal system fwj; j 2 ½N�g
having uniform bound K P 1 in (2.10). If
m P Cd�2K2s log3ðsÞ logðNÞ; ð2:11Þ
then with probability at least 1� N�clog3ðsÞ, the restricted isometry constant ds of 1ffiffiffi
m
p W satisfies ds 6 d. The constants C; c > 0 are

universal.
Remark 2.10 ([25]). Consider the functions
Q nðxÞ ¼
ffiffiffiffi
p
2

r
ð1� x2Þ1=4LnðxÞ;
where Ln are nth order normalized Legendre polynomials. According to Lemma 5.1 in [25], jQnðxÞj <
ffiffiffiffiffiffiffiffiffiffiffi
2þ 1

n

q
and fQnðxÞg

forms a bounded orthonormal system with respect to Chebyshev measure. The matrix U with entries Uj;n ¼ Qn�1ðxjÞ, which

is used in the constraint kUc � Auk 6 �, can be written as U ¼ AW as in ðPCheb
1;� Þ. Then the system fQng is uniformly bounded

on ½�1;1� and satisfies the bound kQ nk1 6
ffiffiffi
3
p

, i.e., K ¼
ffiffiffi
3
p

for this system. Therefore, according to Theorem 2.9, we can
expect a high probability of good recovery based on a relatively small number of samples compared to regular l1

minimization.
We can extend the Chebyshev measure based sampling points strategy from 1-D to multi-D. Since n1; n2; . . . ; nd are i.i.d

random variables and the basis functions used to present the solution are in the tensor product form (see Eq. (3.4)), we mod-

ify (PCheb
1;� ) by setting Aj;j ¼

Qd0

k¼1ðp=2Þ1=2ð1� ðnjÞkÞ
1=4, i.e., we use the tensor product form in the weight as in [36]. Here nj is the

jth sampling point, which includes d entries and ðnjÞk is the k entry of it. Notice that we use d0 instead of d here because

according to our numerical tests, d0 ¼ d does not necessarily provide good performance, hence it is better to take d0 < d. This
is consistent with the conclusion in [36], which shows that the Chebyshev measure may become less efficient in high-dimen-
sional cases. An important reason is that the uniform bound K in Theorem 2.9 will increase as d increases, which implies that
more samples are needed, see also [36]. More precisely, when generating a d dimensional sampling point ðn1; n2; . . . ; ndÞ, we
generate the first d0 entries n1; n2; . . . ; nd0 according to Chebyshev measure and the remaining entries nd0þ1; . . . ; nd according to
uniform distribution.

A brief summary of the theorems presented in this section is as follows: Theorem 2.9 and Remark 2.10 provide the
estimate of the size of sampling points we need to obtain a measurement matrix with small RIP constant when the sam-
pling points are based on Chebyshev measure. After obtaining observations and the measurement matrix, Theorem 2.7
shows that by employing reweighted iterations, we can expect a lower error bound than that in Theorem 2.3, which is
the error estimate for regular l1 minimization. Alternatively, if the number of sampling points is fixed, Chebyshev points
allow a larger s (but still relative small compared with N to guarantee sparsity) in the RIP condition, hence the upper
bound of the error in Theorem 2.3 can be reduced. Then, with the reweighted iterations, this bound can be reduced
further.
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3. Problem set up

We use the same setting as in [21]: let ðX;F ;PÞ be a probability space where P is a probability measure on the r-field F .
We consider the following SPDE defined on a bounded Lipschitz continuous domain D � RD; D ¼ 1;2;3, with boundary @D,
�r � ðaðx;xÞruðx; xÞÞ ¼ f ðxÞ x 2 D;

uðx;xÞ ¼ 0 x 2 @D;
ð3:1Þ
where x is an ‘‘event’’ in probability space X. The diffusion coefficients is represented by a Karhunen–Loève (KL) expansion:
aðx; xÞ ¼ �aðxÞ þ ra

Xd

i¼1

ffiffiffiffi
ki

p
/iðxÞniðxÞ; ð3:2Þ
where ðki;/iÞ; i ¼ 1;2; . . . ; d are eigenpairs of the covariance function Caaðx1; x2Þ 2 L2ðD�DÞ of aðx; nÞ; �aðxÞ is the mean and
ra is the standard deviation. ni are i.i.d uniformly distributed random variables on ½�1;1�. Additional requirement on aðx;xÞ
are:

	 For all x 2 D, there exists constants amin and amax such that
0 < amin 6 aðx; xÞ 6 amax 61 a:s:
	 The covariance function Caaðx1; x2Þ is piecewise analytic on D�D [18], implying that there exist real constants c1 and c2

such that for i ¼ 1; . . . ; d,
0 6 ki 6 c1e�c2 ij ;
where j :¼ 1=D and a 2 Nd is a fixed multi-index.

Here the second requirement guarantees the existence of a sparse solution for problem (3.1) [18]. With the setting of Eq.
(3.2), a and u depend on x and n, so we omit x and use the notation aðx; nÞ and uðx; nÞ.

In the context of the gPC method, the solution of (3.1) is represented by an infinite series of the tensor form:
uðx; nÞ ¼
X
a2Nd

0

caðxÞwaðnÞ; ð3:3Þ
where
waðnÞ ¼ wa1
ðn1Þwa2

ðn2Þ � � �wad
ðndÞ; ai 2 N [ f0g: ð3:4Þ
In practice we truncate this expression, e.g., up to order P:
uðx; nÞ 
 u�Pðx; nÞ¼defXP

jaj¼0

caðxÞwaðnÞ: ð3:5Þ
By selecting m different sampling points n1; n2; . . . ; nm we obtain m different samples of u : u ¼ ðu1;u2; . . . ;umÞ. Hence, we
rewrite (3.5) as: u 
 Wc, where Wi;j ¼ waj

ðniÞ and w is an m� N matrix with N ¼ ðPþdÞ!
P!d!

. Now we can use the l1 minimization to
seek a solution c satisfying:
ðP1;�Þ : min
c
kck1 subject to kWc � uk2 6 �; ð3:6Þ
where � is related to the truncation error. It is clear that the more terms we include in the expansion (3.5) the more accurate
result we will get, which in turn means we can put smaller � in (3.6). Notice that, if � is too large we will only obtain a less
accurate result while if � is too small, the so called over fitting problem, will cause a less sparse solution, which is also not
accurate. Several methods like CoSaMP [37] or iterative hard thresholding [38] avoid the a priori knowledge of the noise level
� in the context of signal processing or image processing.

