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By using functional integral methods we determine new types of differential constraints satisfied by the joint probability
density function of stochastic solutions to the wave equation subject to uncertain boundary and initial conditions. These
differential constraints involve unusual limit partial differential operators and, in general, they can be grouped into
two main classes: the first one depends on the specific field equation under consideration (i.e., on the stochastic wave
equation), the second class includes a set of intrinsic relations determined by the structure of the joint probability density
function of the wave and its derivatives. Preliminary results we have obtained for stochastic dynamical systems and
first-order nonlinear stochastic particle differential equations (PDEs) suggest that the set of differential constraints is
complete and, therefore, it allows determining uniquely the probability density function of the solution to the stochastic
problem. The proposed new approach can be extended to arbitrary nonlinear stochastic PDEs and it could be an effective
way to overcome the curse of dimensionality for random boundary and initial conditions. An application of the theory
developed is presented and discussed for a simple random wave in one spatial dimension.
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1. INTRODUCTION

Many physical phenomena such as sound propagation, electromagnetic scattering at random surfaces, and random
vibrations in solid mechanics can be described in terms of random waves satisfying the standard wave equation

∂2ψ

∂t2
= U2∇2ψ (1)

for random boundary conditions, random initial conditions, or random group velocity. The purpose of this paper is
to introduce a new method to compute the statistical properties of the stochastic solutions to Eq. (1). This method is
based on a set of differential constraints for the joint probability density function of the waveψ and its derivatives
and it may present an advantage with respect to more classical stochastic approaches such as polynomial chaos [1–
4], probabilistic collocation [5, 6], and generalized spectral decompositions [7–11]. In fact, it seems that it does not
suffer from the curse of dimensionality problem, at least when randomness comes from boundary or initial conditions.
Indeed, since we are solving for probability density function of the system, we can actually prescribe these conditions
in terms of the probability distributions and this is obviously not dependent on the number of random variables
characterizing the underlying probability space.

This observation immediately leads us to the question: Is it possible to determine a closed evolution equation for
the probability density function of the solution to Eq. (1) at a specific space-time location? Unfortunately, the answer
is negative. In fact, the self-interacting nature of the wave equation is associated with nonlocal solutions in space and
time that, in turn, yield the impossibility of determining a pointwise equation for the probability density function.
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However, an equation for the probability density functional of the wave always can be obtained. This very general
approach relies on the use of functional integral techniques [12–16]; in particular, those involving the Hopf character-
istic functional (see Appendix B). These functional methods aim to cope with the global probabilistic structure of the
solution and they have been extensively studied in the past as a possible tool to tackle many fundamental problems in
physics such as turbulence [17, 18]. Their usage grew very rapidly in the 1970s, when it became clear that diagram-
matic functional techniques [12] could be applied, at least formally, to many different problems in classical statistical
physics. However, functional differential equations involving the Hopf characteristic functional unfortunately are not
amenable to numerical simulation. In addition, the amount of statistical information carried on by the Hopf character-
istic functional is often far beyond the needs of practical uncertainty quantification, which usually reduces only to the
computation of a few statistical moments of the solution at specific space-time locations.

Thus, we are led to look for alternative ways to determine the evolution of the probability density function asso-
ciated with the solution to Eq. (1). To this end, by using a functional integral technique we have introduced recently
in the context of stochastic dynamical systems, in this paper we will show that it is possible to formulate a set of dif-
ferential constraints that have to be satisfied locally by the probability density function of every random wave process
governed by Eq. (1). These constraints involve, in general, unusual limit partial differential operators and they can be
grouped into two main classes: the first one depends on the specific field equation under consideration; i.e., on the
stochastic wave equation; the second class is represented by a set of intrinsic relations arising from the structure of
the joint probability density function of the wave and its derivatives. A fundamental question we address in this paper
is whether the set of these differential constraints allows us to determine uniquely the probability density function
associated with the stochastic solution to the wave equation.

This paper is organized as follows. In Section 2 we consider random waves in one spatial dimension and we show
how to determine a closed and exact differential constraint that has to be satisfied by the probability density function
of every random wave process for random boundary conditions and random initial conditions. All the calculations are
based on a functional integral technique that is presented in detail in Appendix A. Section 3 deals with the formulation
of additional differential constraints depending on the structure of the joint probability density function of the wave and
its derivatives. The completeness of the set of differential constraints is discussed in Section 4 for a prototype problem
involving a first-order nonlinear stochastic particle differential equation (PDE). In Section 5 we generalize the theory
developed for two- and three-dimensional random wave processes. An example of the application of the theory is
presented in Section 6. Finally, the main findings and their implications are summarized in Section 7. We also include
two additional appendices. The first one (i.e., Appendix B), deals with the application of the Hopf characteristic
functional approach to one-dimensional random waves. The second one (i.e., Appendix C), deals with the perturbation
expansion of differential constraints in the neighborhood of a selected space-time location.

2. ONE-DIMENSIONAL RANDOM WAVES

In one spatial dimension Eq. (1) can be written as

∂2ψ

∂t2
= U2 ∂2ψ

∂x2
. (2)

We supplement this equation with appropriate random boundary conditions and with a random initial condition in
a suitable space-time domain. The solution to this boundary value problem is clearly a random wave, which we
assume to admit a probability density function. At this point a fundamental question is whether we can actually
determine an evolution equation for such a probability density based on Eq. (2). To this end, let us first look for
a representation of the joint probability of the wave and its first-order derivatives with respect to space and time
calculated at different space-time locations. The reason why we need such joint probability density will become clear
in a while. For notational convenience, let us set

ψ
def= ψ(x, t; ω) , ψ′t

def=
∂ψ

∂t
(x′, t′; ω) , ψ′′x

def=
∂ψ

∂x
(x′′, t′′; ω) . (3)

This allows us to write the joint probability density ofψ, ψ′t, andψ′′x as (see Appendix A for further details)
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p
(a,b,c)
ψψ′tψ′′x

def= 〈 δ (a−ψ)︸ ︷︷ ︸
constructor field

δ (b−ψ′t) δ (c−ψ′′x)︸ ︷︷ ︸
absorbing fields

〉 , (4)

whereδ denotes the Dirac delta function and the average operator〈·〉 is defined as a functional integral with respect
to the joint measure of the random initial condition and the random boundary conditions. The definition we give of
“constructor field” relies on the fact that we will extract from that Dirac delta function, also called the “indicator
function” by Klyatskin [19, p. 42]; all the derivatives we need to build up the wave equation. As we will see, this
procedure also generates additional terms that can be treated in a limit process by employing the “absorbing fields”.
By using the differentiation rules for the probability density function discussed in Appendix A we obtain

∂p
(a,b,c)
ψψ′tψ′′x

∂t
= − ∂

∂a
〈δ (a−ψ)ψtδ (b−ψ′t) δ (c−ψ′′x)〉 (5)

and

∂2p
(a,b,c)
ψψ′tψ′′x

∂t2
=

∂2

∂a2
〈δ (a−ψ)ψ2

t δ (b−ψ′t) δ (c−ψ′′x)〉 − ∂

∂a
〈δ (a−ψ)ψttδ (b−ψ′t) δ (c−ψ′′x)〉 . (6)

Similarly,

∂2p
(a,b,c)
ψψ′tψ′′x

∂x2
=

∂2

∂a2
〈δ (a−ψ)ψ2

xδ (b−ψ′t) δ (c−ψ′′x)〉 − ∂

∂a
〈δ (a−ψ) ψxxδ (b−ψ′t) δ (c−ψ′′x)〉 . (7)

