
Journal of Computational Physics 231 (2012) 1587–1614
Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Adaptive ANOVA decomposition of stochastic incompressible
and compressible flows

Xiu Yang a, Minseok Choi a, Guang Lin b, George Em Karniadakis a,⇑
a Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
b Pacific Northwest National Laboratory, Richland, WA 99352, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 January 2011
Received in revised form 27 September
2011
Accepted 22 October 2011
Available online 11 November 2011

Keywords:
Rayleigh–Benard convection
Supersonic flow
Uncertainty quantification
High dimensions
Sparse grids
0021-9991/$ - see front matter � 2011 Elsevier Inc
doi:10.1016/j.jcp.2011.10.028

⇑ Corresponding author.
E-mail addresses: george_karniadakis@brown.ed
Realistic representation of stochastic inputs associated with various sources of uncertainty
in the simulation of fluid flows leads to high dimensional representations that are compu-
tationally prohibitive. We investigate the use of adaptive ANOVA decomposition as an
effective dimension–reduction technique in modeling steady incompressible and com-
pressible flows with nominal dimension of random space up to 100. We present three dif-
ferent adaptivity criteria and compare the adaptive ANOVA method against sparse grid,
Monte Carlo and quasi-Monte Carlo methods to evaluate its relative efficiency and accu-
racy. For the incompressible flow problem, the effect of random temperature boundary
conditions (modeled as high-dimensional stochastic processes) on the Nusselt number is
investigated for different values of correlation length. For the compressible flow, the effects
of random geometric perturbations (simulating random roughness) on the scattering of a
strong shock wave is investigated both analytically and numerically. A probabilistic collo-
cation method is combined with adaptive ANOVA to obtain both incompressible and com-
pressible flow solutions. We demonstrate that for both cases even draconian truncations of
the ANOVA expansion lead to accurate solutions with a speed-up factor of three orders of
magnitude compared to Monte Carlo and at least one order of magnitude compared to
sparse grids for comparable accuracy.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Stochastic modeling of fluid mechanics problems allows for a broader and more comprehensive understanding of the flow
physics compared to deterministic formulations, and it can potentially lead to new approaches in designing thermo-fluidic
equipment that operates robustly under uncertain conditions. While significant progress has been made to date in advancing
stochastic CFD, most of the processes simulated so far have been modeled by low-dimensional representations of the inputs
and outputs, often limiting our ability in probing the intriguing physics of the flow, e.g., the effect of random disturbances of
large amplitude and/or small correlation length on flow stability and on momentum and heat transport. These effects require
high-dimensional representations in the parametric or random space that often render such simulations computationally
prohibitive. Towards this end, progress can be made if the computational complexity of the stochastic problem is reduced
by some orders of magnitude, e.g., by estimating the so-called ‘‘effective dimensionality’’ of the flow system, as was done
for financial systems using quasi-Monte Carlo theory [1,2]. In this paper we employ the functional ANOVA (ANalysis-Of-VAr-
iance) method [3,4] and evaluate its effectiveness as a dimension–reduction technique for incompressible and compressible
. All rights reserved.
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flow problems. This is motivated by the idea that for many flow systems, only relatively low order correlations between
dimensions will significantly impact the solution.

The ANOVA decomposition was introduced by Fisher in 1921 (see, e.g., [5]) and employed for studying U-statistics by
Hoeffding [6]. ANOVA has also previously been used in the context of uncertainty quantification in [7] and was formulated
in terms of polynomial chaos for solving high-dimensional stochastic PDEs in [8,9]. In particular, in [8] ANOVA was combined
with a multi-element probabilistic collocation method (PCM) to represent each expansion term for greater control of accu-
racy and efficiency of the discrete representation. ANOVA involves splitting a multi-dimensional function into its contribu-
tions from different groups of sub-dimensions. The underlying idea involves the splitting of a one-dimensional function
approximation space into the constant subspace and the remainder space. The associated splitting for multi-dimensional
cases is formed via a tensor-product construction. In practice, one essentially truncates the ANOVA-type decomposition
at a certain dimension m, thereby dealing with a series of low-dimensional (6m) approximation problems in lieu of one
high-dimensional problem. This type of truncation can make high-dimensional approximation tractable for functions with
high nominal dimension N but only low-order correlations among input variables (i.e., m� N). However, even with severe
truncations, e.g., m = 2, the ANOVA decomposition of a high-dimensional function includes many thousands of terms, e.g.,
for a 1000-dimensional function (N = 1000) and m = 2 we need to evaluate close to half a million terms, see Example 1 in Sec-
tion 2. To this end, in the current work we aim to reduce further the associated computational complexity by adaptively eval-
uating the terms in the ANOVA expansion and keep only the most important ones. This approach can reduce the number of
terms in the aforementioned example to about 100 – a reduction of more than three orders of magnitude! Clearly, the accu-
racy of the representation will also be reduced as a function of the truncation dimension and this is problem dependent,
hence we need to consider different flow systems – both viscous and inviscid – in order to evaluate the relationship between
economical adaptive ANOVA representations and accuracy in the main statistics, i.e., the mean and variance of the stochastic
solution.

We consider two prototype flow problems, which have been well-studied with deterministic CFD. The first is a thermally-
driven incompressible viscous flow while the second is shock scattering by a wedge surface. In the former, we include the
stochasticity in the thermal boundary conditions whereas in the latter we consider a random geometric boundary represent-
ing roughness. So first, we will study stochastic Rayleigh–Benard convection in a finite fluid layer confined between horizon-
tal boundaries. When the geometry is bounded by rigid and perfectly insulating sidewalls then the critical Rayleigh number
is increased due to stabilizing effects of finite geometry [10–13]. Many previous works on Rayleigh–Benard convection have
focused on how the results of classical stability problems concerning steady state flows are affected by small variations of the
base state [13]. However, the case where the perturbations are random in space and of finite amplitude has not been ad-
dressed; taking the correlation length of the boundary temperature perturbations to be small leads to a high-dimensional
problem. Fig. 1 shows contours of the mean temperature in the domain for two different Rayleigh numbers; the lower
and upper wall temperatures will be modeled as high-dimensional stochastic processes and the solution will be represented
via ANOVA decomposition. In addition, we will compare the adaptive ANOVA method against the sparse grid and Monte Car-
lo (MC) methods in order to evaluate its relative accuracy and efficiency of each method.

The second prototype problem is inviscid compressible flow, specifically, supersonic flow past a rough wedge. For the
smooth wedge, the shock path and pressure distribution can be obtained by simple analytical formulas. However, complex
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Fig. 1. Contours of the mean temperature for two Rayleigh number Ra = 5000 and Ra = 10,000. The correlation length here is A = 0.1 but we also consider the
case of A = 0.01 while the magnitude of perturbation 0.15 (see Section 3). There exist two possible stable states: counter-clockwise and clockwise motion.
Here only the clockwise motion is shown.
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shock dynamics is observed when considering a random rough wedge surface. Lighthill [14] and Chu [15] used first-order
perturbation analysis to study the case of weak interactions. The first-order theory is adequate only for very small roughness
height and does not provide a measure of the mean extra force due to roughness, which is assumed to have zero mean, and
hence the first-order theory predicts zero mean forces. Lin et al. [16,17] developed a second-order perturbation method to
overcome the disadvantages of first-order method and developed semi-analytical formulas to describe the solution for small
roughness height. Fig. 2 (from [16]) shows pressure contours of one realization for two different Mach numbers; here we will
only focus on the high Mach number case. Similarly to the incompressible flow example, here too we will compare the
ANOVA based solution to corresponding solutions obtained by the sparse grid and the quasi-Monte Carlo methods.

This paper is organized as follows: In Section 2 we introduce the standard ANOVA method and propose the adaptive
ANOVA method based on three different adaptive criteria. In Section 3 we formulate the stochastic convection problem, pres-
ent computational results, and compare the adaptive ANOVA method with the sparse grid and MC methods. The effect of
correlation length is studied for different cases including a 96-dimensional case. In Section 4 we consider supersonic flow
past a rough wedge and compute the extra forces on the wedge. We present both semi-analytical results obtained by the
second-order perturbation method as well as numerical results obtained by the WENO method. The effect of correlation
length is studied for different cases including a 100-dimensional case. We conclude in Section 5 with a brief summary
and discussion. In the appendix we provide some details on the semi-analytical solution of the shock scattering problem.

2. ANOVA decomposition

2.1. Standard ANOVA

The ANOVA method is widely used in statistics. The same idea can be used for interpolation and integration of high
dimensional problems as well as stochastic simulations [18,8]. Consider an integrable function f(x), x = (x1,x2, . . . ,xN) defined
in IN = [0,1]N, then we have:

Definition. The representation of f(x) in a form
Fig. 2.
correlat
the wed
f ðxÞ ¼ f0 þ
XN

s¼1

X
j1<���<js

fj1 ���js ðxj1 ; . . . ; xjs Þ ð2:1Þ
or equivalently
f ðxÞ ¼ f0 þ
X

16j16N

fj1 ðxj1 Þ þ
X

16j1<j26N

fj1 ;j2 ðxj1 ; xj2 Þ þ � � � þ f1;2;...;Nðx1; x2; . . . ; xNÞ ð2:2Þ
is called ANOVA decomposition, if
f0 ¼
Z

IN
f ðxÞdlðxÞ; ð2:3Þ
Pressure contours for M1 = 2 (left) and M1 = 8 (right), where M1 is the Mach number of the uniform inflow from left. Roughness height e = 0.01, and
ion length of roughness is A = 0.1 but we also consider the case of A = 0.01. The pressure contours for M1 = 8 are stretched 4 times perpendicular to
ge surface for visualization purposes.
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and
 Z
I

fj1 ���js dlðxjk Þ ¼ 0 for 1 6 k 6 s: ð2:4Þ
Here 1 6 j1 < j2 < � � � < js 6 N, j 6 s 6 N. We call fj1 ðxj1 Þ the first-order term (or first-order component function), fj1 ;j2 ðxj1 ;j2 Þ the
second-order term (or second-order component function), etc.
Property 1. An important property of ANOVA decomposition is the orthogonality of its terms:
Z
IN

fj1 ;...;js fk1 ;...;kl
dlðxÞ ¼ 0; ð2:5Þ
if (j1, . . . , js) – (k1, . . . , kl). This is a direct consequence of (2.4). The terms in the ANOVA-decomposition are computed as follows:
fS ¼
Z