In order to prevent the optimization from biasing toward the non-zero entries in c whose corresponding columns in w
have large norms, a weighted matrix W can be included in the l1 norm [26], thus we have
ðPW
1;�Þ : min

c
kWck1 subject to kWc � uk2 6 �; ð3:7Þ
where W is a diagonal matrix whose ½j; j� entry is the ‘2 norm of the jth column of w. For the original l1 minimization, W ¼ I,
i.e., the identity matrix. This can also be considered as a special case of reweighted l1 method in that we put a non-identity
weight matrix in the first step and employ no additional iterations. Once the coefficients are computed, we obtain the gPC
expansion of the solution (3.5), and then we can estimate the statistics of the solution, e.g., EðuÞ ¼ c0;VarðuÞ ¼

PP
jaj¼1c2

a since
wa are orthonormal with respect to the distribution of n. We summarize the above descriptions in Algorithm 1. In this paper
we use ‘‘a trial’’ to denote completing Algorithm 1 once.
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Algorithm 1. Reweighted l1 minimization method for elliptic equation (3.1)

1: Generate m sampling points n1; n2; . . . ; nm based on the distribution of n (or based on the Chebyshev measure if
Chebyshev sampling points are employed). Run the deterministic solver to solve (3.1) for each ni to obtain m samples
of the solution u1;u2; . . . ;um. Denote u ¼ ðu1;u2; . . . ;umÞ and it is the ‘‘observation’’ in ðP1;�Þ. The ‘‘measurement
matrix’’ W in ðP1;�Þ is Wi;j ¼ waj

ðniÞ, where wa are the basis functions in (3.3). The size of W is m� N, where N is the total

number of basis functions depending on P in (3.5).

2: Set the tolerance � in ðP1;�Þ, set the iteration count l ¼ 0 and weight wð0Þi ¼ 1; i ¼ 1;2; . . . ;N. If ðPW
1;�Þ instead of ðP1;�Þ is

implemented in the first step, select appropriate wi based on the corresponding ðPW
1;�Þ algorithm. Select the maximum

number of the iterations lmax, usually 2 or 3 is enough.
3: Solve the weighted l1 minimization problem
cðlÞ ¼ arg min kW ðlÞck1 subject to kWc � uk2 6 �;
where W is a diagonal matrix with WðlÞ
j;j ¼ wðlÞj . If the Chebyshev sampling points are employed, solve
cðlÞ ¼ arg min kW ðlÞck1 subject to kAWc � Auk2 6 �
instead.
4: Update the weights: for each i ¼ 1;2; . . . ;N,
wðlþ1Þ
i ¼ 1

jcðlÞi j þ s
:

5: Terminate upon convergence or when l attains a specified maximum number of iterations lmax. Otherwise, increment
l and go to step 3.

6: Compute statistics of the solution after obtaining c. For instance, EðuÞ ¼ c0;VarðuÞ ¼
PN�1

i¼1 c2
i , etc.
4. Numerical tests

In this section, we start with a 1D problem and then discuss multi-dimensional problems, where the dimension here refers
to the random space. More precisely, in the problems we consider below, we refer dimension to ‘‘d’’ in Eq. (3.2). We will

investigate the relative error in the mean em ¼def jcjaj¼0 � EðuÞj=jEðuÞj and the standard deviation

es ¼def j
PP

i¼1c2
jaj¼i

� �1=2
� rðuÞj=jrðuÞj of the solution at specific spatial point. Also, we will check the L2 error of the numerical

solution eu ¼ k~u�P � uk2=kuk2 at specific spatial point, where ~u�P is the truncated gPC expansion with coefficients recovered
by our method. The integral is calculated by the sparse grids method. All the l1 minimizations in this paper are achieved
by the SPGL1 package [39].

4.1. One-dimensional problem

We consider the problem:
d
dx

aðx; nÞ d
dx

uðx; nÞ
� �

¼ �1; x 2 ð0;1Þ;

uð0Þ ¼ uð1Þ ¼ 0:
ð4:1Þ
where n is uniformly distributed on ½�1;1�. We set aðx; nÞ ¼ aðnÞ ¼ 1þ 0:5n. The exact solution for this problem is
uðx; nÞ ¼ xð1� xÞ
2aðnÞ ¼

xð1� xÞ
2þ n

:

We investigate the solution at x ¼ 0:5 and omit the symbol x unless confusion arises. The expectation of the solution is

EðuÞ ¼ 1
8 ln 3 and the standard deviation is rðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

48� 1
64 ðln 3Þ2

q
. The coefficients in the gPC expansion
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uðnÞ ¼
X1
j¼0

cjLjðnÞ ð4:2Þ
can be computed analytically:
cj ¼
Z 1

�1
uðnÞLjðnÞdmðnÞ;
where Lj is jth order normalized Legendre polynomial. Fig. 1 presents the absolute values of cj while those below 10�14 are
neglected. We can see that the solution is nearly sparse as only eight coefficients are larger than 10�5, which means that very
few basis make considerable contribution to the solution. We also point out that it does not matter if we change the order of
the basis since the compressive sensing method will detect the pattern of sparsity automatically. Moreover, the threshold
10�5 used here is only for demonstration purposes to present the sparsity of the coefficients. For different problems, the
threshold can be different.

4.1.1. Uniformly distributed sampling points
We first employ the sampling points ni based on uniform distribution on ½�1;1� (will be called ‘‘uniform points’’). The pur-

pose of this test is to demonstrate the benefit of using reweighted iterations. In our test, � and s in the reweighted procedure
are set empirically. A better choice of � can be obtained by, e.g., cross-validation, which we adopt in the multi-dimensional
tests below. We truncate the solution of (4.1) with P ¼ 80, hence, N ¼ P þ 1 ¼ 81, and try to recover the coefficients of the
following gPC expansion:
uðnÞ 
 u�80 ¼
X80

j¼0

cjLjðnÞ: ð4:3Þ
In this test the truncation error with P ¼ 80 is negligible, hence the L2 error of the solution can be reflected by the l2 error
of the gPC coefficients. More precisely, since ku� u�Pk2 is negligible, ku� ~u�Pk2 is the same as ku�P � ~u�Pk2 which equalsPP

j¼0j~cj � cjj2
� �1=2

(‘2 error of gPC coefficients) since the gPC basis is orthonormal. Here ~u�P is the approximation of u�P with

coefficients ~c obtained by our method. We present the l2 error by the gPC coefficients by using 10, 15 and 20 uniform points
with and without reweighted iterations in Fig. 2. In all the tests we set lmax to be 2 in Algorithm 1. In order to obtain the
histograms of the recovery error, we run 10,000 trials for each test and set � ¼ 10�4; s ¼ 8� 10�2. From Fig. 2(a)–(c) we ob-
serve that without using the reweighted iterations, 20 uniform points yield the best recovery in that bins denoting smaller
error are higher as the number of samples increases while bins denoting larger error are lower. When the reweighted iter-
ations are employed, i.e., (g)–(i), the recovery is much better, which can be observed by comparing (a) and (g), (b) and (h), (c)
and (i), respectively. Also, comparing (b) with (g), we observe that with the reweighted iterations, using 10 uniform points
can render a comparable result than using 15 uniform points without reweighting. Similarly, comparing (c) with (h), we see
that by using 15 uniform points with reweighted iterations we obtain much better results than using 20 uniform points
without reweighting.