If we subtract Eq. (7) from Eq. (6) and we take Eq. (2) into account we obtain

∂2p
(a,b,c)
ψψ′tψ′′x

∂t2
− U2

∂2p
(a,b,c)
ψψ′tψ′′x

∂x2
=

∂2

∂a2
〈δ (a−ψ)

(
ψ2

t − U2ψ2
x

)
δ (b−ψ′t) δ (c−ψ′′x)〉 . (8)

The average appearing in Eq. (8) can be easily represented if we take the limit for(x′, x′′) and(t′, t′′) going tox and
t, respectively. In fact, by using the absorbing fields appearing in Eq. (4) we see that

(
b2 − U2c2

)
p
(a,b,c)
ψψtψx

= lim
t′,t′′→t
x′,x′′→x

〈δ (a−ψ)
(
ψ2

t − U2ψ2
x

)
δ (b−ψ′t) δ (c−ψ′′x)〉 . (9)

This yields the final result

lim
t′,t′′→t
x′,x′′→x

∂2p
(a,b,c)
ψψ′tψ′′x

∂t2
= U2 lim

t′,t′′→t
x′,x′′→x

∂2p
(a,b,c)
ψψ′tψ′′x

∂x2
+

(
b2 − U2c2

) ∂2p
(a,b,c)
ψψtψx

∂a2
. (10)

Note that this identity involves unusual partial differential operators that we shall call limit partial derivatives. For
subsequent mathematical developments it is convenient to reserve a special symbol for these operators; i.e., we shall
define

d2p
(a,b,c)
ψψtψx

dt2
def= lim

t′,t′′→t
x′,x′′→x

∂2p
(a,b,c)
ψψ′tψ′′x

∂t2
,

d2p
(a,b,c)
ψψtψx

dx2

def= lim
t′,t′′→t
x′,x′′→x

∂2p
(a,b,c)
ψψ′tψ′′x

∂x2
. (11)

This allows us to write Eq. (10) in a compact form as

d2p
(a,b,c)
ψψtψx

dt2
= U2

d2p
(a,b,c)
ψψtψx

dx2
+

(
b2 − U2c2

) ∂2p
(a,b,c)
ψψtψx

∂a2
. (12)

Equation (12) is a differential constraint that must be satisfied by the probability density function of every one-
dimensional random wave governed by Eq. (2) for the random initial condition or random boundary conditions. These
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types of differential constraints made their first appearance in [20] in the context of stochastic dynamical systems.
Note that Eq. (12) always involves only three variables (x, t, a) and two parameters (b and c) independently of
the dimensionality of the random boundary conditions and the random initial condition. This very attractive feature
immediately leads us to the question: Is it possible to solve a boundary value problem for Eq. (12) and, therefore,
obtain the joint probability density function of the random wave and its derivatives at a specific space-time location
uniquely? Certainly, if we would have this possibility then we would be able to overcome the curse of dimensionality
problem. However, as we will see in Section 6, there exist an infinite number of probability densities satisfying the
differential constraint (12) for the same boundary and initial conditions. This suggests that a boundary value problem
for Eq. (12) is, in general, ill posed.

A possible way to get rid of the limit partial derivatives is to integrate Eq. (12) with respect to the variablesb andc.
This procedure yields the following equation for the response probability, i.e., for the probability density of the wave
ψ:

∂2p
(a)
ψ

∂t2
= U2

∂2p
(a)
ψ

∂x2
+

∂2

∂a2

∫ ∞

−∞

∫ ∞

−∞

(
b2 − U2c2

)
p
(a,b,c)
ψψtψx

dbdc , (13)

where

p
(a)
ψ(x,t)

def=
∫ ∞

−∞

∫ ∞

−∞
p
(a,b,c)
ψψtψx

dbdc (14)

denotes the marginal density ofp
(a,b,c)
ψψtψx

. The integrals appearing in Eq. (14) are formally written from−∞ to ∞
although the probability density function we integrate out may be compactly supported. Note that Eq. (13) is not
closed. In fact, the last term on the right-hand side can be written as

∫ ∞

−∞

∫ ∞

−∞

(
b2 − U2c2

)
p
(a,b,c)
ψψtψx

dbdc =
〈

δ(a−ψ)
∫ ∞

−∞
b2δ(b−ψt)db

∫ ∞

−∞
δ(c−ψx)dc

〉

−U2

〈
δ(a−ψ)

∫ ∞

−∞
δ(b−ψt)db

∫ ∞

−∞
c2δ(c−ψx)dc

〉
=

〈
δ(a−ψ)ψ2

t 〉 − U2〈δ(a−ψ)ψ2
x

〉
.

(15)

The last two averages of this equation involve the calculation of the correlations between two functionals of the random
initial conditions and the random boundary conditions; e.g.,δ(a − ψ) andψ2

t . Such a correlation structure can be
disentangled, for example, by using a functional power series [21, 22] (see also [23], p. 311, and [19], p. 70). In other
words, the correlations〈δ(a−ψ)ψ2

t 〉 and〈δ(a−ψ)ψ2
x〉 can be represented in terms of cumulants of the random initial

conditions and the random boundary conditions. Alternatively, other types of closures can be considered [24–27].
We conclude this section by emphasizing that Eq. (13) can be obtained more directly from the representation of

the response probability of the wave; i.e.,

p
(a)
ψ(x,t) = 〈δ[a−ψ(x, t)]〉 . (16)

In fact, if we differentiate Eq. (16) twice with respect tot andx

∂2p
(a)
ψ(x,t)

∂t2
= − ∂

∂a
〈δ(a−ψ)ψtt〉+

∂2

∂a2
〈δ(a−ψ)ψ2

t 〉 , (17)

∂2p
(a)
ψ(x,t)

∂x2
= − ∂

∂a
〈δ(a−ψ)ψxx〉+

∂2

∂a2
〈δ(a−ψ)ψ2

x〉 (18)

and sum up the derivatives, we immediately obtain

∂2p
(a)
ψ(x,t)

∂t2
= U2

∂2p
(a)
ψ(x,t)

∂x2
+

∂2

∂a2
〈δ(a−ψ)ψ2

t 〉 − U2 ∂2

∂a2
〈δ(a−ψ)ψ2

x〉 . (19)

This shows that the differential constraint (12) includes the evolution equation of the response probability of the wave
as a subcase.
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2.1 Some Remarks on Evolution Equations Involving Limit Partial Differential Operators

Equation (12) involves unusual limit partial differential operators in space and time. These operators arise very often
when the functional integral method or, equivalently, the Hopf characteristic functional approach (see Appendix B)
are applied to a stochastic PDE in order to determine a pointwise equation for the probability density function of its
solution. In this section we would like to provide some heuristic justification of why this happens. To this end, let us
first rewrite the one-dimensional wave Eq. (2) as a first-order system

∂ψ

∂t
= U2 ∂η

∂x
,

∂η

∂t
=

∂ψ

∂x
. (20)

This formulation clearly shows that the temporal evolution of the waveψ is driven by the random field∂η/∂x while
the temporal evolution ofη is governed by∂ψ/∂x. In other words, the stochastic dynamics of random waves is,
in general, self-interacting. A similar situation arises in the simpler context of time-dependent stochastic dynamical
systems of order greater than 1, where the dynamics of the stochastic solution is influenced by the dynamics of
higher-order time derivatives. A self-interacting system can yield to nonlocal solutions in space and time. Perhaps,
the simplest example in this context is the diffusion equation. In this case, a pointwise equation for the probability
density function cannot be derived in a closed form. However, there are a few exceptions where we can actually obtain
a closed equation for the probability density function. Among them, we recall first-order nonlinear and quasilinear
stochastic PDEs. In these cases the limit partial derivatives do not appear and the evolution problem for the probability
density function is well defined in a classical sense. A prime example is the inviscid Burgers equation