IN�jSj
f ðxÞdlðxSc Þ �

X
T�S

fTðxTÞ; ð2:6Þ
where S = {j1, j2, . . . , js}, jSj is the number of elements in S, T is a subset of S and fT ¼ fj1 ;j2 ;...;jt ðxj1 ; xj2 ; . . . ; xjt Þ.
Property 2. The variance of f is the sum of the variances of all the decomposition terms:
r2ðf Þ ¼
XN

s¼1

X
jSj¼s

r2ðfSÞ; r2ðfSÞ ¼
Z

IN
f 2
S dlðxÞ; ð2:7Þ
or equivalently:
r2ðf Þ ¼
X

16j16N

r2ðfj1 Þ þ
X

16j1<j26N

r2ðfj1 ;j2 Þ þ � � � þ r2ðf1;2;...;NÞ:
It is very important that (2.7) holds only when the measure used in the integral of computing the variance is the same as that used
in the ANOVA decomposition (2.6). It is probable that r(f) is different from the exact value computed by the standard definition of
variance, i.e., the integral with Lebesgue measure.
Remark 3. Computing the ANOVA decomposition, i.e., the constant term from (2.3) and high-order terms from (2.6), can be
very expensive for high dimensional problems or complicated f(x). Therefore, we use the Dirac measure instead of Lebesgue
measure in integrations, i.e., dl(x) = d(x � c) dx, c 2 IN. The point ‘‘c’’ is called ‘‘anchor point’’ and this method is called
‘‘anchored-ANOVA’’. Hence, for the constant term we have
f0 ¼ f ðcÞ: ð2:8Þ
Different choices of anchor points can lead to different approximations of ANOVA decomposition to a function; the
authors in [19,20] defined different weights depending on the norm for tensor product functions, proved that the anchor
point satisfying certain condition minimizes the error estimate of the approximation of ANOVA decomposition, and pre-
sented some numerical examples. It was also shown in [21,22] that ANOVA decomposition with m = 2 has a good accuracy
if the anchor point is chosen as the mean with respect to the probability density function considered. To this end, we choose
the zero point as the anchor point in this paper.
Remark 4. When applying the ANOVA method to stochastic simulation, we denote the highest dimension for the compo-
nent functions we use in (2.2) with m and approximate f(x) with
f ðxÞ � f0 þ
X
j16N

fj1 ðxj1 Þ þ
X

j1<j26N

fj1 ;j2 ðxj1 ; xj2 Þ þ � � � þ
X

j1<j2<���<jm6N

fj1 ;j2 ;...;jm ðxj1 ; xj2 ; . . . xjm Þ: ð2:9Þ
Here N is called nominal dimension, m is called the truncation or effective dimension, and we use l to denote the number of
collocation points, which coincide with the quadrature points for performing the integration in each dimension.

After we obtain the ANOVA decomposition of a function f, we can approximate the integration of each component func-
tion with the values of these functions at the quadrature points based on the corresponding weights. We can also use these
quadrature points as the collocation (sampling) points in the probabilistic collocation method (PCM).

2.2. Adaptive ANOVA

Although the standard ANOVA can potentially reduce the computational complexity substantially, it still requires a very
large number of sampling points to compute all the terms for a high nominal dimension N. For example, for nominal dimen-
sion N = 100, the number of sampling points for truncation dimension m = 2 and number of collocation points per direction
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l = 3 is 1þ 3� 100
1

� �
þ 32 � 100

2

� �
¼ 44851. An efficient way of solving this problem is to develop an adaptive ANOVA

decomposition. To this end, we replace the nominal dimension by an active dimension Di for each subgroup, i.e., we modify
(2.9) to be
f ðxÞ � f0 þ
X

j16D1

fj1 ðxj1 Þ þ
X

j1<j26D2

fj1 ;j2 ðxj1 ; xj2 Þ þ � � � þ
X

j1<j2<���<jm6Dm

fj1 ;j2 ;...;jm ðxj1 ; xj2 ; . . . xjm Þ: ð2:10Þ
In the flow problems we consider here we truncate the expansion with m = 2 and in most cases we let D1 = N. We then develop
adaptivity criteria to determine the active dimension D2; see also [21,19]. These criteria depend on the low-order statistics,
i.e., mean and variance of the first-order terms in the ANOVA decomposition since they are easy to compute. Specifically, if the
nominal dimension is N, the number of collocation points needed for a simulation based on the first-order terms is lN + 1.

Next, we present how to obtain an estimate of mean and variance of first-order terms in the ANOVA decomposition. Con-
sider f1(x1) for instance. Let c�1 = (c2,c3, . . . ,cN) and q1

1; q
2
1; � � � ; q

l
1 be the quadrature points for one-dimensional approximation

(the weights for these quadrature points are generated as well, e.g., Gaussian quadrature). Since we use the Dirac measure
when computing the component term, according to (2.6) we have the value of f1 at the quadrature point:
f1 q1
1

� �
¼ f q1

1; c2; c3; c4; . . . ; cN
� �

� f0; ð2:11Þ
and we can readily approximate the mean and standard deviation of f1. By running the deterministic solver at the sampling
point q1

1; c�1
� �

we can obtain f q1
1; c2; c3; c4; � � � ; cN

� �
, while the constant term f0 is obtained by running the deterministic solver

at the pre-selected anchor point. Next, we can compute f1 q1
1

� �
by (2.11). Since the weight for this sampling point can be com-

puted based on the quadrature point q1
1; q

2
1; . . . ; ql

1 , the mean and variance of f1 can be obtained after we compute
f q1

1

� �
; f q2

1

� �
; . . . ; f ql

1

� �
. This process can be applied recursively for computing the mean and variance for all the first-order terms.

Similarly we can compute the second-order terms, e.g., consider the term f1,2 at quadrature point qi
1; q

j
2

� �
with i,

j = 1, . . . ,l. We can use (2.6) to obtain:
f1;2 qi
1; q

j
2

� �
¼ f qi

1; q
j
2; c3; c4; . . . ; cN

� �
� f1 qi

1

� �
� f2 qj

2

� �
� f0; ð2:12Þ
where
f1 qi
1

� �
¼ f qi

1; c2; c3; . . . ; cN
� �

� f0;

f2 qj
2

� �
¼ f c1; q

j
2; c3; . . . ; cN

� �
� f0:
Here we use the tensor product rule to obtain the quadrature points for higher dimension terms, therefore the weights for
these quadrature points can be obtained easily. Other methods like sparse grids can also be used. In this paper we only use
the tensor product rule for high order terms in ANOVA decomposition to demonstrate our method.

We can now summarize the above steps in the following algorithm:

Algorithm 1. Adaptive (anchored) ANOVA

1: Select the anchor point c and run the deterministic solver at this sampling point to obtain the constant term in the
ANOVA decomposition (according to Eq. (2.8)) for the quantity of interest f0.

2: Select l collocation points qi
1 according to the probability measure and generate corresponding weights wi,

i = 1, . . . ,l. Run the deterministic solver at the sampling points to obtain the value of f1 at the quadrature points in the
ANOVA decomposition using Eq. (2.11). Repeat the same procedure for f2, f3, . . . , fN.

3: Compute the necessary statistics like mean and standard deviation required in the adaptivity criterion to determine
the active dimension D2 for selecting the important second-order terms.

4: Use the tensor product rule to generate new sampling points (e.g., qi
1; q

j
2; c3; c4; . . . ; cN

� �
in (2.12)) and run the

deterministic solver at the sampling points then compute the second-order terms in the ANOVA decomposition using
Eq. (2.12).

5: Repeat the above steps, if needed, for further selection of high-order terms based on the computed statistical values
from first- and second-order terms.

Now we have obtained the values of function f at all the collocation points and since each point is equipped with a cor-
responding weight we can estimate the mean, standard deviation and other statistical values of f. For example, the mean of f
is approximated by
Z

IN
f ðxÞdx �

X
i

f ðqiÞwi; ð2:13Þ
where f(xi) is obtained by the deterministic solver, qi are collocation points and wi are corresponding weights.
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Remark 5. In step 2 we compute all the first-order terms because we set the active dimension D1 = N. This can be modified if
D1 < N. Also, by setting m = 2 we have that the highest order we use is two, but this can be modified if a larger m is required;
similar to step 3, we compute the necessary statistical values for the proper criterion to select higher order terms.
Remark 6. In practice, we do not need all the second-order terms in (2.10) so we use fewer terms as shown in step 3, e.g., for
the applications in this paper we approximate f(x) by:
f ðxÞ � f0 þ
X

j16D1

fj1 ðxj1 Þ þ
X
ðj1 ;j2Þ2F

fj1 ;j2 ðxj1 ; xj2 Þ; ð2:14Þ
where
F ¼ fðj1; j2Þjj1 < j2 < D2; fj1 ;j2 satisfies an adaptivity criterion:g
Similarly, if m > 2 we can continue using proper adaptivity criteria to decide set G; � � � such that (2.10) can be simplified as
f ðxÞ � f0 þ
X

j16D1

fj1 ðxj1 Þ þ
X
ðj1 ;j2Þ2F

fj1 ;j2 ðxj1 ; xj2 Þ þ
X

ðj1 ;j2 ;j3Þ2G
fj1 ;j2 ;j3 ðxj1 ; xj2 ; xj3 Þ þ � � � ð2:15Þ
We list three possible adaptive criteria here:
Criterion 1. Let T1 ¼
PN

j¼1r2ðfjÞ, which is the sum of the variances of all the first-order terms. The active dimension D2

should satisfy:
XD2

j¼1

r2ðfjÞP pT1; ð2:16Þ
where p is a proportionality constant with 0 < p < 1 and is very close to 1. This criterion is similar to the criterion used in [23]
where r2(f) instead of T1 is used on the right-hand-side of (2.16) and p is set to be 0.99. As an example, Fig. 11 shows the
standard deviation for the first-order terms fj(xj) in the ANOVA decomposition of the extra lift and drag for the compressible
problem we study in the current work. Since we are interested in these two variables we should consider them simulta-
neously. It is also clear that since we replace r2(f) with T1 we should use larger p, because typically the sum of variances
of the first-order terms should be less than that of the function itself. According to Remark 6, we need to find a set F , which
is accomplished by computing
cj1 ;j2
¼ r2ðfj1 ;j2 ÞPD1

j¼1r2ðfjÞ
; ð2:17Þ
and bounding cj1 ;j2
with a predefined error threshold h1

2 (superscript i means criterion i).
Criterion 2. Ma and Zabaras [21] use the mean of component function fS as the indicator to determine the active ANOVA
terms. Let
cj ¼
jEðfjÞj
jf0j

; ð2:18Þ
where the pre-defined error threshold h2
1 is used to bound cj, i.e., cj 6 h2