Fig. 3 presents the improvement from the reweighted iterations by considering the ‘2 reconstruction error:
kc � cð2Þk2=kc � cð0Þk2, where c is the vector of exact coefficients. Notice that the upper bound of kc � cð0Þk2 is given in The-
orem 2.3 and the upper bound of kc � cð2Þk2 is close to the one in Theorem 2.7. Since we set lmax ¼ 2, i.e., we compute
cð0Þ; cð1Þ; cð2Þ, where cð0Þ is the results by l1 minimization; we only use two additional l1 optimizations. We observe that
56.2% of the 10-sample tests, 72.0% of the 15-sample tests and 68.9% of the 20-sample tests show a reduction of ‘2 recon-
struction error up to 50% or more, i.e., kc � cð2Þk2=kc � cð0Þk2 6 0:5. If we are more aggressive to check the percentage of
reduction of ‘2 reconstruction error up to 90% or more, i.e., kc � cð2Þk2=kc � cð0Þk2 6 0:1, the answer is 12.4% for the 10-sample
0 5 10 15 20
10−15

10−10

10−5

100

j

|c
j|

1D example: absolute values of 22 coefficients with the largest magnitude in the gPC expansion for Eq. (4.1) at x ¼ 0:5 with a ¼ 1þ 0:5n and
1;1�. Only 8 of these absolute values are larger than 10�5.
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Fig. 2. 1D example: comparison of the relative error of the ‘2 norm of the gPC coefficients (kc � ~cÞk2=kck2, where c is the exact solution and ~c is the
numerical solution) by using uniform points (‘‘unif’’) and Chebyshev points (‘‘Cheb’’) with l1 minimization and reweighted l1 minimization (‘‘rw’’). Number
of basis N ¼ 81, number of samples m ¼ 10 (left column), m ¼ 15 (middle column), m ¼ 20 (right column). Total number of trials is 10,000.
lmax ¼ 2; � ¼ 10�4; s ¼ 8� 10�2. x-axis presents the range of the relative error and the histograms demonstrate the number of trials with the relative error in
specific ranges.
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tests, 22.3% for the 15-sample tests and 17.9% for the 20-sample tests. Notice that with the change of the number of the sam-
pling points m, the property of the measurement matrix W changes as well. More precisely, the RIP condition (d2s <

ffiffiffi
2
p
� 1)

in Theorems 2.3 and 2.7 will be satisfied for different s. (If m is too small, then this condition may not be satisfied for any
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Fig. 3. 1D example: improvement of the reweighted iterations with uniform points by checking the ‘2 error: kc � cð2Þk2=kc � cð0Þk2, where c is the vector of
the exact coefficients. Total number of trials is 10,000. Number of basis N ¼ 81, number of samples, m ¼ 10 in (a), m ¼ 15 in (b), m ¼ 20 in (c).
lmax ¼ 2; � ¼ 10�4; s ¼ 8� 10�2. x-axis presents the range of the improvement and the histograms demonstrate the number of trials with the improvement
in specific ranges.
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s 6 N=2). Hence, the error bound in Theorems 2.3 and 2.7 will be different, and the ratios of improvement are different as
well. Finally, we also point out that in a few tests (less than 0.4%), the reweighted iterations show worse results.

The observations for the 1-D test are consistent with the conclusions of the l1 minimization and reweighted l1 minimi-
zation in [22] for the deterministic cases in that: (1) more sampling points will provide a higher probability of more accurate
recovery; (2) reweighted iterations can enhance the sparsity of the solution, which in turn can improve the accuracy but
there are also very small chances that the result is worse than l1 minimization.
4.1.2. Chebyshev measure based sampling points
Now we use the sampling points based on Chebyshev measure (will be called ‘‘Chebyshev points’’) to repeat the exper-

iments in the last subsection. Fig. 2 also presents the relative error in the coefficients by using 10, 15 and 20 Chebyshev
points with and without reweighted iterations. Comparing the first two rows in this figure, where we only use the l1 min-
imization and keep increasing the number of sampling points, we observe that without reweighted iterations Chebyshev
points render better recovery than uniform points. This is consistent with Theorem 2.9, which claims that by using Cheby-
shev points we can reduce the number of sampling points to obtain a measurement matrix satisfying the RIP condition. Com-
paring the third and the fourth row, where reweighted iterations are employed, we observe that when the Chebyshev points
are used, the reweighted iterations still improve the accuracy. We can also fix the number of the sampling points and com-
pare the recovery accuracy with different sampling strategies. Let us consider the middle column for example, where the
number of sampling points is fixed to be 15. We can observe from the pattern of the histogram that for this test case,
reweighted iterations provide greater enhancement than using the Chebyshev points as (h) (where uniform points and
reweighted iterations are employed) shows better results than (e) (where Chebyshev points and l1 minimization are em-
ployed) and the combination of these two ideas yields remarkable improvement as shown in (k). This phenomenon implies
that with the same number of sampling points, Chebyshev points allows a larger s to satisfy the RIP condition (Theorem 2.9)
and reweighted iterations further decreases the upper bound of the recovering error of c (Theorem 2.7). Moreover, the result
in (k) (15 Chebyshev points with reweighted l1) is much better than that in (c) (20 uniform points with l1) and it is also
better than the results in (f) (20 Chebyshev points with l1) and (i) (20 unform points with reweighted l1). Therefore, the
combination of Chebyshev points and the reweighted iterations has the potential to perform good recovery with fewer sam-
pling points compared with the l1 minimization method.

Since the inherent combinatorial nature of the RIP makes it impossible to directly compute the RIP constant of a matrix
[40], we present the mutual coherences of the measurement matrices for different cases in Table 1 for comparison. We can
observe that the mutual coherence is smaller when the Chebyshev points are used.

Moreover, the improvement of the accuracy of recovering the coefficient by using reweighted iterations with Chebyshev
points is presented in Fig. 4. We observe that similar to the conclusion in section 4.1.1, reweighted iterations enhance the
accuracy of recovery. Also, we notice that more than 1=4 of the tests with 20 Chebyshev points show almost no improve-
ment, which is different from the result in Fig. 3(c), where the uniformly distributed sampling points are employed. This
Table 1
Mutual coherence l of the measurement matrices of 1D tests. Means and standard deviations (‘‘s.d.’’) of l in tests with different m are presented.

m ¼ 10 m ¼ 15 m ¼ 20

Mean s.d. Mean s.d. Mean s.d.

Uniform points 0.9282 0.0293 0.8467 0.0461 0.7785 0.0546
Chebyshev points 0.9166 0.0315 0.8193 0.0479 0.7355 0.0536
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Fig. 4. 1D example: improvement of the reweighted iterations with Chebyshev points by checking the ‘2 error kc � cð2Þk2=kc � cð0Þk2, where c is the vector of
the exact coefficients. Total number of trials is 10,000. Number of basis N ¼ 81, number of samples, m ¼ 10 in (a), m ¼ 15 in (b), m ¼ 20 in (c).
lmax ¼ 2; � ¼ 10�4; s ¼ 8� 10�2. x-axis presents the range of the improvement and the histograms demonstrate the number of trials with the improvement
in specific ranges.
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difference means that 20 is a relative large number for the Chebyshev points. It is clear that if m is very large, e.g., m ¼ N we
will obtain a very accurate recovery by l1 minimization, hence, reweighted iterations will provide very little improvement.