∂ψ

∂t
+ ψ

∂ψ

∂x
= 0 (21)

with random boundary or initial conditions. In this case it can be shown that the probability density function of the
solution satisfies

∂p
(a)
ψ(x,t)

∂t
+ a

∂p
(a)
ψ(x,t)

∂x
+

∫ a

−∞

∂p
(a′)
ψ(x,t)

∂x
da′ = 0 . (22)

3. INTRINSIC RELATIONS DEPENDING ON THE STRUCTURE OF THE JOINT PROBABILITY
DENSITY FUNCTION

The fields appearing in joint probability density (4) are related locally to each other and, therefore, we expect that there
exists a certain number of relations between the limit partial derivatives of the joint probability density with respect to
different arguments. These relations are independent of the particular stochastic field equation describing the physical
phenomenon [e.g., Eq. (2)], but they are defined intrinsically by the structure of the joint probability density function.
For instance, there is clearly a local deterministic relation between the random fieldψ and its spatial derivative

ψx(x, t;ω) def= lim
x′→x

ψ(x′, t;ω)−ψ(x, t;ω)
x′ − x

. (23)

This relation, and similar ones for other derivatives, can be translated into an intrinsic relation involving joint proba-
bility density function (4). To this end, we first observe that the limit derivatives of Eq. (4) with respect to different
arguments (e.g.,x, x′, andx′′) are different. Indeed,

dp
(a,b,c)
ψψtψx

dx
= − ∂

∂a
〈δ (a−ψ)ψxδ (b−ψt) (c−ψx)〉 = −c

∂p
(a,b,c)
ψψtψx

∂a
, (24)

dp
(a,b,c)
ψψtψx

dx′
= − ∂

∂b
〈δ (a−ψ) δ (b−ψt)ψtxδ (c−ψx)〉 , (25)

dp
(a,b,c)
ψψtψx

dx′′
= − ∂

∂c
〈δ (a−ψ) δ (b−ψt) δ (c−ψx)ψxx〉 . (26)
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Similarly,

dp
(a,b,c)
ψψtψx

dt
= − ∂

∂a
〈δ (a−ψ)ψtδ (b−ψt) (c−ψx)〉 = −b

∂p
(a,b,c)
ψψtψx

∂a
, (27)

dp
(a,b,c)
ψψtψx

dt′
= − ∂

∂b
〈δ (a−ψ) δ (b−ψt) ψttδ (c−ψx)〉 , (28)

dp
(a,b,c)
ψψtψx

dt′′
= − ∂

∂c
〈δ (a−ψ) δ (b−ψt) δ (c−ψx) ψxt〉 . (29)

From Eqs. (25) and (29) it follows that

∫ b

−∞

dp
(a,b′,c)
ψψtψx

dx′
db′ =

∫ c

−∞

dp
(a,b,c′)
ψψtψx

dt′′
dc′ . (30)

Next, let us consider the average of the second-order spatial derivative ofψ. A comparison between Eq. (26) and
Eq. (7) (in the limit forx′, x′′ → x andt′, t′′ → t) immediately gives

∫ a

−∞

d2p
(a′,b,c)
ψψtψx

dx2
da′ = c2

∂p
(a,b,c)
ψψtψx

∂a
+

∫ c

−∞

dp
(a,b,c′)
ψψtψx

dx′′
dc′ . (31)

Similarly, a comparison between Eqs. (28) and (6) yields

∫ a

−∞

d2p
(a′,b,c)
ψψtψx

dt2
da′ = b2

∂p
(a,b,c)
ψψtψx

∂a
+

∫ b

−∞

dp
(a,b′,c)
ψψtψx

dt′
db′ . (32)

Equations (24), (27), and (30)–(32) are simple examples of intrinsic relations involving the probability density func-
tion. These relations are in the form of differential constraints and they have to be satisfied independently of the
particular stochastic problem under consideration; e.g., Eq. (2). In principle, if the wave fieldψ is analytic, by repeat-
edly applying the arguments above we can construct an infinite set of differential constraints to be satisfied at every
space-time location by the joint probability density function of the wave and its derivatives. Note that from Eqs. (28),
(26), and (2) we easily obtain that

∫ b

−∞

dp
(a,b′,c)
ψψtψx

dt′
db′ = U2

∫ c

−∞

dp
(a,b,c′)
ψψtψx

dx′′
dc′ , (33)

which is another, more compact, way to write the differential constraint for the probability density function associated
with wave Eq. (2). Indeed, a substitution of Eqs. (31) and (32) into Eq. (33) consistently gives Eq. (12).

4. ON THE COMPLETENESS OF THE SET OF DIFFERENTIAL CONSTRAINTS

In some cases, it can be proven that the set of differential constraints involving the first-order limit partial derivatives is
equivalent to a standard evolution equation for the joint probability density function of the system. This circumstance
implies that the set of differential constraints is complete; i.e., that it allows for the computation of the joint density.
This happens, for example, in the context of high-order stochastic dynamical systems subject to a random initial state.
The set of differential constraints, in this case, is equivalent to the well-known Liouville equation. In this section we
would like to prove a similar result for first-order nonlinear stochastic PDEs. To this end, let us consider the equation

∂ψ

∂t
+

(
∂ψ

∂x

)2

= 0 (34)
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subject to random boundary and initial conditions of arbitrary dimensionality. The solution to this problem can be
represented in probability space by using the joint density

p
(a,b)
ψψ′x

= 〈δ(a−ψ)δ(b−ψ′x)〉 . (35)

The full set of first-order differential constraints associated with Eqs. (34) and (35) is easily obtained as

dp
(a,b)
ψψx

dt
= b2

∂p
(a,b)
ψψx

∂a
, (36)

dp
(a,b)
ψψx

dt′
=

∂

∂b
(2b〈δ(a−ψ)δ(b−ψx)ψxx〉) , (37)

dp
(a,b)
ψψx

dx
= −b

∂p
(a,b)
ψψx

∂a
, (38)

dp
(a,b)
ψψx

dx′
= − ∂

∂b
〈δ(a−ψ)δ(b−ψx)ψxx〉 . (39)

From Eqs. (37) and (39) it follows that

dp
(a,b)
ψψx

dt′
= − ∂

∂b


2b

∫ b

−∞

dp
(a,b′)
ψψx

dx′
db′


 . (40)

At this point, let us recall the following identities between standard partial derivatives and limit partial derivatives

∂p
(a,b)
ψψx

∂t
=

dp
(a,b)
ψψx

dt
+

dp
(a,b)
ψψx

dt′
, (41)

∂p
(a,b)
ψψx

∂x
=

dp
(a,b)
ψψx

dx
+

dp
(a,b)
ψψx

dx′
. (42)

Note that at the left hand side we first setx = x′ andt = t′ and then we differentiate while at the right hand side we
first differentiate and then we setx = x′ andt = t′. By substituting Eqs. (36) and (40) into Eq. (41) and using Eqs.
(42) and (38), we obtain