1. If cj are monotonically decreasing with respect to j
or monotonically decreasing from some j and we set D2 P j, then (2.18) can be equivalently written as
XD2

i¼j

jEðfjÞjP p
XN

j¼0

jEðfjÞj; ð2:19Þ
where p is a proportionality constant with 0 < p < 1. For instance, the supersonic flow we study in the paper cj are positive
and monotonically decreasing from some j. Several choices of p and corresponding D2 are listed in Table 6. Then, for a further
selection of the second-order terms, Ma and Zabaras also used
cj1 ;j2
¼ jEðfj1 ;j2 ÞjPD1

j¼0jEðfjÞj
; ð2:20Þ
where cj1 ;j2
is bounded by a pre-defined error threshold h2

2.
Remark 7. The description for Criterion 2 is different from that in [21] but they are equivalent for the problems we study in
this paper. Moreover, another form (similar to (2.18)) of deciding important first-order terms in Criterion 1 is to compute
cj = r2(fj)/T1 and bound cj with predefined threshold h1

1.
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Criterion 3. Zhang et al. [19] proposed a criterion for tensor product functions
Table 1
Varianc

Crite

Crite
f ðxÞ ¼
YN
j¼1

f ðjÞðxjÞ; xj 2 ½0;1�;
which is used in the analysis of ANOVA method. Consider
cj ¼
r2ðf ðjÞÞ
Eðf ðjÞÞ2

; if Eðf ðjÞÞ–0; 1 6 j 6 N: ð2:21Þ
A pre-defined threshold h3
1 is set and we only use the first-order terms with cj > h3

1. Similar to Criterion 2, if cj is monoton-
ically decreasing with respect to j or monotonically decreasing from some j and we set D2 P j then (2.21) can equivalently be
written as
XD2

j¼1

cj P p 1þ
XN

j¼1

cj

 !
: ð2:22Þ
When selecting second-order terms, we set a pre-defined threshold h3
2 and use the criterion
cjck

1þ
PN

j¼1cj þ
P

j–kcjck

P h3
2; ð2:23Þ
to determine which terms to use. This criterion is very efficient for tensor product functions. We list this criterion here and
will compare the performance of Criterions 1 and 2 with it for a tensor product function in Example 1. In real practice we do
not use it since we do not have the explicit expression of the solution. Also, even if we have it, the solution need not be a
tensor product function.
Remark 8. When we employ the above criteria to applications we replace the mean and variance of component function fj

with their L2 norm values on the physical domain.
Example 1. We present a simple example for a 1000-dimensional function to illustrate the proposed adaptive criteria using
standard ANOVA and anchored ANOVA. Consider the Sobol function [18]
f ðxÞ ¼
YN
k¼1

f ðkÞðxkÞ; xk 2 ½0:1�; ð2:24Þ
where N ¼ 1000; f ðkÞðxkÞ ¼ j4xk�2jþak
1þak

and ak = k2. Note that the coefficients ak in this paper are different from those in [18]

where ak = O(k). Three cases with ak = O(1), O(k) and O(k2) were considered in [20] and it was explained how different coef-
ficients lead to different convergence rates with respect to the truncation dimension. Then the mean and variance of the
function f are readily computed: Eðf Þ ¼ 1 and r2(f) = 0.10395. We test Criterions 1 and 3 using standard ANOVA and Crite-
rions 1 and 2 using anchored ANOVA. For anchored ANOVA we use an anchor point c = (c1,c2, . . . ,cN) such that it satisfies

f ðkÞðckÞ ¼
k2

kþs2
k

sk
where k2

k ; sk is the variance and the mean of f(k), respectively [20]. We compute the error of the variance de-

fined by jr2ðf Þ �
P

Sr2ðfSÞj and estimate how many terms are selected among all second-order terms. Without adaptivity we

need 499;500 ¼ 1000
2

� �
second-order terms. Note that Criterion 2 cannot be used for standard ANOVA since the mean of

each ANOVA terms is always zero as in (2.4), hence no terms will be selected. Both Tables 1 and 2 show that just a few sec-
ond-order terms out of 499,500 terms are needed to achieve at least 10�3 accuracy for the variance error. In order to get
better accuracy we would need smaller threshold and hence more terms. For standard ANOVA in Table 1 both Criterions
1 and 3 give the same order of magnitude of error with almost the same number of second-order terms selected. This is also
true for anchored ANOVA as shown in Table 2. However, the error for anchored ANOVA is larger than the one for standard
ANOVA even if it needs more terms since the anchored ANOVA approximation to the function is worse than the standard
ANOVA approximation. Tables 1 and 2 also show that hi

2; ði ¼ 1;2;3Þ does not have a significant impact on the variance error
for either the standard or the anchored ANOVA.
e error and size of selected set F using standard ANOVA for the Sobol function. p = 0.999. jF j is the cardinality of F .

rion 1 h1
2

1e�7 1e�6 1e�5 1e�4

error 2.0170e�5 2.05217e�5 2.3990e�5 5.2835e�5
jF j 34 25 16 8

rion 3 h3
2

1e�7 1e�6 1e�5 1e�4

error 4.6856e�5 1.2148e�4 2.3682e�4 5.5905e�4
jF j 15 6 3 1



Table 2
Variance error and size of selected set F using anchored ANOVA for the Sobol function. The anchor point is chosen as described in the text. p = 0.9999.

Criterion 1 h1
2

1e�7 1e�6 1e�5 1e�4

error 7.0763e�3 7.0751e�3 7.0648e�3 7.0243e�3
jF j 76 45 19 8

Criterion 2 h2
2

1e�7 1e�6 1e�5 1e�4

error 7.0747e�3 7.0636e�3 7.0118e�3 6.7630e�3
jF j 42 18 7 2
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Remark 9. We note that the idea of selecting the important dimension is similar to the traditional sensitivity analysis. For
example, Sobol’s method [18] uses Var(fi)/Var(f) to measure the sensitivity of factor xi (or term fi) while our Criterion 1
replaces the denominator with

P
16i6NVarðfiÞ. Once the decomposition of f is determined, the selection of the (constant)

denominator will not affect the importance of each term (or equivalently, the sensitivity of the corresponding factor). The
main difference is that the anchored-ANOVA decomposition based on Dirac measure is different from the traditional ANOVA
decomposition based on Lebesgue measure. This difference can lead to different choices of importance dimensions. As has
been mentioned in Remark 3, the selection of the anchor point is the key point, and we refer the interested reader to liter-
atures listed in Remark 3.

In the next two sections we apply the adaptive criteria to two prototype problems in fluid mechanics.

3. Incompressible flow: stochastic convection

In this section, we consider a classical problem in fluid mechanics describing incompressible flow driven by thermal gra-
dients. A similar problem was considered in [24,25] in the context of stochastic modeling based on polynomial chaos but
using only a small number of dimensions (less than 4) in random space. Here, we demonstrate that we can deal with arbi-
trarily complex stochastic boundary conditions modeled as stochastic processes with as many as 96 dimensions in random
space. This allows us to examine the effect of the correlation length on the momentum and heat transport of this problem.

3.1. Governing equations

Let us consider two-dimensional steady states governed by the Oberbeck–Boussinesq approximation written in terms of
the vorticity transport equation in streamfunction-only formulation [26]
� @/
@y

@ðr2/Þ
@x

þ @/
@x

@ðr2/Þ
@y

¼ �Prr4/þ RaPr
@T
@x
; ð3:1Þ

@/
@y

@T
@x
� @/
@x

@T
@y
¼ r2T; ð3:2Þ
where /(x,y, t) denotes the dimensionless streamfunction, T(x,y, t) denotes the dimensionless temperature field, and Ra and
Pr are the Rayleigh and the Prandtl numbers, respectively.

In Fig. 3 we show a sketch of the geometry and the boundary conditions associated with the system (3.1). The quantity g
denotes the acceleration of gravity, which acts vertically downwards, in the direction of decreasing y. The sidewalls of the
cavity are assumed to be adiabatic while the horizontal walls are subject to random temperature distributions. The velocity
boundary conditions are assumed to be of no-slip type, i.e., @//@x = @ //@y = 0 at solid walls. It is convenient to transform the
non-homogeneous temperature boundary conditions at the horizontal walls into homogeneous ones. This is easily achieved
by defining
T	ðx; y;xÞ ¼def Tðx; y;xÞ þ ðy� 1Þðg1ðx;xÞ þ 1Þ � yg2ðx; xÞ; ð3:3Þ
where g1(x;x) and g2(x;x) are assumed to be finite-dimensional random processes satisfying adiabatic boundary conditions
at x = 0 and x = 1, i.e.,
@gi

@x

����
x¼0;1

¼ 0; for i ¼ 1;2: ð3:4Þ
Eq. (3.3) can be inverted to give
T ¼ T	 þ ð1� yÞðg1 þ 1Þ þ yg2 ð3:5Þ
from which we obtain



Fig. 3. Schematic of the geometry and dimensionless temperature boundary conditions. The random perturbations g1 and g2 are assumed to have zero
mean Gaussian processes. The velocity boundary conditions are of no-slip type, i.e., / = @//@ x = @//@y = 0 at the solid walls.
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@T
@x
¼ @T	

@x
þ y

@g2

@x
� @g1

@x

� �
þ @g1

@x
; ð3:6Þ

@T
@y
¼ @T	

@y
þ ðg2 � g1Þ � 1; ð3:7Þ

r2T ¼ r2T	 þ y
@2g2

@x2 �
@2g1

@x2

 !
þ @

2g1

@x2 : ð3:8Þ
A substitution of Eqs. (3.6)–(3.8) into Eqs. (3.1) and (3.2) yields the system
� @/
@y

@ðr2/Þ
@x

þ @/
@x

@ðr2/Þ
@y

¼ RaPr
@T	

@x
þ y

@g2

@x
� @g1

@x

� �
þ @g1

@x

� �
� Prr4/; ð3:9Þ

@/
@y

@T	

@x
þ y

@g2

@x
� @g1

@x

� �
þ @g1

@x

� �
� @/
@x

@T	

@y
þ ðg2 � g1Þ � 1

� �
¼ r2T	 þ y

@2g2

@x2 �
@2g1

@x2

 !
þ @

2g1

@x2 ; ð3:10Þ
with homogeneous boundary conditions. These equations admit an integral representation, where / and T⁄ are expressed as
a linear combination of normalized eigenfunctions, which automatically satisfy all the boundary conditions as well as the
continuity equation. A system of ordinary differential equations are derived through the Galerkin projection onto normalized
eigenfunctions; see [13,27,28] for more details.