To conclude, in the numerical tests of the 1-D problem, we firstly verify the benefit of reweighted iterations and Cheby-
shev points for the test problem as the results are consistent with those in the corresponding references for deterministic
cases, e.g., [22,25]. We then obtain that the reweighted iterations can make more contribution in the improvement. Finally,
the combination of these two techniques can provide remarkable enhancement of the accuracy in the recovery. Notice that
this 1-D problem is for demonstration purposes, and it can be solved more accurately by other methods, e.g., gPC with Galer-
kin projection or a sparse grid method with less computational cost. In the next subsection we will discuss high-dimensional
cases.
4.2. Multi-dimensional problems

We consider the following elliptic equation which is 1-D in physical space but multi-D in random space:
d
dx

aðx; nÞ d
dx

uðx; nÞ
� �

¼ �1; x 2 ð0;1Þ;

uð0Þ ¼ uð1Þ ¼ 0:
ð4:4Þ
where the stochastic diffusion coefficients aðx; nÞ is given by the KL expansion in Eq. (3.2). Here, fkigd
i¼1 and f/iðxÞg

d
i¼1 are,

respectively, the d largest eigenvalues and corresponding eigenfunctions of the Gaussian covariance kernel
Caaðx1; x2Þ ¼ exp �ðx1 � x2Þ2

l2c

" #
; ð4:5Þ
in which lc is the correlation length of aðx; nÞ that dictates the decay of the spectrum of Caa. The random variables fnigd
i¼1 are

assumed to be independent and uniformly distributed on ½�1;1�. The coefficient ra controls the variability of aðx; nÞ and we
consider two cases here: ðlc; dÞ ¼ ð1=5;14Þ; ðlc; dÞ ¼ ð1=14;40Þ and set �a ¼ 0:1;ra ¼ 0:03; �a ¼ 0:1;ra ¼ 0:021, respectively.
Therefore, the requirements for coefficient aðx; nÞ in Section 3 are satisfied. Both the sparse grid method with Clenshaw–Cur-
tis abscissas and Monte Carlo method are tested. For each sampling point ni in random space, the deterministic second-order
ODE is solved by integrating Eq. (4.4) to obtain
u0ðxÞ ¼ að0Þu0ð0Þ � x
aðxÞ : ð4:6Þ
Again, integrating Eq. (4.6) and letting M ¼ að0Þu0ð0Þ we have
uðxÞ ¼ uð0Þ þ
Z x

0

M � s
aðsÞ ds ¼

Z x

0

M � s
aðsÞ ds: ð4:7Þ
By imposing the boundary condition uð1Þ ¼ 0, we can compute M. In order to compute the integrals in Eq. (4.7), we split
the domain ½0;1� into 2000 equi-distance subintervals and use 3 Gaussian quadratures in each subinterval. The reference
solution is obtained by level 7 sparse grids method for d ¼ 14 and level 4 sparse grids method for d ¼ 40 since this accuracy
is sufficient for the demonstrations in this paper. For d ¼ 14 we set P ¼ 3, i.e., gPC basis up to 3rd-order are employed and the
total number of basis is N ¼ 680. For d ¼ 40 we set P ¼ 2, i.e., gPC basis up to 2rd-order are employed and the total number of
basis is N ¼ 861.



98 X. Yang, G.E. Karniadakis / Journal of Computational Physics 248 (2013) 87–108
4.2.1. Effect of �
We first study the effect of � in (P1;�). It dictates the distance between the exact solution and the approximated one

through the projection to the pre-selected basis. In practice, we truncate the right-hand-side of Eq. (3.3) to obtain an approx-
imation, therefore there is always an error since the basis is not complete. As pointed out in [21], ideally, we would like to
choose � 
 kWc � uk2. Fig. 5 presents the error in the mean and the standard deviation of the approximated solution with the
coefficients recovered from the l1 minimization, i.e., (P1;�) for d ¼ 14. Here � varies from 10�4 to 10�1 with a fixed ratio and
three trials (denoted by different colors) with 120 uniform points each. These three trials are randomly selected from 1000
such trials to demonstrate the effect of �. It is clear that, as � decreases, the error in both mean and standard deviation de-
creases considerably in the range of � 2 ½10�2;10�1�. However, when � continues to decrease, the improvement is very little
or there may not be an improvement. This is because � has reached the level of truncation error, and therefore the only way
to improve the accuracy in the current setting is to include more terms in the gPC expansion of the solution or increase m.
This conclusion, which is an intrinsic property of l1 minimization method, holds for general cases as mentioned in Section 3.

These tests imply that for the current problem setting, the selection of � plays an essential role in a specific range before it
descends to the vicinity of the truncation error while very little or even no improvement can be achieved by continuing
decreasing � when it is already very close to the truncation error. Moreover, weighted l1 minimization ðPW

1;�Þ improves
the results only a little or has no benefit (not presented here). Therefore, in order to considerably reduce the error further
we need other techniques. In the rest part of this paper, we will only use ðP1;�Þ in the first step of Algorithm 1.

4.2.2. Reweighted l1 minimization
As shown for the 1-D test case, reweighted l1 minimization has the potential of further increasing the sparsity of the solu-

tion and therefore reducing the recovery error. Fig. 6 presents the results of repeating the same trials as in the last subsection
but with reweighted l1 minimizations for the uniform points with d ¼ 14. Different colors denote different trials. Dash lines
are the result by the l1 minimization � ¼ 10�4. For the mean, the reweighted l1 method reduces the relative error by 95%
(blue), 70% (black) and 71% (red). For the standard deviation, three different trials show reduction of the error to be 74%
(blue), 49% (black), 43% (red). Similar results for d ¼ 40 are presented in Fig. 7. Notice that, �; s are chosen randomly here.
We will employ cross-validation method as in [21] to select parameters in the next subsection. To our knowledge, so far
the best theoretical result to estimate the error bound is Theorem 2.7 and its related lemmas and theorems in [35].

Quantitative comparisons of results in Fig. 6 and Fig. 7 are presented in Tables 2 and 3 for d ¼ 14 and d ¼ 40, respectively.
We can observe that for some trials, the improvement is dramatic, e.g., for trial 1 of d ¼ 14 case, the error for the mean is
reduced by more than 90% while the error for the standard deviation is reduced by 75%. For some trials, the improvement
is not that impressive with the reduction of error ranging from 30% to 50%.

Next, we also employ the cross-validation method to obtain a relatively better choice of � (details can be found in Appen-
dix B). We run 1000 trials of each experiment and the histograms of the L2 error of the solution at x ¼ 0:5 are shown in Figs. 8
and 9. It is clear that the reweighted l1 minimization reduces the L2 error of the solution when uniform points or Chebyshev
points are employed. A quantitative comparison of the error of statistics at x ¼ 0:5 is shown in Tables 4 (for d ¼ 14) and 5 (for
d ¼ 40). As a comparison, e.g., for d ¼ 14, the error by level 1 sparse grids method (29 samples) is 9:4387e� 4 for the mean
and 5:0068e� 2 for the standard deviation while the corresponding data for level 2 sparse grids method (421 samples) is
3:2826e� 5 and 1:4532e� 3. We can observe that, for the estimate of the mean (i.e., c0), neither methods guarantee that
the accuracy is better than level 1 sparse grids method and few trials reach the accuracy of level 2 sparse grids method. How-
ever, for higher requirement of the accuracy, reweighted l1 minimization performs well. For example, in Table 4, 75% tests
with reweighted l1 method show an error in the mean less than 5e�4, which is about half of the error by the level 1 sparse
grid method. Without the reweighted iterations, this percentage is only 7%. Similar conclusions can be drawn for the com-
parisons of the error of the standard deviation.
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Fig. 5. 14D example: relative error in the mean (left) and the standard deviation (right) of the approximated solution with the coefficients recovered from
l1 minimization (P1;�). Three trials with 120 uniform points each are presented by different symbols; � varies from 10�4 to 10�1. �a ¼ 0:1;ra ¼ 0:03; d ¼ 14.
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Fig. 6. 14D example: relative error in the mean and the standard deviation of the approximated solution with the coefficients recovered from reweighted l1