∂p
(a,b)
ψψx

∂t
= b2

∂p
(a,b)
ψψx

∂a
− ∂

∂b


2b




∫ b

−∞

∂p
(a,b′)
ψψx

∂x
db′ +

∫ b

−∞
b′

∂p
(a,b′)
ψψx

∂a
db′





 . (43)

This is the correct evolution equation for the joint probability density function associated with the stochastic solution
to Eq. (34). We can show this by considering Eq. (35), with bothψ andψx set at the same space-time location. A
differentiation with respect to time yields, in this case,

∂p
(a,b)
ψψx

∂t
= b2

∂p
(a,b)
ψψx

∂a
+

∂

∂b
(2b〈δ(a−ψ)δ(b−ψx)ψxx〉) , (44)

where the last term can be written in terms of the probability density function by inverting the relation

∂p
(a,b)
ψψx

∂x
= −b

∂p
(a,b)
ψψx

∂a
− ∂

∂b
〈δ(a−ψ)δ(b−ψx)ψxx〉 , (45)

i.e.,
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〈δ(a−ψ)δ(b−ψx)ψxx〉 = −
∫ b

−∞

∂p
(a,b′)
ψψx

∂x
db′ −

∫ b

−∞
b′

∂p
(a,b′)
ψψx

∂a
db′ . (46)

A substitution of Eq. (46) into Eq. (44) gives exactly Eq. (43). Thus, we have shown that the set of first-order differen-
tial constraints (36)–(39) is equivalent to a standard PDE for joint probability density function (35) on the hyperplane
x′ = x, t′ = t. This implies that the set of differential constraints, in this case, is complete. However, it is still an
open question if such a set is complete for more general stochastic problems; e.g., for the stochastic wave Eq. (2). The
dynamics of the joint probability density function in these cases does not satisfy a standard PDE. This is due to the
fact that such dynamics, in general, arises from the projection of a functional differential equation on the hyperplane
x = x′ = x′′ = · · · , t = t′ = t′′ = · · · . In some sense, the set of differential constraints we have obtained represents
the components of such a projection.

5. TWO- AND THREE-DIMENSIONAL RANDOM WAVES

The theoretical apparatus developed in the previous sections can be easily extended to two- and three-dimensional
wave equations. To this end, let us first consider two spatial dimensions and the equation

∂2ψ

∂t2
= U2

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
. (47)

The joint probability density function of the random wave and its derivatives has the functional integral representation

p
(a,b,c,d)
ψψ′tψ′′xψ′′′y

= 〈 δ (a−ψ)︸ ︷︷ ︸
constructor field

δ (b−ψ′t) δ (c−ψ′′x) δ
(
c−ψ′′′y

)
︸ ︷︷ ︸

absorbing fields

〉 . (48)

As before, we now differentiate the constructor field with respect to time and space variables and then we use the
absorbing fields in a limit procedure in order to get rid of the additional terms arising from the differentiation process.
We obtain,

∂2p
(a,b,c,d)
ψψ′tψ′′xψ′′′y

∂t2
=

∂2

∂a2
〈δ (a−ψ)ψ2

t δ (b−ψ′t) δ (c−ψ′′x) δ
(
d−ψ′′′y

)〉

− ∂

∂a
〈δ (a−ψ)ψttδ (b−ψ′t) δ (c−ψ′′x) δ

(
d−ψ′′′y

)〉 ,
(49)

∂2p
(a,b,c,d)
ψψ′tψ′′xψ′′′y

∂x2
=

∂2

∂a2
〈δ (a−ψ)ψ2

xδ (b−ψ′t) δ (c−ψ′′x) δ
(
d−ψ′′′y

)〉

− ∂

∂a
〈δ (a−ψ) ψxxδ (b−ψ′t) δ (c−ψ′′x) δ

(
d−ψ′′′y

)〉 ,
(50)

∂2p
(a,b,c,d)
ψψ′tψ′′xψ′′′y

∂y2
=

∂2

∂a2
〈δ (a−ψ)ψ2

yδ (b−ψ′t) δ (c−ψ′′x) δ
(
d−ψ′′′y

)〉

− ∂

∂a
〈δ (a−ψ)ψyyδ (b−ψ′t) δ (c−ψ′′x) δ

(
d−ψ′′′y

)〉 .
(51)

A summation of Eqs. (49)-(51) and a following limit procedure for(x′, x′′, x′′′) and (t′, t′′, t′′′) going tox and t,
respectively, yields

d2p
(a,b,c,d)
ψψtψxψy

dt2
= U2


d2p

(a,b,c,d)
ψψtψxψy

dx2
+

d2p
(a,b,c,d)
ψψtψxψy

dy2


 +

[
b2 − U2

(
c2 + d2

)] ∂2p
(a,b,c,d)
ψψtψxψy

∂a2
. (52)

that is the differential constraint for the joint probability density function of every two-dimensional random wave sat-
isfying wave Eq. (47) for random boundary or random initial conditions. Straightforward extensions of the arguments

International Journal for Uncertainty Quantification



Differential Constraints for the Probability Density Function 203

above yield the following differential constraint for the joint probability density function of three-dimensional random
waves:

d2p
(a,b,c,d,e)
ψψtψxψyψz

dt2
= U2


d2p

(a,b,c,d,e)
ψψtψxψyψz

dx2
+

d2p
(a,b,c,d,e)
ψψtψxψyψz

dy2
+

d2p
(a,b,c,d,e)
ψψtψxψyψz

dz2




+
[
b2 − U2

(
c2 + d2 + e2

)] ∂2p
(a,b,c,d)
ψψtψxψy

∂a2
.

(53)

Differential constraints (52) and (53) can be supplemented with additional intrinsic relations involving the joint prob-
ability density function. These relations can be constructed by following the same mathematical steps presented in
Section 3.

6. AN EXAMPLE

Let us consider a random wave in one spatial dimension satisfying the following boundary value problem:





∂2ψ

∂t2
= U2 ∂2ψ

∂x2
, −∞ < x < ∞ , t ≥ t0

ψ(x, t0; ω) =
3∑

k=1

ξk(ω)hk(x)

ψt(x, t0;ω) = 0

(54)

whereξk(ω) (k = 1, ..., 3) are random variables with known joint probability density functions andhk(x) are pre-
scribed deterministic functions on the real line. The analytical solution to problem (54) is the well-known d’Alambert
wave [28, p. 41]

ψ(x, t;ω) =
1
2

3∑

k=1

ξk(ω) [hk (x + Ut) + hk (x− Ut)] . (55)

For subsequent mathematical developments, it is convenient to define

G1k
def=

1
2

[hk (x + Ut) + hk (x− Ut)] , (56)

G′2k
def=

∂G1k

∂t
(x′, t′) , (57)

G′′3k
def=

∂G1k

∂x
(x′′, t′′) . (58)

This allows us to write solution (55) and its derivatives with respect tox andt in a compact form as

ψ =
3∑

k=1

ξkG1k , ψ′t =
3∑

k=1

ξkG′2k , ψ′′x =
3∑

k=1

ξkG′′3k . (59)

The joint probability density ofψ, ψ′t, andψ′′x (i.e., the joint probability of the wave and its first-order derivatives at
different space-time locations) can be obtained by using the classical mapping approach. To this end, let us notice that
Eqs. (59) define a three-dimensional linear transformation from{ξ1, ξ2, ξ3} to {ψ, ψ′x,ψ′′t }. In matrix-vector form
this transformation can be represented as




ψ

ψ′t
ψ′′x


 =




G11 G12 G13

G′21 G′22 G′23
G′′31 G′′32 G′′33







ξ1

ξ2

ξ3


 . (60)

Volume 2, Number 3, 2012



204 Venturi & Karniadakis

The determinant of the system’s matrix is

J
def= G11 (G′22G

′′
33 −G′′32G

′
23) + G12 (G′′31G

′
23 −G′21G

′′
33) + G13 (G′21G

′′
32 −G′′31G

′
22) , (61)

while the transpose of its algebraic complement has entries

H11 = G′22G
′′
33 −G′′32G

′
23 , H12 = G13G

′′
32 −G12G

′′
33 , H13 = G12G

′
23 −G′22G13 ,

H21 = G′′31G
′
23 −G′21G

′′
33 , H22 = G11G

′′
33 −G13G

′′
31 , H23 = G13G

′
21 −G11G

′
23 ,

H31 = G′21G
′′
32 −G′′31G

′
22 , H32 = G′′31G12 −G11G

′′
32 , H33 = G11G

′
22 −G′21G12 .