A main quantity of interest is the local heat transfer between the horizontal wall and the fluid. This is quantified in terms
of random local Nusselt number defined as
Nux ¼ �
@T
@y

: ð3:11Þ
Then, the integrated Nusselt number is represented by
Nu ¼
Z 1

0
Nux dx: ð3:12Þ
In order to represent the stochastic boundary condition at the horizontal walls the Karhunen–Loeve (KL) decomposition is
used. The finite second-order random process h(x,x) representing g1 and g2 for the convection problem admits the KL
decomposition:
hðx;xÞ ¼ �hðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
wiðxÞniðxÞ; ð3:13Þ
where �hðxÞ is the mean, {ni(x)} is a set of uncorrelated random variables with mean zero and unit variance, and {(ki,wi(x))} is
the eigenpair of the covariance kernel Rhh(x1,x2):
Z

Rhhðx1; x2Þwiðx2Þdx2 ¼ kiwiðx1Þ: ð3:14Þ
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For both temperature perturbations at the horizontal walls we use the following Gaussian correlation function (see [26])
0.

0.

0.

0.

1.

1.

σ2 (N
u)

Fig. 4.
wall wi
ni(x) in
Rhhðx1; x2Þ ¼ exp �6
ðx1 � x2Þ2

A2

 !
; ð3:15Þ
where A is the correlation length.
We assume that the temperature perturbation g1 and g2 as shown in Fig. 3 are random processes with zero mean satis-

fying adiabatic boundary conditions at x = 0 and x = 1. The adiabatic condition at the boundary are imposed through the
spectral transformation method [29,30]. The correlation length A of the random boundary conditions determines the dimen-
sion of random space. Table 3 shows how many dimensions we need to capture 95% of the energy of the random field asso-
ciated with the eigenvalues of the covariance kernel. Since both the top and lower wall have random boundary temperature
with the same correlation length, we need twice as many dimensions as the one in the table for the specified correlation
length. Table 3 shows that the smaller the correlation length is the higher is the dimension in random space.

3.2. Computational results

We solve the stochastic convection problem using three different methods: (i) Monte Carlo (MC), (ii) sparse grids, and (iii)
ANOVA. The main quantities of interest are the velocity and temperature fields and the Nusselt number on the heated (low-
er) wall. We use the following parameters: Ra = 5000, r = 0.15, and A = 0.01. According to Table 3 the nominal dimension for
A = 0.01 would be 96 since there are two random fields on the lower and upper wall. Different correlation lengths have an
impact on the system, e.g. Nusselt number on the lower wall as shown in Fig. 4(left). The mean of Nusselt number does not
change significantly for these parameters as it is correlated strongly with the Rayleigh number [13], which we keep constant
here. However, the variance of the Nusselt number for correlation length A = 1 is significantly different from the variances for
A = 0.1 and A = 0.01. Figs. 5 and 6 show the mean and the variance, respectively for the velocity and temperature fields in the
domain using three different methods as mentioned above. Note that the steady state of the system is in a clockwise one-roll
motion state. It is known that the system has two stable states for Rayleigh number 5000: (i) clockwise and (ii) counter-
clockwise one-roll motion [13]. The results shown here consider only a clockwise one-roll motion. We see that the ANOVA
method works very well even with a very small number of points compared to a much larger number of sampling points
associated with MC, which suggests that the ANOVA method, in particular, can be effective in solving high dimensional
incompressible flow problems. Fig. 7 shows that MC method with small number of sampling points does not agree well with
other methods with about the same number of collocation points.
Table 3
Correlation length and corresponding number of dimensions of random space required to capture 95% of the energy in random space
for a single wall.

A 1 0.1 0.01
Dimension 3 22 48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4
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8

1

2

4

x

A=1
A=0.1
A=0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.04
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0.08

0.1
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0.14

0.16
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0.2
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0.24

x
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u)

MC with uniform
MC with Gaussian
ANOVA with uniform
ANOVA with Gaussian

Left: variance of Nusselt number on the lower wall with respect to three different correlation lengths. Right: variance of Nusselt number on the lower
th uniform and standard Gaussian random variable for A = 0.01. Other parameters are Ra = 5000, r = 0.15. The right figure shows that the choice of
(3.13) does not make a difference to the variance of Nusselt number as they appear the same.



Fig. 5. Ra = 5000, A = 0.01, r = 0.15. N = 96 is needed to capture 95% of the energy of the random processes that model the boundary temperatures on the
lower and upper walls. The first column represents hui; the second column hvi; the third column hTi. The first row represents MC method with 90,000
samples, the second row sparse grid method with level 2, and the third row ANOVA method with l = 2, m = 1. The number of grid points used for sparse and
ANOVA method is 18,625 and 193, respectively.
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Note that in the KL representation (3.13) ni(x) is a random variable with mean zero and unit variance. Specifically we
treat ni as a uniform random variable with mean zero and unit variance, i.e., ni � U½�

ffiffiffi
3
p

;
ffiffiffi
3
p
�. We also tested ni as a standard

Gaussian random variable and we found that the difference between the two different cases is negligible. In Fig. 4 (right) we
plot the variance of Nusselt number on the lower wall with uniform and standard Gaussian random variable for A = 0.01.

Here, we summarize the computational details in each step of Algorithm 1:

(1) We first select the anchor point c = 0 and solve the system (3.9) and (3.10) at the anchor point in the parametric space
defined here by N = 96 dimension for A = 0.01.

(2) Next, we consider the first-order terms and generate the collocation points and weights qi
1;wi

� �
; i ¼ 1; . . . ;l based on

the Gauss-Legendre quadrature for uniform random variables or Gauss-Hermite for Gaussian random variables (Fig. 4
(right)). Again given a collocation point, we can solve the corresponding deterministic system.

(3) Then, we compute the statistical values of mean and standard deviation required in the adaptivity criterion based on
the value of first-order terms fi at the quadrature points and corresponding weights to determine the active dimension
D2 for selecting the important second-order terms.

(4) Finally proceeding in a similar fashion, we can compute the second-order terms and, if needed, higher-order terms.



Fig. 6. Same parameters as in previous figure. The first column represents Var(u); the second column Var(v); the third column Var(T). The first row
represents MC method with 90,000 samples, the second row sparse grid method with level 2 and single element, and the third row ANOVA method with
l = 2, m = 1. The number of grid points used for sparse and anova method is 18,625 and 193, respectively.
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Now we present the adaptive ANOVA method and apply Criterion 1 to compute the Nusselt number on the lower wall.
We consider the following parameters: Ra = 5000, r = 0.15, and A = 0.1 requiring that the dimension of the random space is
44, and we obtain a stochastic solution by combining the probabilistic collocation method (PCM) with standard ANOVA for
polynomial order l = 2, and truncation dimension m = 2. We are interested to evaluate how many terms we can eliminate
from the above ANOVA truncation using adaptivity without changing the value of the mean and variance of the Nusselt num-
ber significantly. To this end, first we consider only first-order terms, i.e., we totally ignore second-order interactions (and
higher), and examine the relative mean and relative variance of first-order ANOVA terms fk(x), k = 1, . . . ,N
c1
k ¼

r2ðfkÞPN
k¼1r2ðfkÞ

; c2
k ¼

jEðfkÞjPN
k¼1jEðfkÞj

:

We select the active dimension D1 such that
c1
k > g; c2

k > g ð3:16Þ
for different values of g. Note that this criterion, in essence, combines Criterions 1 and 2 described in the previous section.
Table 4 shows how many dimensions are selected by varying the threshold g. We compute the variance from the selected
first-order ANOVA terms according to Eq. (3.16) and compare it with the variance of the Nusselt number for a reference solu-



Fig. 7. Ra = 5000, r = 0.15, A = 0.01. Left: variance of Nusselt number on the lower wall. Right: variance of temperature on x = 0.5. While MC with 90,000
points (blue solid line) agrees well with ANOVA with l = 2 and m = 1 (dotted black circle) and sparse grid with level 1 (about 200 points), MC with 200 points
are different from those. The ANOVA and sparse grids give similar results. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 4
Active dimension D1 satisfying Eq. (3.16).

g 0.1 0.05 0.01
D1 6 10 20
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Fig. 8. Variance of Nusselt number using selected first-order ANOVA terms according to (3.16). The more D1 is (or the smaller g is) the closer the computed
variance is to the reference variance (red solid line) derived from Monte Carlo simulation with 90,000 samples. (Left: m = 1, A = 0.1, r = 0.15, N = 44. Right:
m = 1, A = 0.01, r = 0.15, N = 96. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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tion as shown in Fig. 8. (The reference solution is obtained here using 90,000 MC samples that is within 95% confidence inter-
val.) We see that the lower the threshold g is the closer the variance of the selected first-order ANOVA terms is to the ref-
erence variance.

Next, we examine the importance of second-order interactions and their contribution to the Nusselt number. Since the
computational cost for first-order terms is small compared to one for second-order terms we can use all first-order terms,
i.e., D1 = N and use Criterion 1 to reduce the number of second-order terms. To this end, we set D1 ¼ N; p ¼ 0:99; h1

2 ¼ 10�5

for A = 0.1 and h1
2 ¼ 10�6 for A = 0.01. We note that while the variance based on the first-order terms fj for the compressible

flow problem (see next section) is monotonically decreasing with respect to the dimension index j, the variance for the con-
vection problem has a non-monotonic behavior. However, the idea of choosing the important terms and determine the active
dimension D2 or F remains the same.
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Fig. 9. Left: A = 0.1, N = 44, h2 = 10�5. Right: A = 0.01, N = 96, h2 = 10�6. l = 2, m = 2, p = 0.99. We obtain D2 = 25 and D2 = 86, respectively with Criterion 1, and
the number of second-order ANOVA terms is 3 and 4, respectively while the number of second-order ANOVA terms without adaptivity is 946 and 4560,
respectively. The solid line represents the variance of Nusselt number using MC while the circles correspond to the adaptive ANOVA method based on
Criterion 1.
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Specifically, for the thresholds used here we obtain D2 = 25 and jF j ¼ 3 for A = 0.1 and D2 = 86 and jF j ¼ 4 for A = 0.01.
Therefore, for A = 0.1 the number of points needed for the adaptive ANOVA is 101 while for the standard ANOVA is 3873.
These numbers are obtained as follows: For the adaptive ANOVA we have 44 � 2 + 1 are the first-order terms plus a constant
(here l = 2 and D1 = N = 44) while the second-order terms are 3 � 22, and the sum of both gives 101 terms. Similarly, for the
standard ANOVA we have the same number of first-order terms but the second-order terms are combinations of 44 with 2.
Fig. 9 shows the variance of the Nusselt number on the lower wall obtained by MC (90,000 sampling points) and adaptive
ANOVA; good agreement is shown. In fact, as shown in Figs. 5 and 6, the ANOVA method even with truncation dimension
m = 1 is sufficient to obtain a very accurate value of the Nusselt number, and hence the adaptive ANOVA method with
m = 2 results in a very small set F . Specifically, the L2 error between the reference solution and the adaptive ANOVA with
the above choice is 2.432 � 10�4 while the L2 error between the reference solution and ANOVA consisted of only first-order
terms is 2.887 � 10�4. Hence, the addition of second-order terms for this case is not important despite the relatively large
value of the variance of Nusselt number. As we will see in the next section, this is in contrast to the compressible flow prob-
lem where the second-order terms contribute significantly to the variance of the computed forces.