minimization. Three different trials with 120 uniform points each are tested. Different colors denote different trials, solid lines are the results by the
reweighted l1 minimization and the dash lines are the result with � ¼ 10�4 in l1 minimization as in Fig. 5. Here � ¼ 10�3; s ¼ 10�3 for all the tests and
�a ¼ 0:1;ra ¼ 0:03; d ¼ 14.
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Fig. 7. 40D example: relative error in the mean and the standard deviation of the approximated solution with the coefficients recovered from reweighted l1

minimization. Three different trials with 200 uniform points each are tested. Different colors denote different data sets, solid lines are the results by the
reweighted l1 minimization while the dash lines are the result with � ¼ 10�4 in l1 minimization. Here � ¼ 5� 10�3; s ¼ 10�3 for all the tests and
�a ¼ 0:1;ra ¼ 0:021;d ¼ 40.

Table 2
14D example: comparison of l1 and reweighted l1 minimization with 3 iterations (lmax ¼ 2) for the three trials in Fig. 6. 120 uniform points are employed in
each trial. �a ¼ 0:1;ra ¼ 0:03; d ¼ 14; � ¼ 10�3 ; s ¼ 10�3.

Relative error in the mean em Relative error in the s.d. es

l1 rw l1 l1 rw l1

Trial 1 5.0925e�4 2.7083e�5 1.2268e�2 3.1292e�3
Trial 2 1.7753e�3 5.4107e�4 1.9909e�2 1.0200e�2
Trial 3 8.7641e�4 2.5095e�4 1.8257e�2 1.0487e�2

Table 3
40D example: comparison of l1 and reweighted l1 minimization with 3 iterations (lmax ¼ 2) for the three trials in Fig. 7. 200 uniform points are employed in
each trial. �a ¼ 0:1;ra ¼ 0:021; d ¼ 40; � ¼ 10�3; s ¼ 10�3.

Relative error in the mean em Relative error in the s.d. es

l1 rw l1 l1 rw l1

Trial 1 2.7113e�4 6.1976e�5 1.3064e�2 8.3692e�3
Trial 2 4.6284e�4 9.8414e�4 2.2842e�2 7.5808e�3
Trial 3 4.6676e�4 1.3727e�4 1.6061e�2 3.7268e�3
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Moreover, we consider the global error of statistics (mean and the standard deviation) over the physical domain x 2 ½0;1�
by selecting equi-distance points xi ¼ 0:05� i; i ¼ 1; . . . ;19 and computing the error of statistics at each point. Specifically,
we compute the l2 error of the statistics at these points. For example, to investigate the global error of the mean, we computeP19

i¼1jEðuÞjx¼xi
� Eð~u�PÞjx¼xi

j2
� �1=2

=
P19

i¼1jEðuÞjx¼xi
j2

� �1=2
, where u is the reference solution and ~u�P is the approximated solution.
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Fig. 8. 14D example: L2 error of the solution at x ¼ 0:5. x-axis is the range of the error and the histograms demonstrate the number of trials with the error in
specific ranges. In each trial, 120 sampling points are employed and 1000 trials are tested to present the histograms. ‘‘l1’’ denotes the standard l1

minimization; ‘‘rw l1’’ denotes reweighted l1 minimization; ‘‘unif’’ denotes that only uniform points are used; ‘‘Cheb’’ denotes that Chebshev points are
employed in the sampling points. In (a) and (b) the sampling points are uniform points; in (c) and (d) the first d0 dimension of the sampling points are
Chebyshev and the remainings are uniform. � is obtained by cross-validation and lmax ¼ 2; �a ¼ 0:1;ra ¼ 0:03;d ¼ 14;d0 ¼ 6; s ¼ 10�3.
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The results are presented in Fig. 10 (for d ¼ 14) and Fig. 11 (for d ¼ 40). We observe that the reweighted iterations improve
the results when uniform points are employed. We list in Table 6 the 95% confidence interval of the mean of the global error
of statistics by Monte Carlo method (without post processing) and by reweighted l1 minimization. It is clear that the
reweighted l1 minimization reduces the error of the mean by about 85% for both d ¼ 14 and d ¼ 40. It reduces the error
of the standard deviation by about 65% for d ¼ 14 and 70% for d ¼ 40. The performance is slightly different for the two cases.
There are two main reasons that affect the efficiency of the method in our test cases: (1) for these two different cases, the
‘‘sparsity’’ of the coefficients is different; (2) we expand the solution of d ¼ 14 case with P ¼ 3 while the solution of d ¼ 40
case with P ¼ 2 due to computational limitations, which is not adequate for higher accuracy. Since the standard deviation
depends on the coefficients of all the Legendre polynomials except for c0 (which is the mean), the accuracy not only depends
on the performance of l1 minimization but also relies on the gPC expansion of the solution.

Remark 4.1. In these tests, there are analytical results guaranteeing that the solutions are sparse in the random space no
matter which physical point is considered, hence, we obtain a good global recovery. For problems in which the sparsity
varies at different locations, our method is effective on the area with sparse solution while less effective on the area with less
sparse solution. This is a multiscale problem and requires further investigation.
4.2.3. Reweighted l1 minimization combined with Chebyshev points
Similar to the tests of the 1-D case, we also compare the results by different sampling strategies with or without

reweighted iterations. Fig. 8 presents the results for d ¼ 14 case. It is clear that Chebyshev points help to improve the result
as (c) shows better results than (a), and (d) shows better results than (b). A very important point is that instead of using
Chebyshev point in all the dimensions, we only use for the first d0 (< d) dimensions and in the remaining dimensions we
still use uniform points. We notice that this is the most effective way to apply this sampling strategy in this case. Our numer-
ical tests show that 3 6 d0 6 7 are good choices, and we present the results for d0 ¼ 6 in this paper. For d ¼ 40, as shown in
Fig. 9, we observe a different phenomenon, i.e., Chebyshev points may not improve the estimate, e.g., at x ¼ 0:5, especially
when reweighted l1 is employed. Our tests show that for the estimate of the solution on the entire physical domain,
1 6 d0 6 3 are good choices, and we present the result of d0 ¼ 3 for this test case.