(62)

A classical result of probability theory [29, p. 183] states that ifp
(α1,α2,α3)
ξ1ξ2ξ3

is the joint probability density ofξ1, ξ2,
andξ3, then the joint probability ofψ, ψ′t, andψ′′x is given by

p
(a,b,c)
ψψ′xψ′′t

=
1
|J |p

(α̂1,α̂2,α̂3)
ξ1ξ2ξ3

, (63)

where

α̂i(a, b, c, x, x′, x′′, t, t′, t′′) =
1
J

(Hi1a + Hi2b + Hi3c) . (64)

Note that everŷαi is also a function of all the space-time variables because of the matrix componentsHij . Therefore,
Eq. (63) is a rather complex function of nine variables. Under the assumption thatξi(ω) are mutually independent
normal random variables, we can apply the convolution theorem and obtain the probability density function of the
random waveψ, as

p
(a)
ψ(x,t) =

1√
2π |σ(x, t)|e

−a2/[2σ(x,t)2] , σ(x, t)2 = G2
11 + G2

12 + G2
13 , (65)

whereG1i are given in Eq. (56). This probability density is shown in Fig. 1 at different time instants forU = 2 and
an initial condition defined in terms of the functions

h1(x) =
3
2
e−x2/2 , h2(x) = sin(x2) , h3(x) = cos(3x) . (66)

According to Eq. (65) the mean wave is zero, while the varianceσ(x, t)2 evolves in time as shown in Fig. 2.

6.1 Analytical Verification of Some Differential Constraints

It is easy to prove that probability density function (63) verifies simple differential constraints (24) and (27); hereafter,
rewritten for convenience as

dp
(a,b,c)
ψψtψx

dx
= −c

∂p
(a,b,c)
ψψtψx

∂a
,

dp
(a,b,c)
ψψtψx

dt
= −b

∂p
(a,b,c)
ψψtψx

∂a
.

t = 0 t = 1 t = 2

FIG. 1: Probability density functionp(a)
ψ(x,t) of the random wave at different time instants.
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FIG. 2: Temporal evolution of the wave variance.

To this end, let us first notice that the limit partial derivatives of Jacobian determinant (61) with respect tox andt are
identically zero; i.e., we have

dJ

dx
= 0 ,

dJ

dt
= 0 . (67)

In fact, by using definitions (57) and (58) we obtain

lim
t′,t′′→t
x′,x′′→x

∂J

∂x
= G31 (G22G33 −G32G23) + G32 (G31G23 −G21G33) + G33 (G21G32 −G31G22) = 0 , (68)

lim
t′,t′′→t
x′,x′′→x

∂J

∂t
= G21 (G22G33 −G32G23) + G22 (G31G23 −G21G33) + G23 (G21G32 −G31G22) = 0 . (69)

At this point, we can calculate the limit derivatives of probability density (63) with respect tox andt:

dp
(a,b,c)
ψψtψx

dx
= − 1

J |J |
dJ

dx
p
(α̂1,α̂2,α̂3)
ξ1ξ2ξ3

+
1
|J |

∂p
(α̂1,α̂2,α̂3)
ξ1ξ2ξ3

∂α̂i

dα̂i

dx
=

1
|J |

∂p
(α̂1,α̂2,α̂3)
ξ1ξ2ξ3

∂α̂i

dα̂i

dx
, (70)

dp
(a,b,c)
ψψtψx

dt
= − 1

J |J |
dJ

dt
p
(α̂1,α̂2,α̂3)
ξ1ξ2ξ3

+
1
|J |

∂p
(α̂1,α̂2,α̂3)
ξ1ξ2ξ3

∂α̂i

dα̂i

dt
=

1
|J |

∂p
(α̂1,α̂2,α̂3)
ξ1ξ2ξ3

∂α̂i

dα̂i

dt
, (71)

where we have used Eqs. (67). From Eqs. (64) and (67) and definitions (57) and (58) it follows that

dα̂i

dx
= − 1

J
Hi1c ,

dα̂i

dt
= − 1

J
Hi1b . (72)

Substituting these results back into Eqs. (70) and (71) we obtain

dp
(a,b,c)
ψψtψx

dx
= − c

J |J |
∂p

(α̂1,α̂2,α̂3)
ξ1ξ2ξ3

∂α̂i
Hi1 ,

dp
(a,b,c)
ψψtψx

dt
= − b

J |J |
∂p

(α̂1,α̂2,α̂3)
ξ1ξ2ξ3

∂α̂i
Hi1 . (73)

At the same time we notice that

−c
∂p

(a,b,c)
ψψtψx

∂a
= − c

J |J |
∂p

(α̂1,α̂2,α̂3)
ξ1ξ2ξ3

∂α̂i

∂α̂i

∂a
= − c

J |J |
∂p

(α̂1,α̂2,α̂3)
ξ1ξ2ξ3

∂α̂i
Hi1 , (74)

−b
∂p

(a,b,c)
ψψtψx

∂a
= − b

J |J |
∂p

(α̂1,α̂2,α̂3)
ξ1ξ2ξ3

∂α̂i

∂α̂i

∂a
= − b

J |J |
∂p

(α̂1,α̂2,α̂3)
ξ1ξ2ξ3

∂α̂i
Hi1 , (75)
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and, therefore, differential constraints (24) and (27) are satisfied identically [simply compare Eqs. (74) and (75) with
Eqs. (73)]. Similarly, it is possible to show analytically that higher-order constraints such as Eqs. (33), (12), or (31)
are satisfied identically by joint probability density function (63). We conclude this section by emphasizing that there
exist many joint densities satisfying a single differential constraint [e.g., Eq. (12)], for the same boundary and initial
conditions. As an example, simply consider the family of probability densities in the form of Eq. (63) where functions
α̂i are translated by rather arbitrary functionsχi(x′, x′′, t′, t′′) defined forx′, x′′ ∈ R, t′, t′′ ≥ t0 and satisfying
χi = 0 for t′ = t0 or t′′ = t0. This clearly shows that a boundary value problem for Eq. (12) alone is ill posed; i.e., it
admits an infinite number of solutions.

