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A computable evolution equation for the joint
response-excitation probability density

function of stochastic dynamical systems
BY D. VENTURI1, T. P. SAPSIS2, H. CHO1 AND G. E. KARNIADAKIS1,*

1Division of Applied Mathematics, Brown University, Providence, RI, USA
2Department of Mechanical Engineering, Massachusetts Institute

of Technology, Cambridge, MA, USA

By using functional integral methods, we determine a computable evolution equation
for the joint response-excitation probability density function of a stochastic dynamical
system driven by coloured noise. This equation can be represented in terms of a
superimposition of differential constraints, i.e. partial differential equations involving
unusual limit partial derivatives, the first one of which was originally proposed by
Sapsis & Athanassoulis. A connection with the classical response approach is established
in the general case of random noise with arbitrary correlation time, yielding a fully
consistent new theory for non-Markovian systems. We also address the question of
computability of the joint response-excitation probability density function as a solution
to a boundary value problem involving only one differential constraint. By means of a
simple analytical example, it is shown that, in general, such a problem is undetermined,
in the sense that it admits an infinite number of solutions. This issue can be overcome
by completing the system with additional relations yielding a closure problem, which is
similar to the one arising in the standard response theory. Numerical verification of the
equations for the joint response-excitation density is obtained for a tumour cell growth
model under immune response.

Keywords: coloured noise; effective Fokker–Planck equation; method of differential constraints;
tumour cell growth system

1. Introduction

The relevance of coloured noise in physical systems has been recognized in
many different applications, including stochastic resonance in sensory neurons
(Nozaki et al. 1999), chemical excitable systems (Zhong & Xin 2001; Beato et al.
2008), structural dynamics (Bolotin 1969; Shlesinger & Swean 1998; Li & Chen
2009), tumoural cell growth (Fiasconaro et al. 2006; Wang 2009; Zeng & Wang
2010), spin relaxation in magnetic phenomena (Atxitia et al. 2009), statistical
properties of dye lasers (Luo et al. 2001; Jin et al. 2005) and optical instabilities
(Jung & Hänggi 1988; Zhou 2009). Owing to the inherent complexity of these
systems, a comprehensive mathematical description is not viable in practice, and
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760 D. Venturi et al.

therefore their study often relies on reduced-order models consisting of nonlinear
ordinary differential equations subject to uncertainty in physical parameters,
initial conditions or including random forcing terms with non-trivial correlation
structure. The statistical properties associated with the solution to these initial
value problems can be computed according to different stochastic methods. Well-
known approaches are generalized polynomial chaos (Ghanem & Spanos 1998;
Xiu & Karniadakis 2002, 2003), multi-element generalized polynomial chaos
(Wan & Karniadakis 2006; Venturi et al. 2010), multi-element and sparse
grid adaptive probabilistic collocation (Foo & Karniadakis 2008, 2010), high-
dimensional model representations (Rabitz et al. 1999; Li et al. 2002; Yang et al.
submitted), stochastic biorthogonal expansions (Venturi 2006, 2011; Venturi et al.
2008) and proper generalized decompositions (Chinesta et al. 2010; Nouy 2010b).

An interesting new approach for the complete probabilistic description of a
stochastic system driven by coloured noise was recently proposed by Sapsis &
Athanassoulis (2008). The key idea—inspired by the work of Beran (1968)—
was to perform an analysis on the extended probability space consisting of the
joint response-excitation statistics. In particular, the Hopf equation (Lewis &
Kraichnan 1962; Rosen 1971; Klyatskin 1974) governing the dynamics of the
joint response-excitation characteristic functional of the system was reduced to
a differential constraint involving the one-point response-excitation probability
density function. This differential constraint was then supplemented with
additional marginal compatibility conditions and other constitutive relations
in order to obtain a closed system of equations. This led to the formulation
of a new theory, which was shown to be consistent with standard stochastic
approaches such as moment equations or Fokker–Planck equations. In this way,
the closure problem arising in the standard response approach for non-Markovian
systems (Stratonovich 1967; Moss & McClintock 1995) was apparently overcome.
However, the transport equation obtained for the joint response-excitation density
(Sapsis & Athanassoulis 2008, eq. (5.7a)) involves an unusual partial differential
operator, i.e. a limit partial derivative, which makes the question of well-posedness
and computability not clear. The purpose of this paper is to study in more detail
this fundamental question and therefore assess the effectiveness of the response-
excitation theory for the simulation of stochastic systems driven by coloured
noise. To this end, we will employ a functional integral method that simplifies
considerably the derivation of the differential constraints given by Sapsis &
Athanassoulis (2008), and it also allows to generalize them for systems having
smooth nonlinearities of non-polynomial type.