Tables 7 and 8 present comparison between l1 minimization and reweighted l1 minimization when Chebyshev points are
employed. It is clear that the reweighted iterations improve the accuracy of the recovery. Comparing these two tables with
Tables 4 and 5, we observe that the benefit of employing Chebyshev points is clear for d ¼ 14 and the estimate of the stan-
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Fig. 9. 40D example: L2 error of the solution at x ¼ 0:5. x-axis is the range of the error and the histograms demonstrate the number of trials with the error in
specific ranges. In each trial, 120 sampling points are employed and 1000 trials are tested to present the histograms. ‘‘l1 denotes the standard l1

minimization; ‘‘rw’’ denotes reweighted l1 minimization; ‘‘unif’’ denotes that only uniform points are used; ‘‘Cheb’’ denotes that Chebshev points are
employed in the sampling points. In (a) and (b) the sampling points are uniform points; in (c) and (d) the first d0 dimension of the sampling points are
Chebyshev and the remainings are uniform. � is obtained by cross-validation and lmax ¼ 2; �a ¼ 0:1;ra ¼ 0:021; d ¼ 40; d0 ¼ 3; s ¼ 10�3.

Table 4
14D example: number of trials out of 1000 with corresponding error at x ¼ 0:5 for different methods for d ¼ 14. 120 uniform points are employed in each trial.
lmax ¼ 2; �a ¼ 0:1;ra ¼ 0:03; d ¼ 14; s ¼ 10�3. As a comparison, the error of level 1 sparse grids method (29 samples) 9.4387e�4 for the mean and 5.0068e�2 for
the standard deviation while the corresponding data of level 2 sparse grids method (421 samples) is 3.2826e�5 and 1.4532e�3.

Relative error in the mean em Relative error in the s.d. es

l1 rw l1 l1 rw l1

<9.4e�4 380 975 <5e�2 1000 1000
<5e�4 71 747 <1e�2 167 850
<3.3e�5 0 42 <1.5e�3 2 60
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dard deviation for d ¼ 40. However, for the estimate of the mean for d ¼ 40 case when reweighted l1 is used, there is no
improvement by employing Chebyshev points. The global error of statistics over the physical domain is presented in
Fig. 12 and Fig. 13 for d ¼ 14 and d ¼ 40, respectively. We can observe the improvement by applying the reweighted itera-
tions. Also, comparing these results with those in Figs. 10 and 11, where only uniform points are employed, we notice that
when standard l1 minimization is used, Chebyshev points improve the results for both d ¼ 14 and d ¼ 40 case. When
reweighted iterations are employed, Chebyshev points improve the results for d ¼ 14. However, for d ¼ 40 there is improve-
ment for the estimate of the standard deviation but no improvement for the mean. This findings implies that for mildly high
dimension, e.g., d ¼ 14, the combination of reweighted l1 and Chebyshev points works well while for higher dimensions, e.g.,
d ¼ 40 only applying reweighted l1 minimization is sufficient. We list in Table 9 the 95% confidence interval of the mean of
the global error of statistics by Monte Carlo method (without post processing) with uniform points and by reweighted l1

minimization with Chebyshev points. We observe that the reweighted l1 minimization reduces the error of the mean by
nearly 90% for both d ¼ 14 and d ¼ 40. It reduces the error of the standard deviation by nearly 80% for d ¼ 14 and 74%
for d ¼ 40. Comparing the results in Table 9 with those in Table 6, we notice that the combination of Chebyshev points
and reweighted l1 minimization is the best choice for d ¼ 14, but this is not true for d ¼ 40. The reweighted l1 with uniform
points provides better estimate of the mean while the reweighted l1 with Chebyshev points shows better estimate of the
standard deviation. These results are consistent with the comparison of Fig. 11 (b) and Fig. 13 (b) as well as comparison
of Fig. 11 (d) and Fig. 13 (d). In this specific case, the exact mean is more than 50 times larger than the exact standard
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Fig. 10. 14D example: relative (global) error in the mean and the standard deviation (‘‘s.d.’’) of the approximated solution over the physical domain with
the coefficients c recovered from l1 or reweighted (‘‘rw’’) l1 minimization with uniform points. In each trial, 120 sampling points are employed and 1000
trials are tested. � is obtained by cross-validation and lmax ¼ 2; �a ¼ 0:1;ra ¼ 0:03; d ¼ 14; s ¼ 10�3.
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Fig. 11. 40D example: relative error (global) in the mean and the standard deviation (‘‘s.d.’’) of the approximated solution over the physical domain with the
coefficients c recovered from l1 or reweighted (‘‘rw’’) l1 minimization with uniform points. In each trial, 200 sampling points are employed and 1000 trials
are tested. � is obtained by cross-validation and lmax ¼ 2; �a ¼ 0:1;ra ¼ 0:021; d ¼ 40; s ¼ 10�3.
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Table 6
95% confidence interval of the mean of relative error of statistics over the entire physical domain when uniform points are employed. ‘‘MC’’ denotes the result
without any post processing, ‘‘rw l1’’ denotes reweighted l1 minimization.

Relative error in the mean em Relative error in the s.d. es

MC rw l1 MC rw l1

d ¼ 14 [8.8e�3, 9.5e�3] [1.4e�3, 1.5e�3] [5.8e�2, 6.1e�2] [2.0e�2, 2.1e�2]
d ¼ 40 [3.6e�3, 3.8e�3] [4.7e�4, 4.9e�4] [4.3e�2, 4.6e�2] [1.3e�2, 1.4e�2]

Table 7
14D example: number of trials out of 1000 with corresponding error at x ¼ 0:5 for different methods for d ¼ 14. 120 Chebyshev points are employed in each
trial. lmax ¼ 2; �a ¼ 0:1;ra ¼ 0:03; d ¼ 14; d0 ¼ 6; s ¼ 10�3. As a comparison, the error of level 1 sparse grids method (29 samples) 9:4387e� 4 for the mean and
5.0068e�2 for the standard deviation while the corresponding data of level 2 sparse grids method (421 samples) is 3.2826e�5 and 1.4532e�3.

Relative error in the mean em Relative error in the s.d. es

l1 rw l1 l1 rw l1

<9.4e�4 920 975 <5e�2 1000 1000
<5e�4 690 792 <1e�2 841 958
<3.3e�5 59 68 <1.5e�3 181 238

Table 8
40D example: number of trials out of 1000 with corresponding error at x ¼ 0:5 for different methods for d ¼ 40. 200 Chebyshev points are employed in each
trial. lmax ¼ 2; �a ¼ 0:1;ra ¼ 0:021; d ¼ 40; d0 ¼ 3; s ¼ 10�3. As a comparison, the error of level 1 sparse grids method (81 samples) 4.3655e�4 for the mean and
6:4767e� 2 for the standard deviation while the corresponding data of level 2 sparse grids method (3281 samples) is 1.9131e�5 and 3.6733e�3.

Relative error in the mean em Relative error in the s.d. es

l1 rw l1 l1 rw l1

<4.4e�4 795 988 <6.5e�2 1000 1000
<1.0e�4 207 414 <1.0e�2 655 998
<1.9e�5 43 70 <3.7e�3 92 754

Table 5
40D example: number of trials out of 1000 with corresponding error at x ¼ 0:5 for different methods for d ¼ 40. 200 uniform points are employed in each trial.
lmax ¼ 2; �a ¼ 0:1;ra ¼ 0:021; d ¼ 40; s ¼ 10�3. As a comparison, the error of level 1 sparse grids method (81 samples) 4:3655e� 4 for the mean and 6:4767e� 2
for the standard deviation while the corresponding data of level 2 sparse grids method (3281 samples) is 1:9131e� 5 and 3:6733e� 3.