7. SUMMARY

We have determined and discussed new differential constraints satisfied by the joint probability density function of
arbitrary random waves governed by Eq. (1) for random boundary conditions and random initial conditions. These
differential constraints involve unusual limit partial differential operators, and they can be classified into two main
groups: the first one depends on the stochastic wave equation while the second one includes a set of intrinsic relations
determined by the structure of the joint probability density function of the wave and its derivatives. We have shown
that in those cases where an evolution equation for the probability density function exists (e.g., for first-order nonlinear
stochastic PDEs) the set of differential constraints is complete; i.e., it allows us to determine the probability density
function of the solution. We have applied the new theory to a random wave process in a one-dimensional spatial
domain and we have shown analytically that the differential constraints for the joint probability density function
are satisfied identically. In addition, we have argued that a boundary value problem involving only one differential
constraint is, in general, not well posed; i.e., it admits an infinite number of solutions. This brings us back to the
fundamental question we have addressed at the beginning of this paper: How many differential constraints do we need
in order to have enough information to compute the probability density function of the system uniquely? Most likely
the full set of first-order differential constraints, which has been proven to be complete for first-order stochastic PDEs,
is not sufficient and the full hierarchy of equations have to be considered (see, e.g., [40]). We conclude by emphasizing
that the sequence of steps that led us to formulate the set of differential constraints presented in this paper can be
repeated with some modifications for other linear and nonlinear stochastic PDEs. In other words, we have provided a
general methodology that allows us to obtain an ensemble of conditions, in the form of partial differential equations,
for the probability density function of the solution to an arbitrary stochastic PDE.
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APPENDIX A. FUNCTIONAL REPRESENTATION OF THE PROBABILITY DENSITY FUNCTION OF
THE SOLUTION TO STOCHASTIC PDES

Let us consider a physical system described in terms of PDEs subject to uncertain initial conditions, boundary con-
ditions, physical parameters, or external forcing terms. The solution to these types of boundary value problems is a
random field whose regularity properties in space and time are related strongly to the type of nonlinearities appearing
in the equations as well as to the statistical properties of the random input processes. In this paper we assume that the
probability density function of the solution field exists. In order to fix ideas, let us consider the advection-diffusion
equation

∂ψ

∂t
+ ξ(ω)

∂ψ

∂x
= ν

∂2ψ

∂x2
, (A.1)

with deterministic boundary and initial conditions. The parameterξ(ω) is assumed to be a random variable with
known probability density function. The solution to Eq. (A.1) is a random field depending on the random variable
ξ(ω) in a possibly nonlinear way. We shall denote such a functional dependence asψ(x, t; [ξ]). The joint probability
density ofψ(x, t; [ξ]) andξ [i.e., the solution field at the space-time location(x, t) and the random variableξ] admits
the following integral representation (see Eq. (16) in [30]):

p
(a,b)
ψ(x,t)ξ = 〈δ(a−ψ(x, t; [ξ]))δ(b− ξ)〉 , a, b ∈ R . (A.2)

The average operator〈·〉, in this particular case, is defined as a simple integral with respect to the probability density
of ξ(ω); i.e.,

p
(a,b)
ψ(x,t)ξ =

∫ ∞

−∞
δ[a−ψ(x, t; [z])]δ(b− z)p(z)

ξ dz , (A.3)

wherep
(z)
ξ denotes the probability density ofξ which could be compactly supported (e.g., a uniform distribution). The

support of the probability density functionp(a,b)
ψ(x,t)ξ is determined by the nonlinear transformationξ → ψ(x, t; [ξ])

appearing within the delta functionδ[a − ψ(x, t; [ξ])] (see, e.g., Chap. 3 in [31]). Simple representation (A.3) can
be generalized easily to infinite dimensional random input processes. To this end, let us examine the case where the
scalar fieldψ is advected by a random velocity fieldU according to the equation

∂ψ

∂t
+ U(x, t; ω)

∂ψ

∂x
= ν

∂2ψ

∂x2
, (A.4)

for some deterministic initial condition and boundary conditions. Disregarding the particular form of the random
field U(x, t; ω), let us consider its collocation representation for a given discretization of the space-time domain.
This gives us a certain number of random variables{U(xi, tj ;ω)} (i = 1, .., N , j = 1, ..., M ). The random fieldψ
solving Eq. (A.4) at each one of these locations is, in general, a nonlinear function of all the variables{U(xi, tj ; ω)}.
In order to see this, it is sufficient to write an explicit finite-difference numerical scheme of Eq. (A.4). The joint
probability density of the solution fieldψ at (xi, tj) and the driving fieldU at (xn, tm), admits the following integral
representation:

p
(a,b)
ψ(xi,tj)U(xn,tm) = 〈δ{a−ψ(xi, tj ; [U(x1, t1), ..., U(xN , tM )])}δ[b− U(xn, tm)]〉 , (A.5)

where the average, in this case, is with respect to the joint probability of all the random variables{U(xn, tm; ω)}
(n = 1, .., N , m = 1, ...,M ). The notationψ(xi, tj ; [U(x1, t1), ..., U(xN , tM )]) emphasizes that the solution field
ψ(xi, tj) is, in general, a nonlinear function of all the random variables{U(xn, tm; ω)}. If we send the number of
these variables to infinity (i.e., we refine the space-time mesh to the continuum level), we obtain a functional integral
representation of the joint probability density
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p
(a,b)
ψ(x,t)U(x′,t′) = 〈δ[a−ψ(x, t; [U ])]δ[b− U(x′, t′)]〉 =

∫
D[U ]W [U ]δ[a−ψ(x, t; [U ])]δ[b− U(x′, t′)] , (A.6)

whereW [U ] is the probability density functional of random fieldU(x, t; ω) andD[U ] is the usual functional integral
measure [13–15]. Depending on the particular equation of motion, we will need to consider different joint probability
density functions; e.g., the joint probability of a field and its derivatives with respect to space variables. The functional
representation described above allows us to deal with these different situations in a very practical way. For instance,
the joint probability density of a fieldψ(x, y, t) and its first-order spatial derivatives at different space-time locations
can be represented as

p
(a,b,c)
ψ(x,y,t)ψx(x′,y′,t′)ψy(x′′,y′′,t′′) = 〈δ[a−ψ(x, y, t)]δ[b−ψx(x′, y′, t′)]δ[c−ψy(x′′, y′′, t′′)]〉 , (A.7)

where, for notational convenience, we have denoted byψx
def= ∂ψ/∂x, ψy

def= ∂ψ/∂y and we have omitted the
functional dependence on the random input variables within each field. Similarly, the joint probability ofψ(x, y, t) at
two different spatial locations is

p
(a,b)
ψ(x,y,t)ψ(x′,y′,t) = 〈δ[a−ψ(x, y, t)]δ[b−ψ(x′, y′, t)]〉 . (A.8)

In order to lighten the notation further, sometimes we will drop the subscripts indicating the space-time variables and
write, for instance

p
(a,b)
ψψ′x

= 〈δ[a−ψ(x, y, t)]δ[b−ψx(x′, y′, t′)]〉 , (A.9)

or even more compactly

p
(a,b)
ψψ′x

= 〈δ(a−ψ)δ(b−ψ′x)〉 . (A.10)

A.1 Representation of Derivatives

The differentiation of the probability density function with respect to space and time variables involves generalized
derivatives of the Dirac delta function and it can be carried out in a systematic manner. To this end, let us consider
Eq. (A.2) and define the following linear functional:

∫ ∞

−∞
p
(a)
ψ(x,t)ρ(a)da =

〈∫ ∞

−∞
δ[a−ψ(x, t)]ρ(a)da

〉
= 〈ρ(ψ)〉 , (A.11)

whereρ(a) is a continuously differentiable and compactly supported function. A differentiation of Eq. (A.11) with
respect tot gives

∫ ∞

−∞

∂p
(a)
ψ(x,t)

∂t
ρ(a)da = 〈ψt

∂ρ

∂ψ
〉 =

〈
ψt

∫ ∞

−∞

∂ρ

∂a
δ[a−ψ(x, t)]da

〉

=
∫ ∞

−∞
− ∂

∂a
〈ψtδ[a−ψ(x, t)]〉ρ(a)da .