This paper is organized as follows. In §2, we determine the set of equations
arising from the response-excitation theory for a simple first-order nonlinear
ordinary differential equation driven by purely additive random noise. We also
discuss the question of computability and well-posedness of the boundary value
problem for the joint response-excitation density of the system. The connection
between the response-excitation approach and the classical response approach is
established in §3 for random noise with arbitrary correlation time. In §4, we review
useful formulae to separate the correlation structure between two functionals of
the random forcing process. These formulae will allow us to deal effectively with
weakly coloured noise approximations of stochastic systems driven by Gaussian
forces. Ordinary differential equations involving random parameters are treated
in §5. In §6, we present a numerical application to the tumour cell growth model
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recently proposed by Zeng & Wang (2010). Finally, the main findings and their
implications are summarized in §7. We also include two brief appendices dealing,
respectively, with the formulation of differential constraints for the joint response-
excitation probability density of a nonlinear pendulum driven by a random torque
(appendix A) and with the theory of small correlation time approximations
(appendix B).

2. An evolution equation for the joint response-excitation probability density

In this section, we develop a systematic methodology to determine an equation
for the joint response-excitation probability density function of a stochastic
dynamical system driven by coloured noise. To this end, let us first consider
the following simple prototype problem:

ẋ(t; u) = g(x(t; u), t) + f (t; u), x(t0; u) = x0(u), (2.1)

where f (t; u) is a smooth coloured random noise while g(x , t) is a nonlinear
function, which is assumed to be Lipschitz continuous in x and continuous in t.1
The solution to (2.1) (when it exists) is a non-local functional of the forcing
process f , which will be denoted as xt[f ]. Similarly, we use the shorthand notation
fs to identify the random variable f (s; u), i.e. the stochastic process f at time s.
We also assume that the problem (2.1) admits the existence of the joint response-
excitation probability density function, i.e. the joint probability density function
of the response process xt[f ] at time t and the excitation process fs at time s. Such
a probability density has the following functional integral representation:

p(a,b)
x(t)f (s)

def= 〈d(a − xt[f ])d(b − fs)〉

=
∫

D[f ]Q[f ]d(a − xt[f ])d(b − fs), s, t ≥ t0 a, b ∈ R, (2.2)

where Q[f ] denotes the probability density functional of the random forcing
(Fox 1986, p. 467) while D[f ] is the functional integral measure (Phythian 1977;
Jouvet & Phythian 1979; Jensen 1981). The representation (2.2) is based on the
following finite dimensional result (Khuri 2004, eq. (15))

p̂(a,b)
x(ti)f (tj )

def=
∫

· · ·
∫

︸ ︷︷ ︸
N

Q(f (t1), . . . , f (tN ))d(a − xti (f (t1), . . . , f (tN )))

× d(b − f (tj)) df (t1) · · · df (tN ), (2.3)

where Q(f (t1), . . . , f (tN )) denotes the joint probability density of the forcing
process at times t1, . . . , tN (i.e. a random vector), while xti (f (t1), . . . , f (tN )) is a
1We shall assume that the process f (t; u) is real-valued and at least continuous with probability
measure Pf and sample space Y, which can be taken to be a quite general separable Banach
space. For example, Y = C (k)(I ), I ⊆ R, for k ∈ N ∪ {0}. Standard existence and uniqueness theory
(Sobczyk 2001) then ensures that there is a stochastic process x(t; u) with sample space X =
C(k+1)(I ) (i.e. at least differentiable), a probability measure Px and a joint probability space
(X × Y, B(X × Y), Pxf ) such that the joint process {x(t; u), f (t; u)} verifies the stochastic ordinary
differential equation (2.1).
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nonlinear mapping from R
N into R representing the response process at time ti as

a function of the forcing process at times t1, . . . , tN . The functional integral (2.2)
is defined as the limit of equation (2.3) as N goes to infinity. In this sense, in
equation (2.2) we recognize the standard definitions of Q[f ] and D[f ] as given,
e.g. by Phythian (1977) and Langouche et al. (1979)

Q[f ] def= lim
N→∞

Q(f (t1), . . . , f (tN )), (2.4)

D[f ] def= lim
N→∞

N∏
j=1

df (tj) (2.5)

and xt[f ] def= lim
N→∞

xt(f (t1), . . . , f (tN )), (2.6)

for an arbitrary discretization of the integration period into N points.
An evolution equation for the joint response-excitation probability density of

the system (2.1) can be determined by differentiating equation (2.2) with respect
to t. This yields

vp(a,b)
x(t)f (s)

vt
= − v

va
〈d(a − xt[f ])ẋ td(b − fs)〉

= − v

va
〈d(a − xt[f ])g(xt[f ], t)d(b − fs)〉 − v

va
〈d(a − xt[f ])ftd(b − fs)〉

= − v

va

(
g(a, t)p(a,b)

x(t)f (s)

)
− v

va
〈d(a − xt[f ])ftd(b − fs)〉, s, t ≥ t0. (2.7)

Taking the limit for s → t gives the following result, first obtained by Sapsis &
Athanassoulis (2008) using a Hopf characteristic functional approach

lim
s→t

vp(a,b)
x(t)f (s)

vt
= − v

va

(
g(a, t)p(a,b)

x(t)f (t)