Relative error in the mean em Relative error in the s.d. es

l1 rw l1 l1 rw l1

<4.4e�4 682 993 <6.5e�2 1000 1000
<1.0e�4 63 463 <1.0e�2 287 983
<1.9e�5 16 87 <3.7e�3 13 534
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deviation. Hence when we compare the L2 error at fixed spatial points, the reweighted l1 method with uniform points per-
forms better. This is consistent with the comparison of Fig. 9 (b) and (d). The above results imply that for moderately high
dimensional (� 10) problems, combination of reweighted l1 and Chebyshev points is a good choice while for higher dimen-
sional problems, reweighted l1 only might be a better choice than combining it with Chebyshev points.

Remark 4.2. In this section we use reweighted l1 minimization, Chebyshev points and the combination of these two
approaches to improve the accuracy of the recovery of the coefficients in the gPC expansion of the solution of SPDEs. We
point out that in the optimization problem ðP1;�Þ we set the bound of the ‘‘noise’’ by the cross-validation method, for which
we do not tune the parameters precisely since our purpose is to demonstrate the improvement by the new method.
Therefore, for some trials, the result by cross-validation may not be as accurate as using a randomly or empirically chosen
parameter.
Remark 4.3. When applying Chebyshev points to high dimensional problems, we use an empirical parameter d0 < d because
d0 ¼ d is not a good choice. We observe that when using Chebyshev points in l1 minimization, the results are better than the
standard l1 minimization where only uniform points are employed. As pointed out in [36], when Chebyshev points are
applied to high dimensional problems, the number of samples to accurately recover the coefficients scales as 2d. We reduce
this by selecting d0 < d, that is, employing Chebyshev points in only a few dimensions. Hence we can still take advantage of
this sampling strategy especially in moderately high dimensional (� 10) problems. In our test, we know a priori that the first
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Fig. 12. 14D example: relative (global) error in the mean and the standard deviation (‘‘s.d.’’) of the approximated solution over the physical domain with
the coefficients c recovered from l1 or reweighted (‘‘rw’’) l1 minimization with Chebyshev points. In each trial, 120 sampling points are employed and 1000
trials are tested. � is obtained by cross-validation and lmax ¼ 2; �a ¼ 0:1;ra ¼ 0:03; d ¼ 14; d0 ¼ 6; s ¼ 10�3.
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Fig. 13. 40D example: relative (global) error in the mean and the standard deviation (‘‘s.d.’’) of the approximated solution over the physical domain with the
coefficients c recovered from l1 or reweighted (‘‘rw’’) l1 minimization with Chebyshev points. In each trial, 200 sampling points are employed and 1000
trials are tested. � is obtained by cross-validation and lmax ¼ 2; �a ¼ 0:1;ra ¼ 0:021;d ¼ 40;d0 ¼ 3; s ¼ 10�3.
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Table 9
95% confidence interval of the mean of relative error of statistics over the entire physical domain. ‘‘MC unif’’ denotes the results by Monte Carlo method with
uniform points and without any post processing; ‘‘rw l1 Cheb’’ denotes the results by employing reweighted l1 minimization method and Chebyshev points.

Relative error in the mean em Relative error in the s.d. es

MC unif rw l1 Cheb MC unif rw l1 Cheb

d ¼ 14 [8.8e�3, 9.5e�3] [9.9e�4, 1.0e�3] [5.8e�2, 6.1e�2] [1.2e�2, 1.3e�2]
d ¼ 40 [3.6e�3, 3.8e�3] [4.2e�4, 4.4e�4] [4.3e�2, 4.6e�2] [1.1e�2, 1.2e�2]
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several dimensions are more important due to the expression of diffusion coefficients (represented by the hierarchical Karh-
unen–Loève expansion), hence we employ Chebyshev points in these dimensions. For the reweighted l1 method, Chebyshev
points only help in the moderately high dimensional (� 10) case. An important reason is that we employed a lower order gPC
expansion, e.g., P ¼ 2 for d ¼ 40. The upper bound K of the L1 norm of the basis is

ffiffiffi
5
p

, which is already very low. Since the
Chebyshev points improve the recovery by controlling K (see Remark 2.10), it contributes only a little to the case with very
low gPC order. This contribution is negligible compared with the improvement from reweighted iterations.
4.3. Comparison of the effectiveness

We now consider an increasing number of random samples to evaluate the solution and compare the global relative error
with different methods, including Monte Carlo method and (reweighted) l minimization (with uniform points or Chebyshev
points). For each case we compute the results at x ¼ 0:1;0:2; . . . ;0:9 on the physical domain to obtain the global error. For
d ¼ 14, we consider m ¼ f29;60;120;200;300;421;600g. We note that sample size m ¼ 29 and m ¼ 421 correspond to the
number of sparse grid method of level 1 and 2, respectively. In this test, for sample size m ¼ f29;60;120g we attempt to
recover the gPC coefficients of the 3rd-order gPC expansion. For larger sample size m, we also include the first 320 basis func-
tion from the 4th-order gPC expansion, resulting in m ¼ 1000 (see also Case I in [21]). We test 1000 trials for each sample
size m and present the mean of the relative error in Fig. 14. We observe that when a sufficient number of solution samples is
available, which in Fig. 14 is 120, l1 minimization shows an advantage over the Monte Carlo method. If reweighted iterations
are employed, the l1 minimization begins to show an advantage with a smaller number of samples as pointed out in [22]. As
the number of samples increases, we observe a more considerable improvement over the Monte Carlo method. For example,
when m ¼ 600, the mean of the relative error in the mean by reweighted l1 (both uniform points and Chebyshev points) is
only about 1.5% of the error by the Monte Carlo method, i.e., our method increases the accuracy by about two orders in the
estimate of the mean. Also, for this test case, we notice that with the same number of samples (m ¼ 421), the accuracy of the
estimate of the mean by our method is close to that by sparse grid method of level 2 while the estimate of the standard devi-
ation by our method is better. We also present a line of slope 1 in Fig. 14 to compare the behavior of our method. Theorem 3.6
in [21] provides an upper bound of the L2 error of the solution, which is approximately Oðm�1=2Þ. Fig. 14 implies that in prac-
tice we can expect faster convergence in the estimate of statistics, which is also reflected in Figs. 3 and 5 in [21]. Moreover,
we notice that the reweighted iterations do not change the rate of convergence substantially, but reduce the error by around
50% � 60% for the mean and 60% � 70% for the standard deviation. We present the error bars of the 1000 trials for different
sample size by the Monte Carlo method and (reweighted) l1 minimization method in Fig. 15. This figure also implies that
reweighted iterations improve the estimate of the solutions, when a sufficient number of samples is available.

Similar results for d ¼ 40 are presented in Figs. 16 and 17. In this test we chose m ¼ f81;120;200;400;600;800;1000g.
For sample size m ¼ f81;120;200g, we attempt to recover the gPC coefficients of the 2nd-order gPC expansion. For larger
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Fig. 14. 14D example: mean of the relative error (global) in the mean and the standard deviation (‘‘s.d.’’) of the approximated solution over the physical
domain by different methods. ‘‘unif’’ means uniform points, ‘‘Cheb’’ means Chebyshev points, ‘‘rw’’ means reweighted method.
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Fig. 15. 14D example: error bars (mean and standard deviation) of the relative error (global) in the mean and the standard deviation (‘‘s.d.’’) of the
approximated solution over the physical domain by different methods. ‘‘unif’’ means uniform points, ‘‘rw’’ means reweighted method.