(A.12)

This equation holds for an arbitraryρ(a) and therefore we have the identity

∂p
(a)
ψ(x,t)

∂t
= − ∂

∂a
〈δ [a−ψ(x, t)] ψt(x, t)〉 . (A.13)

Similarly,

∂p
(a)
ψ(x,t)

∂x
= − ∂

∂a
〈δ [a−ψ(x, t)] ψx(x, t)〉 . (A.14)
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Straightforward extensions of these results allow us to compute derivatives of joint probability density functions
involving more fields; e.g.,ψ(x, t) and its first-order spatial derivativeψx(x, t). For instance, we have

∂p
(a,b)
ψψx

∂t
=− ∂

∂a
〈δ [a−ψ(x, t)] δ[b−ψx(x, t)]ψt(x, t)〉− ∂

∂b
〈δ [a−ψ(x, t)] δ[b−ψx(x, t)]ψtx(x, t)〉, (A.15)

whereψtx
def= ∂2ψ/∂t∂x.

A.2 Representation of Averages

In this section we determine important formulas to compute the average of a product between Dirac delta functions
and various fields. To this end, let us first consider the average〈δ(a − ψ)ψ〉. By applying well-known properties of
Dirac delta functions it can be shown that

〈δ(a−ψ)ψ〉 = ap
(a)
ψ(x,t) . (A.16)

This result is a multidimensional extension of the following trivial identity that holds for one random variableξ (with
probability densityp(z)

ξ ) and a nonlinear functiong(ξ) (see, e.g., Ch. 3 of [31] or [30]):

∫ ∞

−∞
δ[a− g(z)]g(z)p(z)

ξ dz =
∑

n

1
|g′(ẑn)|

∫ ∞

−∞
δ(z − ẑn)g(z)p(z)

ξ dz =
∑

n

g(ẑn)p(ẑn)
ξ

|g′(ẑn)| , (A.17)

whereẑn = g−1(a) are roots ofg(z) = a. Sinceg(ẑn) = g(g−1(a)) = a, from Eq. (A.17) it follows that

∫ ∞

−∞
δ[a− g(z)]g(z)p(z)

ξ dz = a
∑

n

p
(ẑn)
ξ

|g′(ẑn)| = a

∫ ∞

−∞
δ(a− g(z))p(z)

ξ dz , (A.18)

which is the one-dimensional version of Eq. (A.16). Similarly, one can show that

〈δ(a−ψ)δ(b−ψx)ψ〉 = ap
(a,b)
ψψx

, (A.19)

〈δ(a−ψ)δ(b−ψx)ψx〉 = bp
(a,b)
ψψx

, (A.20)

and, more generally, that

〈δ(a−ψ)δ(b−ψx)h(x, t, ψ, ψx)〉 = h(x, t, a, b)p(a,b)
ψψx

, (A.21)

where, for the purposes of the present paper,h(ψ,ψx, x, t) is any continuous function ofψ, ψx, x, andt. The result
[Eq. (A.21)] can be generalized even further to averages involving a product of functions in the form

〈δ(a−ψ)δ(b−ψx)h(x, t, ψ,ψx)g(x, t, ψxx, ψxt, ψtt, ...)〉
= h(x, t, a, b)〈δ(a−ψ)δ(b−ψx)g(x, t, ψxx, ψxt,ψtt, ...)〉 .

(A.22)

In short, the general rule is: we are allowed to take out of the average all those functions involving fields for which
we have available a Dirac delta. As an example, ifψ is a time-dependent random field in a two-dimensional spatial
domain we have

〈δ(a−ψ)δ(b−ψx)δ(c−ψy)e−(x2+y2) sin(ψ)ψxψ2
yψxx〉

= e−(x2+y2) sin(a)bc2〈δ(a−ψ)δ(b−ψx)δ(c−ψy)ψxx〉 .
(A.23)
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APPENDIX B. HOPF CHARACTERISTIC FUNCTIONAL APPROACH

In this appendix we employ a Hopf characteristic functional approach [19, 32–34] to derive the differential constraint
(12) for the probability density function of one-dimensional random waves satisfying Eq. (2). This allows us to show
how the differential constraints for the probability density function can be obtained from general principles. The joint
Hopf characteristic functional of the waveψ and its derivatives with respect to space and time is defined as

F [α, β, γ] def= 〈eZ[α,β,γ]〉 , (B.1)

where

Z[α,β, γ] = i

∫

T

∫

X

ψ (X, τ;ω)α(X, τ)dXdτ + i

∫

T

∫

X

ψt (X, τ;ω)β(X, τ)dXdτ

+ i

∫

T

∫

X

ψx (X, τ; ω)γ(X, τ)dXdτ

(B.2)

and the average operator is a functional integral with respect to the joint probability functional of the random initial
condition and the random boundary conditions. The Volterra functional derivative [35, 36] of Eq. (B.1) with respect to
ψ(x, t); i.e., the Ĝateaux differential [37, 38] ofF [α,β, γ] with respect toα evaluated atz(X, t) = δ(t−τ)δ(x−X),
is

δF [α, β, γ]
δψ(x, t)

def= i〈ψ(x, t; ω)eZ[α,β,γ]〉 . (B.3)

Similarly, the functional derivatives of Eq. (B.1) with respect toψt(x, t) andψx(x, t) are

δF [α, β, γ]
δψt(x, t)

= i〈ψt(x, t;ω)eZ[α,β,γ]〉 , (B.4)

δF [α, β, γ]
δψx(x, t)

= i〈ψx(x, t; ω)eZ[α,β,γ]〉 . (B.5)

Note that, by construction,

∂

∂x

(
δF [α, β,γ]
δψ(x, t)

)
=

δF [α, β, γ]
δψx(x, t)

, and
∂

∂t

(
δF [α, β, γ]
δψ(x, t)

)
=

δF [α,β, γ]
δψt(x, t)

. (B.6)

If we differentiate Eq. (B.3) twice with respect tot andx

∂2

∂t2

(
δF [α, β,γ]
δψ(x, t)

)
= i〈ψtt(x, t; ω)eZ[α,β,γ]〉 , (B.7)

∂2

∂x2

(
δF [α, β,γ]
δψ(x, t)

)
= i〈ψxx(x, t;ω)eZ[α,β,γ]〉 . (B.8)

and we take into account Eq. (2), we easily determine the following functional differential equation governing for the
dynamics of the Hopf characteristic functional:

∂2

∂t2

(
δF [α, β, γ]
δψ(x, t)

)
= U2 ∂2

∂x2

(
δF [α,β, γ]
δψ(x, t)

)
. (B.9)

We notice that up to this point we have made no use of the fieldsβ andγ appearing in Eq. (B.1). Indeed, we can safely
setβ = 0 andγ = 0 in Eqs. (B.2) and (B.1) and determine exactly the same evolution [Eq. (B.9)]. The need forβ

andγ clearly appears when one tries to extract a pointwise equation for the probability density function of the random
wave from Eq. (B.9). To this end, let us first remark that functional differential equation (B.9) holds for arbitrary test
functionsα, β, andγ. In particular, it holds for