4. Compressible flow: scattering of shock waves

In this section we consider inviscid flow dynamics and focus on the scattering of a strong shock wave due to random
roughness on the surface of a half-wedge (see Figs. 2 and 9). Of physical interest here is the effect of roughness on the in-
duced forces on the wedge surface while of numerical interest is the exact form of adaptive ANOVA representation required
for different levels of accuracy. The scattering of shock wave is quite different from that of the classical oblique shock prob-
lem due to the presence of random roughness.

4.1. Mathematical modeling of random roughness

The roughness length is denoted by d, and we normalize all lengths by d. The roughness starts from the apex of the wedge
and the end part of the wedge is smooth. We denote the half wedge angle by h0, the unperturbed shock angle for smooth
wedge by v0, the shock angle for rough wedge at location x by v(x;x) and the angle between ts and us by h(x;x) satisfying
tan h ¼ ts

us
, where ts and us are the velocity right after the shock perpendicular and parallel to the wedge, respectively. For a

smooth wedge, v and h degenerate to v0 and h0. We denote the incoming flow velocity by W1 with its normal component
u1 = W1 sinv and we also denote the velocity there by W2 and its normal component to the shock by u2 = W2 sin(v � h) = W1

cosv tan(v � h). Here, u1, u2 are the normal components of the velocities going into and coming out of the shock. Fig. 10
shows a sketch of a typical perturbed shock path induced by the randomly rough boundary.

The random roughness is modeled based on a non-dimensional random process hm(x;x) expressed by the KL
decomposition:
hmðx; xÞ ¼ �hmðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
wiðxÞniðxÞ; ð4:1Þ
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Fig. 10. Sketch of supersonic flow past a wedge with rough surface: definition of coordinate system and notation; shown is also a perturbed shock path and
the location of the unperturbed shock corresponding to a smooth wedge surface.
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where �hmðxÞ is the mean, {ni(x)} is a set of uncorrelated random variables with zero mean and unit variance, and wi and ki are
the eigenvectors and corresponding eigenvalues of the covariance kernel Rhh(x1,x2):
Z

Rhhðx1; x2Þwiðx2Þdx2 ¼ kiwiðx1Þ: ð4:2Þ
We assume that �hmðxÞ ¼ 0, and the roughness height is
yðx;xÞ ¼ ehðx;xÞ ¼ e
hm

maxxðrðhmÞÞ
: ð4:3Þ
The covariance kernel Rhh(hm(x1;x), hm(x2;x)) is obtained based on the solution of [17]
d4hm

dx4 þ k4hm ¼ f ðxÞ;
where x is normalized by the roughness length d, k = d/A, A is the correlation length, and the random forcing term f(x) is
white noise, i.e., Eff ðx1Þf ðx2Þg ¼ dðx1 � x2Þ. Without losing generality, we set d = 1. The roughness starts from the apex of
wedge and the required boundary conditions for this case are: hmð0;xÞ ¼ h0mð0;xÞ ¼ hmð1;xÞ ¼ h0mð1;xÞ ¼ 0. The eigenvec-
tors are obtained as the solution of the homogeneous equation
d4w
dx4 �K4w ¼ 0
with boundary condition w(0) = w(1) = w0(0) = w0(1) = 0 and K is the eigenvalue of operator d4/dx4. Such boundary conditions
are chosen due to the assumption for second-order perturbation analysis, which states the random roughness and other per-
turbed quantities are small and smooth in the computational domain. The stochastic process hm(x;x) can then be repre-
sented by the KL expansion:
hmðx; xÞ ¼
X1
n¼1

1

K4
n þ k4 wnðxÞnnðxÞ; ð4:4Þ
where
wnðxÞ ¼ cos Knx� cosh Knx� cos Kn � cosh Kn

sin Kn � sinh Kn
ðsin Knx� sinh KnxÞ:
Here, Kn is obtained by solving cosKn cosh Kn = 1, where {nn(x)} is a set of uncorrelated random variables with zero mean
and unit variance. In practice, the KL expansion is truncated according to the following criterion:
XN

n¼1

Kn

K4
n þ k4 P a

X1
n¼1

Kn

K4
n þ k4 ; ð4:5Þ
where a = 0.9; 0.95; 0.99. The number of dimensions for different values of the correlation length and for different values of a
are listed in Table 5.



Table 5
Number of dimensions for different values of correlation length at various truncation levels.

a (%) A = 1 A = 0.1 A = 0.01 A = 0.001

90 2 7 79 798
95 3 10 112 1133
99 10 25 253 2537
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4.2. Computational results

We consider here the case of Mach number 8 and we follow the set up in [17]; for A = 0.1, the nominal dimension N = 12
(capturing more than 95% of energy in (4.5)), e = 0.003, h0 = 14.7436�, v0 = 20.5755�, and nn used in KL expansion are uni-
formly distributed on ½�

ffiffiffi
3
p

;
ffiffiffi
3
p
�. The contours of pressure for one realization are shown in Fig. 2. We set l = 3 in the ANOVA

decomposition and let the anchor point c = 0. This is because from the results in [16,17] we can see that the means for extra
lift and drag are very close to 0 and according to the theory in [19], the mean is a good choice (maybe optimal) for anchor
point; other choices of anchor points are discussed in [19].

The standard deviation based on the first-order terms fj for the extra lift and drag are shown in Fig. 11. We use these val-
ues in step 3 of the algorithm to determine the necessary second-order terms based on Criterion 1. Similarly, for Criterion 2,
we can compute the mean of the first-order terms to be used in step 3; the pattern of the means (not shown in this paper) is
similar to the pattern of standard deviations. Both the means and standard deviations are monotonically decreasing when
j P 2, hence we can use (2.16) and (2.19) to adaptively select terms.

Several choices of threshold p and corresponding D2 for Criterions 1 and 2 are listed in Table 6. We set D2 = 6 in order to
compare with the sparse grid method and demonstrate the convergence of the adaptive method. Our tests show that
h1

2 ¼ 5:0� 10�5 (i.e., 0.005%) is a good threshold for Criterion 1 and h2
2 ¼ 1:0� 10�3 (i.e., 0.1%) is a good threshold for Criterion

2. With these thresholds, the estimates of mean and standard deviation of the extra lift and drag are more accurate than for
other values. Both criteria lead to the same selection of second-order terms, and hence a good approximation of f(x) turns out
to be
Fig. 11
terms a
f ðxÞ � f0 þ
X12

j¼1

fjðxjÞ þ
X5

j¼2

f1;jðx1; xjÞ þ
X6

j¼3

f2;jðx2; xjÞ þ
X5

j¼4

f3;jðx3; xjÞ; ð4:6Þ
where x refers to the random point, and f(x) denotes either the extra lift DL(x) or extra drag DD(x). The number of collocation
points used in the different simulations are shown in Tables 7 and 8 for the sparse grid method and adaptive ANOVA method,
respectively. We can see that even though the nominal dimension is not large, the number of collocation points required by
the sparse grid method increases very quickly as the level increases. For the adaptive ANOVA method, since the active
dimension D2 and the number of collocation points l are small, the increase of the collocation points is much slower. For
comparison, we note that if we use the standard ANOVA method with l = 3, m = 2, i.e., we use all the second-order terms,
the number of points is 631.

Here, we summarize the computational details in each step of Algorithm 1:

(1) We first select the anchor point c = 0 and run the deterministic solver at this anchor point to obtain the constant term
f0 in the ANOVA decomposition (according to Eq. (2.8)). In this case f is the extra pressure Dp.
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Table 6
Threshold p and corresponding active dimension D2 for different criteria.

Criterion 1 p 0.997 0.998 0.999
D2 5 6 7

Criterion 2 p 0.97 0.98 0.99
D2 5 6 7

Table 7
Number of collocation points for Smolyak sparse grid method: A/d = 0.1 and nominal dimension N = 12.

Level 1 Level 2 Level 3
25 313 2649

Table 8
Number of collocation points for adaptive ANOVA method : A/d = 0.1, nominal dimension N = 12, active dimension
D1 = N = 12, D2 = 6, l = 3, h1

2 ¼ 5:0� 10�5 for Criterion 1 or h2
2 ¼ 1:0� 10�3 for Criterion 2.

fj fj + f1,j fj + f1,j + f2,j fj + f1,j + f2,j + f3,j

37 73 109 127
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(2) We then set l = 3 and take the Gauss-Legendre quadrature points as q1;2;3
i ¼ � 3ffiffi

5
p ;0; 3ffiffi

5
p ; i ¼ 1;2; . . . ;N (here we use the

same quadrature points for each dimensions, i.e., q1;2;3
1 ¼ q1;2;3

2 ¼ � � � ¼ q1;2;3
N ) since ni are uniform random variables on

½�
ffiffiffi
3
p

;
ffiffiffi
3
p
�, and the corresponding weights are w1;2;3 ¼ 5

18 ;
4
9 ;

5
18. We run the deterministic solver at the collocation points

q1
1;0; . . . ;0

� �
; q2

1;0; . . . ;0
� �

; . . . ; 0; . . . ;0; q1
N

� �
, 0; . . . ;0; q2

N

� �
; 0; . . . ;0; q3

N

� �
to obtain the values of all first-order terms at

quadrature points q1;2;3
i ; i ¼ 1;2; . . . ;N from Eq. (2.11).

(3) We compute the mean and standard deviation required in the adaptivity criterion based on the value of first-order
terms fi at the quadrature points and corresponding weights to determine the active dimension D2 for selecting the
important second-order terms.

(4) We use tensor product rule to obtain new collocation points: q1
1; q

1
2;0; . . . ;0

� �
; q1

1; q
2
2;0; . . . ;0

� �
, q1

1; q
3
2;0; . . . ;0

� �
;

q2
1; q

1
2;0; . . . ;0

� �
; . . . ; 0; . . . ;0; q3

N�1; q
3
N

� �
and run the deterministic solver at these the collocation points then compute

the values of second-order terms at the quadrature points from Eq. (2.12).
(5) Finally, we use either Criterion 1 or Criterion 2 to decide the important second-order terms. Now the construction of

the ANOVA decomposition of f with m = 2 is finished.

Remark 10. In the presentation of the roughness with relatively small amplitude (4.1), ni are selected to be uniform random
variables. We also tested Gaussian random variables and the results (mean and standard deviation) are very close with rel-
ative errors being only Oð10�4Þ. This result is consistent with the asymptotic analysis in [17]. Hence, we only use uniform
random variable to demonstrate our method.