10-5

10-4

10-3

10-2

 10  100  1000  10000

R
el

at
iv

e 
er

ro
r i

n 
th

e 
m

ea
n

Number of samples

MC unif
1 unif

rw unif
1 Cheb

rw Cheb
sparse grid

slope 1.8

(a) Error in the mean.

10-4

10-3

10-2

10-1

100

 10  100  1000  10000

R
el

at
iv

e 
er

ro
r i

n 
th

e 
s.

d.

Number of samples

MC unif
1 unif

rw unif
1 Cheb

rw Cheb
sparse grid

slope 1.8

(b) Error in the s.d.

Fig. 16. 40D example: mean of the relative error (global) in the mean and the standard deviation (‘‘s.d.’’) of the approximated solution over the physical
domain by different methods. ‘‘unif’’ means uniform points, ‘‘Cheb’’ means Chebyshev points, ‘‘rw’’ means reweighted method.
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Fig. 17. 40D example: error bars (mean and standard deviation) of the relative error (global) in the mean and the standard deviation (‘‘s.d.’’) of the
approximated solution over the physical domain by different methods. ‘‘unif’’ means uniform points, ‘‘rw’’ means reweighted method.

106 X. Yang, G.E. Karniadakis / Journal of Computational Physics 248 (2013) 87–108
sample size m, we also include the first 639 basis function from the 3rd-order gPC expansion, hence m ¼ 1500 (see also Case
II in [21]). Fig. 16 implies that m ¼ 200, is the smallest size of the samples in our test which guarantees that l1 minimization
performs better than the Monte Carlo method. However, we note that when the reweighted l1 minimization is employed,
m ¼ 120 is sufficient to enable a better estimate. Also, similar to the d ¼ 14 case, the reweighted l1 minimization method,
even the standard l1 minimization, shows an advantage over the sparse grid method when sufficient samples are available.
Moreover, we observe an even faster convergence rate than the d ¼ 14 case as shown by a line of slope 1.8 for comparison.
This again implies that in practice, we may expect a much faster convergence rate than 0:5. We also notice that the reweight-
ed iterations do not change this rate substantially as in d ¼ 14 case.
5. Summary

In this paper we have applied the reweighted l1 minimization method to solve elliptic PDEs with random coefficients.
Assuming that the solution is ‘‘sparse’’ when we expand it in terms of a gPC basis, we use techniques for compressive sensing
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to achieve an accurate recovery with the number of solution samples significantly smaller than the cardinality of the gPC
basis. Specifically, we have applied in this paper, for the first time in this context, reweighted l1 minimization and combined
it with Chebyshev points to SPDEs up to 40 dimensional (in random space) problems. The numerical tests show significant
improvement over standard l1 minimization. That is, with the same number of solution samples, our method achieves better
recovery of the gPC coefficients c (see e.g., Eq. (2.6)); hence, we can obtain better estimate of statistics, e.g., the mean and the
standard deviation of the solution. Although here we have only tested random coefficients depending on uniform random
variables, Chebyshev points are also suitable for other Jacobi polynomials in the gPC expansion [25]. Hence, Chebyshev
points can also be employed for random variables associated with different types of Jacobi polynomials. The reweighted
l1 minimization we employ in the paper is the most basic one and it is very probable that more sophisticated versions,
e.g., [22,35,23,24] will result in better recovery. We can also combine ideas like multi-element method [4], quasi-Monte Car-
lo sampling points, sparse grid points [36], ANOVA points [12,14], etc., with our method. This will be reported in future work.

One limitation of this method is that we should know a priori that the solution is ‘‘sparse’’, otherwise it is impossible to
obtain accurate results by means of compressive sensing. Also, with very small probability, the reweighted l1 minimization
may render worse results than l1 minimization.

Finally, this investigation suggests that it may be possible to obtain a reasonably accurate estimate of statistics for those
problems, where the deterministic solver is very expensive, and hence only a small number of simulations can be afforded.
Our method reuses the data available and has the potential to obtain good accuracy with very limited data. As is well known,
when the Monte Carlo method is employed, the magnitude of error is Oð 1ffiffiffi

m
p Þ. Due to the sparsity of the solution, in the

numerical tests presented in this paper, the convergence rate of the l1 minimization method in estimating the statistics
is no less than 1, which is higher than the result of the current theoretical upper bound for the L2 error. The reweighted iter-
ations do not change this rate but help to reduce the error by about 50%. This implies that we have enhanced the efficiency by
two times compared with the standard l1 minimization method. If we compare the new method with the Monte Carlo meth-
od without post processing, the improvement of the efficiency can be more than 100 times. A more rigorous analysis of the
convergence rate of the new method is a rather difficult task and it will be presented in future work.
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Appendix A. Single reweighted l1-minimization

Lemma A.1. (Single reweighted 1 minimization [35]). Assume that W satisfies the RIP condition with d2s <
ffiffiffi
2
p
� 1. Let c be an

arbitrary vector with noisy measurements y ¼ Wc þ e, where kek2 < �. Let z be a vector such that kz� ck1 6 B for some constant
B. Denote by cs the vector consisting of the s (where s 6 jsuppðcÞj) largest coefficients of c in absolute value. Let g be the smallest
coordinate of cs in absolute value, and set b ¼ kc � csk1. Then when g P B and qC1 < 1, the approximation from reweighted 1

minimization using weights wi ¼ 1=ðzi þ sÞ satisfies
kc � ĉk2 6 D1�þ D2
rsðcÞ1

s
; ðA:1Þ
where
D1 ¼
ð1þ C1Þa
1� qC1

; D2 ¼ C2 þ
ð1þ C1ÞqC2

1� qC1
; C1 ¼

Bþ sþ b
g� Bþ s

; C2 ¼
2ðBþ sþ bÞffiffi

s
p ;
and q;a;rsðcÞp are as in Theorem 2.3.
Appendix B. Cross-validation

The cross-validation method we use in this paper follows the description in Section 3.5 of [21]. We first divide the m avail-
able solution samples to mr reconstruction and mv validation samples such that m ¼ mr þmv . Then repeat the l1 minimiza-
tion ðP1;�Þ (not the reweighted iteration) on the reconstruction samples and with multiple values of truncation error

tolerance �r . In this paper we test 11 different �r from ½10�4;10�2� with constant ratio. Next, set � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=mr

p
�̂r , where �̂r is

such that the corresponding truncation error on the mv validation samples is minimum. Finally, we repeat the above
cross-validation algorithm for multiple replications of the reconstruction and validation samples. The estimate of
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m=mr

p
�̂r is then based on the values of �̂r for which the average of the corresponding truncation errors �v , over all rep-

lications of the validation samples, is minimum. In this paper we set mr 
 3m=4 and performed the cross-validation for four
replications. More details can be found in [21].
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