α+(X, τ) = aδ(t− τ)δ(x−X) , (B.10)
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β+(X, τ) = bδ(t′ − τ)δ(x′ −X) , (B.11)

γ+(X, τ) = cδ(t′′ − τ)δ(x′′ −X) . (B.12)

An evaluation of Eq. (B.9) forα = α+, β = β+, andγ = γ+ yields the condition

i
〈[

ψtt(x, t; ω)− U2ψxx(x, t; ω)
]
eiψ(x,t;ω)a+iψt(x

′,t′;ω)b+iψx(x′′,t′′;ω)c
〉

= 0 . (B.13)

This condition is equivalent to a differential constraint involving the joint characteristic function of the wave and its
derivatives

φ
(a,b,c)
ψψ′xψ′′t

def= 〈eiψ(x,t;ω)a+iψt(x
′,t′;ω)b+iψx(x′′,t′′;ω)c〉 , (B.14)

In order to see this, let us notice that

∂2φ
(a,b,c)
ψψ′xψ′′t

∂t2
= ia〈ψtt(x, t;ω)eiψ(x,t;ω)a+iψt(x

′,t′;ω)b+iψx(x′′,t′′;ω)c〉
− a2〈ψt(x, t;ω)2eiψ(x,t;ω)a+iψt(x

′,t′;ω)b+iψx(x′′,t′′;ω)c〉 .
(B.15)

If we take the limit of this expression for(t′, t′′) → t and(x′, x′′) → x we obtain

d2φ
(a,b,c)
ψψxψt

dt2
= ia〈ψtt(x, t;ω)eiψ(x,t;ω)a+iψt(x,t;ω)b+iψx(x,t;ω)c〉+ a2

∂2φ
(a,b,c)
ψψxψt

∂b2
, (B.16)

whered denotes the limit partial derivative operator. Similarly,

d2φ
(a,b,c)
ψψxψt

dx2
= ia〈ψxx(x, t;ω)eiψ(x,t;ω)a+iψx(x,t;ω)b+iψt(x,t;ω)c〉+ a2

∂2φ
(a,b,c)
ψψxψt

∂c2
. (B.17)

At this point we can combine the results above to obtain the following differential constraint for the joint characteristic
function:

d2φ
(a,b,c)
ψψxψt

dt2
− a2

∂2φ
(a,b,c)
ψψxψt

∂b2
= U2

d2φ
(a,b,c)
ψψxψt

dx2
− U2a2

∂2φ
(a,b,c)
ψψxψt

∂c2
. (B.18)

The inverse Fourier transform of this relation with respect toa, b, andc gives us exactly Eq. (12). In order to prove
this, we simply recall the definition ofp(a,b,c)

ψψxψt
as the inverse Fourier transform of the characteristic functionφ

(a,b,c)
ψψxψt

:

p
(a,b,c)
ψψxψt

=
1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−iaα−ibβ−icηφ

(α,β,η)
ψψxψt

dαdβdη , (B.19)

and two simple relations arising from Fourier transformation theory of a one dimensional functionf(x):
∫ ∞

−∞
e−iax dnf(x)

dxn
dx = (ia)n

∫ ∞

−∞
e−iaxf(x)dx , (B.20)

∫ ∞

−∞
e−iaxxnf(x)dx = in

dn

dan

∫ ∞

−∞
e−iaxf(x)dx . (B.21)

APPENDIX C. PERTURBATION EXPANSIONS OF DIFFERENTIAL CONSTRAINTS

In this appendix we show that differential constraint (12) can be expanded in a perturbation series leading to an
equation governing the local behavior of the probability density function in the neighborhood of the hyperplane
x′′ = x′ = x, t′′ = t′ = t. To this end, let us consider again Eq. (8):

∂2p
(a,b,c)
ψψ′tψ′′x

∂t2
− U2

∂2p
(a,b,c)
ψψ′tψ′′x

∂x2
=

∂2

∂a2
〈δ (a−ψ)ψ2

t δ (b−ψ′t) δ (c−ψ′′x)〉

+U
∂2

∂a2
〈δ (a−ψ)ψ2

xδ (b−ψ′t) δ (c−ψ′′x)〉
(C.1)
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and look for an approximation to both averages appearing on the right-hand side. The simplest one consists in ex-
pandingψ2

t andψ2
x in a first-order Taylor series around(x′, t′) and(x′′, t′′), respectively; i.e.,

ψ2
t = ψ′2t + 2ψ′tψ

′
tx(x− x′) + 2ψ′tψ

′
tt(t− t′) + · · · , (C.2)

ψ2
x = ψ′′2x + 2ψ′′xψ′′xx(x− x′′) + 2ψ′′xψ′′xt(t− t′′) + · · · . (C.3)

A substitution of Eqs. (C.2) and (C.3) into the averages in Eq. (C.1) yields

〈δ (a−ψ) ψ2
t δ (b−ψ′t) δ (c−ψ′′x)〉 = 〈δ (a−ψ) ψ′2t δ (b−ψ′t) δ (c−ψ′′x)〉

+2(x− x′)〈δ (a−ψ)ψ′tψ
′
txδ (b−ψ′t) δ (c−ψ′′x)〉+ 2(t− t′)〈δ (a−ψ)ψ′tψ

′
ttδ (b−ψ′t) δ (c−ψ′′x)〉 ,

(C.4)

〈δ (a−ψ) ψ2
xδ (b−ψ′t) δ (c−ψ′′x)〉 = 〈δ (a−ψ) ψ′′2x δ (b−ψ′t) δ (c−ψ′′x)〉

+2(x−x′′)〈δ (a−ψ)ψ′′xψ′′xxδ (b−ψ′t) δ (c−ψ′′x)〉+2(t− t′′)〈δ (a−ψ)ψ′′xψ′′xtδ (b−ψ′t) δ (c−ψ′′x)〉 .
(C.5)

At this point we can use property (A.22) and write Eqs. (C.4) and (C.5) as

〈δ (a−ψ) ψ2
t δ (b−ψ′t) δ (c−ψ′′x)〉= b2p

(a,b,c)
ψψ′tψ′′x

+ 2b(x− x′)
∫ b

−∞

∂p
(a,b′,c)
ψψ′tψ′′x

∂x′
db′

+2b(t− t′)
∫ b

−∞

∂p
(a,b′,c)
ψψ′tψ′′x

∂t′
db′ ,

(C.6)

〈δ (a−ψ)ψ2
xδ (b−ψ′t) δ (c−ψ′′x)〉= c2p

(a,b,c)
ψψ′tψ′′x

+ 2c(x− x′′)
∫ c

−∞

∂p
(a,b,c′)
ψψ′tψ′′x

∂x′′
dc′

+2c(t− t′′)
∫ c

−∞

∂p
(a,b,c′)
ψψ′tψ′′x

∂t′′
dc′ .

(C.7)

A substitution of Eqs. (C.6) and (C.7) into Eq. (C.1) yields a fourth-order (nine-dimensional) partial differential
equation that characterizes locally; i.e., in the neighborhood of the hyperplanex = x′ = x′′, t = t′ = t′′ the evolution
of the probability density function of the random wave. Equivalently, we can say that we have determined a local
(non-pointwise) realization of functional differential Eq. (B.9). An alternative method to obtain this result consists in
evaluating functional differential Eq. (B.9) for test functionsα, β, andγ that are very concentrated near specific space-
time locations. These types of test functions can be any of those belonging to a delta sequence (see, e.g., Appendix A
in [39]).
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