Remark 11. The reference solution is given by quasi-Monte Carlo method with 100,000 realizations. Here we use the
sequence HaltonRR2 set [31]. We also used sparse grids of level 4 (17,265 collocation points) to solve the problem. The dif-
ference between these two results is so small that it does not affect the quantitative analysis shown in the next section.
Therefore, we use the quasi-Monte Carlo results as the reference solution.

Fig. 12 compares the standard deviation of the extra lift and drag obtained by the sparse grid method We can see that the
results by level 1 sparse grid method are the least accurate, especially for the extra drag. The results by the level 2 sparse grid
method are better than those of level 1 sparse grid, especially for the estimate in the first reflection region [16], i.e.,
x 2 [1,2.84]. In the second reflection region, i.e., x 2 [2.84,6] the estimates of both level 1 and level 2 sparse grid method
are very close. The results of level 3 sparse grid method are better than those of the former two lower level sparse grid
method. This can be observed more distinctly in the second reflection region in the plot of Fig. 12 for the standard deviation
of the extra lift. The results by the adaptive ANOVA method are very close to the results by the level 3 sparse grid and, in fact,
if we zoom in the plot of the extra lift we can see that the former one is slightly better than the latter. For the estimate of the
standard deviation of the extra drag, it is hard to discern differences between level 2, level 3 sparse grid, and the adaptive
ANOVA method. We also study the error more systematically and show the relative error of the standard deviation in Fig. 13,
where ‘‘Lvl’’ means level, fj ¼ f0 þ

P12
j¼1fjðxjÞ; f1;j ¼

P5
j¼2f1;jðx1; xjÞ, f2;j ¼

P6
j¼3f2;jðx2; xjÞ; f3;j ¼

P5
j¼4f3;jðx3; xjÞ, i.e., we decompose

Eq. (4.6) into four parts and add them one by one to see the difference. We can see that the adaptive ANOVA method with
terms fj + f1,j + f2,j + f3,j leads to a better estimate of the standard deviation than the level 3 sparse grid. The x-axis in Fig. 13 is
the number of collocation points (or sampling points) and since the deterministic solver with different collocation points
costs almost the same, the computational cost of adaptive ANOVA is less than 1/20 of level 3 sparse grid method (see the
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exact number of collocation points in Tables 7 and 8). Similarly, Fig. 14 compares the mean of the extra lift and drag obtained
by different methods. Again, we observe that the results by the level 1 sparse grid method are worse than those of others.
However, the difference between the estimate by level 2, level 3 sparse grid method, and the adaptive ANOVA method is too
small to be seen on the plot so we only plot the results of adaptive ANOVA method. A systematic study of the error of the
mean is presented in Fig. 15, which shows that the estimates by the adaptive ANOVA with terms fj + f1,j + f2,j + f3,j are almost
as accurate as those by level 3 sparse grid method. Moreover, Figs. 13 and 15 also show the convergence of the adaptive
ANOVA method as we add the terms in Eq. (4.6) one by one. Figs. 16 and 17 show the convergence of the adaptive ANOVA
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Fig. 14. Comparison of mean of extra lift (left) and drag (right) for different level of sparse grid method and adaptive ANOVA method. A = 0.1, D1 = N = 12,
D2 = 6, l = 3. The curve corresponding to adaptive ANOVA coincides with the QMC curve.
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method visually for the standard deviation and mean, respectively. We can see that for this case, the second-order terms play
an important role in the approximation, otherwise, the results by using only f0 and the first-order terms fj are even worse
than the level 1 sparse grid method.

Next, we compare the difference of the results by using different active dimensions listed in Table 6 (the reference solu-
tion is obtained by quasi-Monte Carlo with 50,000 realizations). Our tests show that for Criterion 1, h1

2 ¼ 5:0� 10�5 is a good
choice for active dimension D2 = 6, 7 since it leads to small error. With this h1

2, when we set the active dimension to be either
6 or 7, we use the same second-order component functions, i.e., f is approximated as in (4.6). For D2 ¼ 5; h1

2 ¼ 2:0� 10�5 is
one of the optimal choices and f is approximated well by
Fig. 15.
l = 3.

F

f ðxÞ � f0 þ
X12

j¼1

fjðxjÞ þ
X5

j¼2

f1;jðx1; xjÞ þ
X5

j¼3

f2;jðx2; xjÞ þ
X5

j¼4

f3;jðx3; xjÞ þ f4;5ðx4; x5Þ: ð4:7Þ
Similarly, for Criterion 2, we set h2
2 ¼ 1:0� 10�3 for D2 = 6,7 and h2

2 ¼ 5:0� 10�4 for D2 = 5. With these settings, f is also
approximated as in (4.6) for D2 = 6, 7 and (4.7) for D2 = 5. Here, we compare the results of D2 = 5 and 6. The number of col-
location points we use is the same, i.e., 127. The relative L2 errors of the standard deviation and mean for the extra lift and
drag are shown in Table 9. We can see that the selection of p (or h1;2

1 ), which determines the active dimension and affects the
selection of threshold h1;2

2 , will affect the accuracy.
We also employ a fifth-order WENO scheme [32] combined with a mapping technique for solving partial differential

equations on random domains [33] to compute the numerical solution as in [17]. We use 900 � 300 grid points on the do-
main [0,6] � [0,0.9], and a steady state is achieved by time-marching. The stochastic simulations are based on the probabi-
listic collocation method (PCM) and both sparse grid and adaptive ANOVA are used. In Fig. 18 we observe that in the
roughness region (x 2 [0,1]) the analytical results and numerical results are almost the same. In the first reflection region
(x 2 [1,2.84]) the errors are mainly from the numerical solver as we see that the numerical results deviate from the corre-
sponding analytical results. In the second reflection region (x 2 [2.84,6]) the sampling error dominates as the numerical re-
sults are close to the corresponding analytical solution. Also, the difference between the results by the analytical level 1
sparse grid and the analytical adaptive ANOVA method is almost the same as the corresponding difference using the numer-
Number of points

L 2
er

ro
ro

fE
(Δ

L)
/ε

2

101 102 103

10-3

10-2

10-1

fj

fj+f1,j

fj+f1,j+f2,j

fj+f1,j+f2,j+f3,j

Lvl 1 Sparse

Lvl 2 Sparse
Lvl 3 Sparse

Number of points

L 2
er

ro
ro

fE
( Δ

D
)/ε

2

101 102 103

10-3

10-2

10-1

fj

fj+f1,j

fj+f1,j+f2,j

fj+f1,j+f2,j+f3,j

Lvl 1 Sparse

Lvl 2 Sparse
Lvl 3 Sparse

Error of mean of extra lift (left) and drag (right) for different level of sparse grid method and adaptive ANOVA method. A = 0.1, D1 = N = 12, D2 = 6,

x

σ(
ΔL

)/ε

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

QMC
fj

fj+f1,j

fj+f1,j+f2,j
fj+f1,j+f2,j+f3,j

x

σ(
ΔD

)/ε

0 1 2 3 4 5 6
0

1

2

3

QMC
fj

fj+f1,j

fj+f1,j+f2,j
fj+f1,j+f2,j+f3,j

ig. 16. Convergence of standard deviation of extra lift (left) and drag (right) for adaptive ANOVA method. A = 0.1, D1 = N = 12, D2 = 6, l = 3.



x

-E
(Δ

L)
/ε

2

0 1 2 3 4 5 6
-100

-50

0

50

100

150

200

250

300

QMC
fj

fj+f1,j

fj+f1,j+f2,j
fj+f1,j+f2,j+f3,j

x

E(
Δ D

)/ε
2

0 1 2 3 4 5 6
0

50

100

150

200

250

QMC
fj

fj+f1,j

fj+f1,j+f2,j
fj+f1,j+f2,j+f3,j

Fig. 17. Convergence of mean of extra lift (left) and drag (right) for adaptive ANOVA method. A = 0.1, D1 = N = 12, D2 = 6, l = 3.

Table 9
L2 errors of standard deviation and mean for extra lift and drag for the adaptive ANOVA method with different active dimensions.

D2 r(DL)/e r(DD)/e EðDLÞ=e2 EðDDÞ=e2

5 1.2967e�2 7.6705e�3 1.3198e�2 2.4486e�3
6 1.2756e�2 5.8900e�3 8.3316e�3 1.5411e�3
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Fig. 18. Comparison of analytical solution and numerical solution of the standard deviation of extra lift (left) and drag (right) with sparse grid method and
adaptive ANOVA method. A = 0.1, N = 12.
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Fig. 21. Contours of the standard deviation of the normalized extra pressure by level 1 sparse grid method (left) and adaptive ANOVA method (right).
A = 0.1, N = 12.
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ical solver. Fig. 19 shows the errors of standard deviation of extra lift and drag (numerical solutions minus reference solu-
tions) along the wedge obtained with different collocation points. We see that the adaptive ANOVA solutions have the small-
est error compared to numerical solutions obtained from other methods. Also, we observe that near the interface x = 1
(where the rough surface ends) and at x = 2.84 (where the first reflection region ends), the numerical errors are relatively
larger. Also, due to the singularity around the apex (x = 0), the numerical errors are relatively large close to x = 0. We also
include the error of analytical solution obtained by the level 2 sparse grid method in Fig. 19 and compared with the numer-
ical results we can conclude that the numerical error dominates. Fig. 20 presents the L2 norm of the errors of the standard
deviations of extra lift and drag of analytical and numerical solutions. We can observe that the gaps between the analytical
solution and numerical solution reflect the numerical errors. When we increase the level of the sparse grid method, the accu-
racy improves only a little since the numerical errors dominate unless a finer mesh is used; however such simulations are
very expensive. We also notice that the results by the adaptive ANOVA method is better than those by the level 3 sparse grid
method.

A comparison of contours between level 1 sparse grid and adaptive ANOVA of the standard deviation of the extra pressure
is also presented in Fig. 21. We can observe that in the roughness region, where the standard deviation is higher the shock is
highly perturbed as we see in the single realization case of Fig. 2. The interface between the roughness region and the first
reflection region is very distinct while the interface between the first and second reflection region is not as clear. This is sim-
ilar to the single realization shown in Fig. 2. It is hard to see any difference between the two plots in Fig. 21 except that at the
shock near the right end of the computational domain the standard deviation by the adaptive ANOVA method is larger than
that by level 1 sparse grid method.
4.3. Small correlation length: 100 dimensions

Finally, we consider a case with correlation length 0.01 with corresponding nominal dimension N = 100 (about 95% in
(4.5)), e = 1.0 � 10�6 on physical domain [0,5]. Since the roughness height e is very small the results by sparse grid and
ANOVA are both very accurate. We only present the standard ANOVA method with l = 3, m = 1 in Fig. 22. The computational
details in each step of Algorithm 1 are summarized below:
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(1) We first select the anchor point c = 0 and run the deterministic solver at this anchor point to obtain the constant term
f0 in the ANOVA decomposition (according to Eq. (2.8)). In this case f is the extra pressure Dp.

(2) We then set l = 3 and take Gauss-Legendre quadrature points q1;2;3
i ¼ � 3ffiffi

5
p ;0; 3ffiffi

5
p ; i ¼ 1;2; . . . ;N (here we use the same

quadrature points for each dimensions, i.e., q1;2;3
1 ¼ q1;2;3

2 ¼ � � � ¼ q1;2;3
N ) since ni are uniform random variables on

½�
ffiffiffi
3
p

;
ffiffiffi
3
p
�. then the corresponding weights are w1;2;3 ¼ 5

18 ;
4
9 ;

5
18. Run the deterministic solver at the collocation points

q1;2;3
1 ;0; . . . ; 0

� �
; 0; q1;2;3

2 ;0; . . . ;0
� �

; . . . ; ð0; . . . ;0; q1;2;3
N Þ to obtain the value of all first-order terms at quadrature points

q1;2;3
i ; i ¼ 1;2; . . . ;N from Eq. (2.11). Since m = 1, at this point, the ANOVA decomposition is constructed.

Remark 12. Note that we only use first-order terms so we have fewer steps here.
We can see the results by Monte Carlo (100,000 realizations, within 95% confidence interval) and ANOVA are very close to

each other. For this case, since the correlation length is small, the change of standard deviation is very sharp at x = 1 and
x = 2.84, i.e., the interface of the roughness region and first reflection as well as the interface of the first and second reflection
regions. Also, x = 1 is the peak point for the mean while x = 2.84 is the point where sharp change appears. Comparing Figs. 22
and 23 with Figs. 12 and 14 we can observe that a dramatic effect of correlation length on the physics of the scattering prob-
lem as the change at the interface of different regions becomes sharp (see the range of roughness region, first reflection re-
gion and second reflection region in Fig. 2). Moreover, when the correlation length is very small, e.g., 0.01, the random
roughness at points between 0 and 1 can be approximately treated as independent random variables with the same variance,
therefore we observe three very flat steps in the figure of the standard deviation.
5. Summary and discussion

The main result of this paper is that functional ANOVA in conjunction with a proper adaptivity strategy is a very effective
dimension–reduction technique that allows simulation of stochastic flows in high dimensions. This was demonstrated for a
viscous incompressible flow as well as an inviscid compressible flow, both in steady state, with stochastic perturbations of
very small correlation length requiring up to 100 random dimensions. Even for a moderate number of dimensions, i.e.,
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N � 10, adaptive ANOVA is 20 times faster than sparse grids for comparable accuracy; in this case it is also three orders of
magnitude faster than Monte Carlo simulations. A key concept is the active dimension Di for each sub-group i of the ANOVA
decomposition, which can be computed on-the-fly based on the three adaptive criteria we presented here. A more theoret-
ical approach based on ‘‘weight-theory’’ (similar to quasi-Monte Carlo theory) is presented in [19], where properly defined
weights measure the importance of each dimension. For the two flow examples we presented here, we demonstrated that
even draconian truncations of the ANOVA decomposition, i.e., m = 2 or even m = 1 can lead to reasonably accurate estimates of
the mean and the variance of the stochastic solution. Clearly, more work is required to fully appreciate the limitations of this
approach, especially for time-dependent flows and turbulent flows. However, at present accurate stochastic modeling of
such flows even in low dimensions has not been fully realized.

An interesting aspect of the discrete ANOVA decomposition, i.e., after approximating each ANOVA term using l colloca-
tion points, is that for monotonic convergence of the expansion it is required that l > m, with the best choice l = m + 1. This was
first discovered in [8] for multi-dimensional function approximation and for solving elliptic stochastic PDEs. Our work here
confirms this requirement for both flow problems we studied as shown in Fig. 24. In particular, for the shock problem we
present convergence results both for the analytical solution as well as the numerical solution for m = 2. We see that there
is a very big decay of the error from l = 1 to l = 3; beyond l = 3 the convergence for the analytical solution is very slow while
for the numerical solution there is no convergence. The reason for the latter behavior is the dominance of the numerical dis-
cretization error (in the physical domain); the same is true for the convection problem for which we have m = 1.

Finally, we note the importance of the value of the correlation length of the stochastic perturbations on the quantities of
interest for each problem. For the convection problem the mean Nusselt number is not affected very much but the variance
changes by almost an order of magnitude in a non-monotonic fashion as we decrease the correlation length to its smallest
value, i.e., 100 times smaller than the characteristic integral length scale. In contrast, the value of correlation length affects
strongly both the mean and the variance for the shock problem. In particular, for small e and A� 1, the mean of the per-
turbed pressure scales /e2 and /A�2 while the corresponding variance scales /e and /A�1. However, for large e, the mean
pressure scales approximately / e, while for A > 1 it is independent of A; see also [17].
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Appendix A. Stochastic perturbation analysis

In this section we briefly describe the first- and second-order perturbation methods to obtain analytical solutions for
small roughness height; details can be found in [17]. We assume that: (1) The random wedge roughness is small, and cor-
respondingly the perturbation of the shock slope is small. (2) The oblique shock is attached to the wedge. (3) The flow be-
tween the shock and the wedge is adiabatic.
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The isentropic flow between the wedge and the shock is governed by the Euler equations along with the isentropic con-
dition (2D case):
u @p
@x þ t @p

@y þ qc2 @u
@x þ @t

@y

� �
¼ 0;

u @u
@x þ t @u

@y þ 1
q
@p
@x ;

u @t
@x þ t @t

@yþ 1
q
@p
@y ;

u @s
@xþ t @s

@y ¼ 0;

8>>>>>><>>>>>>:
ðA:1Þ
where the first equation of Eq. (A.1) is based on the fact that c2 ¼ @p
@q. On the wedge surface (y = eh(x;x)), the slip boundary

condition tw
uw
¼ e @h

@x

� �
is employed, where tw and uw are the velocity perpendicular and parallel to the wedge. According to the

Rankine–Hugoniot relations, we have:
P2

P1
¼ 1þ 2c

1þ c
ðM2

1 sin2 v� 1Þ; q1

q2
¼ u2

u1
¼ ðc� 1ÞM2

1 sin2 vþ 2

ðcþ 1ÞM2
1 sin2 v

;

tanðv� hÞ ¼ tanv ðc� 1ÞM2
1 sin2 vþ 2

ðcþ 1ÞM2
1 sin2 v


 TðM1;vÞ:
ðA:2Þ
A.1. First-order theory

The domain we consider is between the perturbed shock and the wedge surface. We use the subscript ‘2’ for the flow state
after the shock and take the x-axis along the surface of the ‘unperturbed’ wedge. Let
u
W2
¼ 1þ ew0;

t
W2
¼ et;

p
P2
¼ 1þ ep0;

q
q2
¼ 1þ eq0;

s
S2
¼ 1þ es0: ðA:3Þ
On the wedge surface, we have t0w ¼ @h
@x and using the Rankine–Hugoniot relations (Eq. (A.2)), we obtain the interface condi-

tions after the shock:
t0s ¼ h0 ¼ FðM1; x0Þv0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

2 � 1
q

cM2
p0s ¼ GðM1;v0Þv0; ðA:4Þ
where
FðM1;v0Þ 

dh
dv ¼ 1� 1

1þ T2
0

@T
@v ;

GðM1;v0Þ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

2 � 1
q
cM2

2P2

dP2

dv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

2 � 1
q

cM2
2

2cM2
1 sin 2v0

1� cþ 2cM2
1 sin2 v0

;

T ¼ tanðv� hÞ; T0 ¼ tanðv0 � h0Þ; M1 ¼
W1

c1
; M2

2 ¼ M2
1

P1q2 cos2 v0

P2q1 cos2ðv0 � h0Þ
:

ðA:5Þ
To quantify the region of validity for the stochastic perturbation analysis, we use the standard deviation of the stochastic
roughness as a measure. To simplify the problem with small perturbation, we have employed the following assumption:
e�min
1

rðw0Þ ;
1

rðt0Þ ;
1

rðq0Þ ;
1

rðp0Þ

� �
; ðA:6Þ
where r denotes the standard deviation. The region of validity with respect to the roughness amplitude e for the stochastic
perturbation analysis is discussed in Appendix C of [17]. Substituting Eq. (A.6) into the steady Euler Eq. (A.1) we obtain the
linearized small perturbation equations:
@t0
@y þ

M2
2�1

cM2
2

@p0

@x ¼ 0;

@
@x w0 þ 1

cM2
2

p0
� �

¼ 0;

@t0
@x þ 1

cM2
2

@p0

@y ¼ 0;

@
@x ðp0 � cq0Þ ¼ 0:

8>>>>>>><>>>>>>>:
ðA:7Þ
The results for the first-order method are:
v0ðx; xÞ ¼ q
X1
n¼0

ð�rÞn@h
@x
ðx; xÞ

����
x¼abnx

; ðA:8Þ
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where
q ¼ 2
F þ G

; r ¼ F � G
F þ G

; a ¼ 1� T0

m
; b ¼ m� T0

mþ T0
; m ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
2 � 1

q :
The perturbed pressure p0w on the rough wedge surface is:
p0wðx;xÞ ¼ cM2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
2 � 1

q @hðx;xÞ
@x

þ 2
X1
n¼1

ð�rÞn@h
@x

����
x¼bnx

 !
: ðA:9Þ
The perturbed shock path z0 is computed by:
z0ðx;xÞ ¼ ð1þ T2
0Þ
Z x

0
v0ðx1; xÞdx1: ðA:10Þ
Furthermore, the perturbed p0, t0, q0 and w0 at any location (x,y) after the shock can also be obtained (see [17]).

A.2. Second-order theory

Using an iterative procedure we start with z0(x;x) (Eq. (A.10)) and p0wðx;xÞ (Eq. (A.9)) and upon convergence we obtain
the corrected perturbed shock path ez0 ðx;xÞ and corresponding corrected pressure fp0wðx;xÞ. To this end, we have to re-define
b in Eq. (A.9), i.e., b = xm/x, where xm,x are the distances from the apex of a reflection pair of points on the wedge surface
(xm < x). Let
u
W2
¼ 1þ Dw;

t
W2
¼ Dt;

p
P2
¼ 1þ Dp;

q
q2
¼ 1þ Dq;

s
S2
¼ 1þ Ds;
where Dw ¼ efw0 þ e2w00, etc., are the total first- and second-order corrections. The second-order small perturbation equa-
tions are:
@t00
@y þ

M2
2�1

cM2
2

@p00

@x ¼ R1ðx; yÞ;

@
@x w00 þ 1

cM2
2

p00
� �

¼ R2ðx; yÞ;
@t00
@x þ 1

cM2
2

@p00

@y ¼ R3ðx; yÞ;
@
@x p00 � cq00ð Þ ¼ R2ðx; yÞ;

8>>>>>>><>>>>>>>:
ðA:11Þ
where
R1ðx; yÞ ¼ �
1

cM2
2

�M2
2
ep0 þ eq0 þ M2

2 þ 1
� �fw0� � @fw0

@x
þ t0

@fw0
@y
� 1

c
@ ep0
@y

 !
;

R2ðx; yÞ ¼
ðfw0 þ eq0 Þ

cM2
2

@ ep0
@x
� t0

@fw0
@y

;

R3ðx; yÞ ¼
1

cM2
2

fw0 þ eq0� � @ ep0
@y
þ M2

2 � 1
� �

t0
@ ep0
@x

 !
;

R4ðx; yÞ ¼
1
2
@

@x
ð ep02 � c eq02Þ � t0

@

@y
ep0 � c eq0� �

:

We note that the ~ denotes a converged first-order state that is corrected due to the shock path update. According to the
Rankine–Hugoniot relations, we obtain p00s and t0s on the shock path based on the first-order corrected shock path:
t00s ¼ FðM1;v0Þv00 þ F2ðM1;v0Þ ev02;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

2 � 1
q

cM2
2

p00s ¼ GðM1;v0Þv00 þ G2ðM1;v0Þ ev02;

where
G2ðM1;v0Þ ¼
2M2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

2 � 1
q

cos2 v0

M2
2 1� cþ 2cM2

1 sin2 v0

� � ;
F2ðM1;v0Þ ¼ �

1

2 1þ T2
0

� � @2T
@v2 þ T0ð1� FðM1;v0ÞÞ

2 þ FðM1;v0ÞQðM1;v0Þ;

QðM1;v0Þ ¼
2 cosðv0 � h0Þ sin h0 �M2

1 sin2 v0 sinð2v0 � h0Þ
� �
ðcþ 1ÞM2

1 cosv0 sin2 v0

:
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It can be shown [17] that
v00ðx; xÞ ¼
X1
n¼0

ð�rÞn �r2 ev02ðbnx;xÞ � r3 ev02ðbnþ1x;xÞ þ 2r4t00wðabnx;xÞ
h

þr4

Z bnx

abnx
Rþðx1;mx1Þdx1 �

Z abnx

bnþ1x
R�ðx1;�mx1Þdx1

 !#
; ðA:12Þ
where
t00wðx;xÞ ¼gw0wðx;xÞ @hðx;xÞ
@x

; r2 ¼
F2 þ G2

F þ G
; r3 ¼

F2 � G2

F þ G
; r4 ¼

1
F þ G

;

R�ðx1; y1Þ ¼ R3ðx1; y1Þ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
2 � 1

q R1ðx1; y1Þ:
The second-order perturbation equations for pressure is
p00wðx;xÞ ¼ cM2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � 1
p X1

n¼0

ð�rÞn 2
FG2 � F2G

F þ G
ev02 bnþ1

a
x;x

 !"

þt00wðb
n;xÞ � rt0wðb

nþ1x;xÞ � r
Z bnþ1

a x

bnþ1x
Rþðx1;mx1Þdx1 �

Z bnx

bnþ1
a x

R�ðx1;�mx1Þdx1

35: ðA:13Þ
while the shock path is
zðx;xÞ ¼ eez0 þ e2z00 ¼ eð1þ T2
0Þ
Z x

0

ev0 þ eðv00 þ T0 ev0 2 dx1Þ; ðA:14Þ
where ez0 and z00 are defined implicitly here. Hence the perturbed pressure on the wedge surface is given by
Dpwðx;xÞ ¼ e ep0 þ e2p00w: ðA:15Þ
We note that Dpw; ep0w; p00w are normalized by P2, which is the pressure of the base flow after the shock. Based on these expres-
sions for pressure, we can determine the perturbed lift and drag force on the wedge (non-dimensionalized by P2d):
DLðx;xÞ ¼ e h sin h0 � cos h0

Z x

0

ep0w dx1 þ e
Z x

0

ep0w @h
@x1

sin h0 � p00w cos h0

� �
dx1


 �
;

DDðx; xÞ ¼ e h cos h0 þ sin h0

Z x

0

ep0w dx1 þ e
Z x

0

ep0w @h
@x1

cos h0 þ pw sin h0

� �
dx1


 �
:

ðA:16Þ
A.3. A simple example

Here we give a very simple example to demonstrate the procedure of estimating the mean and variance of a function by
considering a 3-dimensional Sobol function :
f ðxÞ ¼
Y3

k¼1

f ðkÞðxkÞ; f ðkÞðxkÞ ¼
j4xk � 2j þ k2

1þ k2 ; ðA:17Þ
where xk are i.i.d. random variables and xk � U[0,1]. It is easy to obtain that Eðf Þ ¼ 1;r2ðf Þ ¼ 0:1014. For the anchored-AN-
OVA decomposition, we choose an anchor point c = (c1, c2, c3) such that f ðkÞðckÞ ¼ 0:1k2

k þ s2
k

� �
=sk and as in Example 1, sk and

k2
k are the mean and variance of f(k). We set l = 4, i.e., for each xk we use four sampling points qi, i = 1, 2, 3, 4, which are se-

lected as follows: q1, q2 are Gauss quadrature points on [0,0.5], and q3, q4 are Gauss quadrature points on [0.5,1]. Notice that,
this is only for demonstration purposes; for practical problems, one can either use quadrature points on the entire domain or
select quadrature points based on the property of the problem itself.

We first compute f0:
f0 ¼ f ðcÞ ¼
Y3

k¼1

f ðkÞðckÞ ¼
Y3

k¼1

0:1k2
k þ s2

k

sk
¼ 1:010:
Then, we compute fj(qi), j = 1, 2, 3, i = 1, 2, 3, 4, e.g.,
f1ðq2Þ ¼ f ðq2; c2; c3Þ � f0:



Table A.10
Mean and variance of the first-order terms in anchored-ANOVA decomposition of f(x) in (A.17).

f1 f2 f3

E �8.3472e�3 �1.3449e�3 �3.3656e�4
r2 8.3611e�2 1.3566e�2 3.3982e�3
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Hence the mean and variance of fj can be estimated:
EðfjÞ �
X4

i¼1

f1ðqiÞwi; r2ðfjÞ �
X4

i¼1

fjðqiÞ
� �2wi �

X4

i¼1

fjðqiÞwi

 !2

:

The results are shown in Table A.10 As in the paper we set D1 = N = 3, then we can apply the criteria to find D2.

Criterion 1:
P1
i¼1r2ðfiÞP3
i¼1r2ðfiÞ

¼ 0:8313;
P2

i¼1r2ðfiÞP3
i¼1r2ðfiÞ

¼ 0:9662;
P3

i¼1r2ðfiÞP3
i¼1r2ðfiÞ

¼ 1;
or equivalently consider
r2ðf1ÞP3
i¼1r2ðfiÞ

¼ 0:8313;
r2ðf2ÞP3
i¼1r2ðfiÞ

¼ 0:1349;
r2ðf3ÞP3
i¼1r2ðfiÞ

¼ 0:0338:
So if we set p = 0.85 (or h1
1 ¼ 0:2 for instance) we have D2 = 1 while if we set p = 0.90 (or h1

1 ¼ 0:1) we have D2 = 2. From this
criterion we observe that x1 is the most important while x3 is the least important.

Criterion 2:
jEðf1Þj
jf0j

¼ 8:264e� 3;
jEðf2Þj
jf0j

¼ 1:332e� 3;
jEðf3Þj
jf0j

¼ 3:332e� 4:
So if we set h2
1 ¼ 1e� 3 we have D2 = 2 while if we set h2

1 ¼ 1e� 4 we have D2 = 3. From this criterion we again observe that x1

is the most important while x3 is the least important.
Criterion 3:
c1 ¼ 13=12; c2 ¼ 76=75; c3 ¼ 301=300:
Here we see that Criterion 3 gives the same prediction as Criterion 1 or Criterion 2.

According to Criterion 1 or Criterion 2, D2 = 1 or D2 = 2 for different thresholds. When D2 = 1, no second-order terms will
be included. Therefore, the approximation for f is:
f ðxÞ � f0 þ f1ðx1Þ þ f2ðx2Þ þ f3ðx3Þ:
Now we can approximate Eðf Þ by the sum of the mean of all the component functions and so we approximate r2(f) similarly.
The error of Eðf Þ is 1.43e�5 and the error of r2(f) is 8.62e�4.

In order to include the second-order terms, we proceed as follows.

Criterion 1: since D2 = 2 we only need f1,2 and if D2 = 3 we compute
r2ðf1;2ÞP3
i¼1r2ðfiÞ

¼ 1:107e� 2;
r2ðf1;3ÞP3

i¼1r2ðfiÞ
¼ 2:772e� 3;

r2ðf2;3ÞP3
i¼1r2ðfiÞ

¼ 4:494e� 4:
We observe here that the interaction of x1 and x2 is the most important. If we set h1
2 ¼ 0:1 we obtain the approximation:
f ðxÞ � f0 þ f1ðx1Þ þ f2ðx2Þ þ f3ðx3Þ þ f1;2ðx1; x2Þ:

Criterion 2: similar to the case of Criterion 1, since D2 = 2 we only need f1,2 and if D2 = 3 we compute

Eðf1;2ÞP3
i¼0jEðfiÞj

¼ 1:089e� 5;
Eðf1;3ÞP3
i¼0jEðfiÞj

¼ 2:727e� 6;
Eðf2;3ÞP3
i¼0jEðfiÞj

¼ 4:393e� 7:

We observe that again the interaction of x1, x2 is the most important. If we set h2
2 ¼ 1e� 5 for Criterion 2, we obtain the same

approximation as in Criterion 1:
f ðxÞ � f0 þ f1ðx1Þ þ f2ðx2Þ þ f3ðx3Þ þ f1;2ðx1; x2Þ:



1614 X. Yang et al. / Journal of Computational Physics 231 (2012) 1587–1614
For this approximation, the error of Eðf Þ is 3.26e�6 and the error of r2(f) is 2.51e�4.
Criterion 3: we set D2 = 3 and compute
c1c2

1þ
P3

i¼1ci þ
P

j–kcjck

¼ 1:009e� 3;
c1c3

1þ
P3

i¼1ci þ
P

j–kcjck

¼ 2:522e� 4;
c2c3

1þ
P3

i¼1ci þ
P

j–kcjck

¼ 4:035e� 5:
Again, we observe the same importance order as in criteria 1 and 2.
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