)
− b

vp(a,b)
x(t)f (t)

va
, t ≥ t0 a, b ∈ R. (2.8)

This equation looks like a closed evolution equation for the joint response-
excitation probability density function of the stochastic dynamical system along
the direction s = t. In the work of Sapsis & Athanassoulis (2008), equation (2.8)
was also accompanied with an initial condition p(a,b)

x(t0)f (t0)
and with the marginal

compatibility condition:2

∫∞

−∞
p(a,b)

x(t)f (s) da = p(b)
f (s), t, s ≥ t0 b ∈ R (2.9)

2The integral is formally written from −∞ to ∞, although the probability density p(a,b)
x(t)f (s) may be

compactly supported.
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expressing the fact that the evolution of the joint response-excitation density
has to be consistent with the evolution of the excitation density p(b)

f (t). Note that

since the stochastic process f (t; u) is given, p(b)
f (t) is a known function. In addition,

the joint density p(a,b)
x(t)f (t) has to satisfy the following two obvious, yet essential,

constitutive conditions2

p(a,b)
x(s)f (t) ≥ 0,

∫∞

−∞

∫∞

−∞
p(a,b)

x(s)f (t) da db = 1, t, s ≥ t0 a, b ∈ R. (2.10)

The system (2.8)–(2.10) was proposed as a computable set of equations describing
the evolution of the joint response-excitation probability density function of
dynamical systems driven by coloured noise. Note that in the extended probability
space consisting of the joint response-excitation statistics, the standard closure
problem arising, e.g. in the classical coloured noise master equation (Hänggi
1985) seems to be overcome. However, the presence of the limit partial derivative
at the left-hand side of equation (2.8) should warn us on the fact that we are
not dealing with a standard partial differential equation. Indeed equation (2.8)
is rather a differential constraint (Venturi & Karniadakis 2011) to be satisfied
by the joint response-excitation probability density function of any solution to
equation (2.1) along the line s = t. Preliminary insight into the question of well-
posedness of the boundary value problem (2.8)–(2.10) can be gained by expanding
equation (2.7) for s in the neighbourhood of t. This gives us a first-order correction
to the differential constraint (2.8), which ultimately leads to a standard partial
differential equation for the joint density p(a,b)

x(t)f (t) on the infinitesimal strip

S(3) =
⋃
t≥t0

I (3)
t , where I (3)

t
def= {s ≥ t0, |s − t| ≤ 3}, t ≥ t0, 3 → R

+. (2.11)

To this end, let us assume that the random forcing process is differentiable in
time and expand it into a Taylor series around s as

ft = fs + (t − s)ḟ s + · · · . (2.12)

A substitution of this expansion back into equation (2.7) yields, after simple
mathematical manipulations,

vp(a,b)
x(t)f (s)

vt
= − v

va

(
g(a, t)p(a,b)

x(t)f (s)

)
− b

vp(a,b)
x(t)f (s)

va
+ (t − s)

v

va

∫ b

−∞

vp(a,b′)
x(t)f (s)

vs
db′.

(2.13)
This equation holds for all t ≥ t0 and for s ∈ I (3)

t , i.e. s in the neighbourhood
of t (see (2.11)). Analysis of equation (2.13) clearly shows that the derivatives
vp(a,b)

x(t)f (s)/vt and vp(a,b)
x(t)f (s)/vs are coupled. In other words, in order to compute

Proc. R. Soc. A (2012)
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the joint response-excitation probability density function in the neighbourhood
of s = t, we need an additional expression for vp(a,b)

x(t)f (s)/vs. This is also the case
when we take the limit s → t. In fact, by using the obvious identity

vp(a,b)
x(t)f (t)

vt
= lim

t→s

vp(a,b)
x(t)f (s)

vs
+ lim

s→t

vp(a,b)
x(t)f (s)

vt
(2.14)

we can see that the dynamics of the joint response-excitation probability density
function in the direction s = t (i.e. a directional derivative) can be represented as
a superimposition of two differential constraints: the first one is equation (2.8),
while the second one is

lim
t→s

vp(a,b)
x(t)f (s)

vs
= − v

vb
〈d(a − xt[f ])d(b − ft)ḟ t〉. (2.15)

This yields the partial differential equation

vp(a,b)
x(t)f (t)

vt
= − v

va

(
g(a, t)p(a,b)

x(t)f (t)

)
− b

vp(a,b)
x(t)f (t)

va
− v

vb
〈d(a − xt[f ])d(b − ft)ḟ t〉,

(2.16)
which is the complete evolution equation governing the dynamics of the joint
response-excitation probability density function of the system. Equation (2.16)
can be evaluated further if one has available an expression for the average 〈d(a −
xt[f ])d(b − ft)ḟ t〉 or, equivalently, 〈d(a − xt[f ])d(b − fs)〉. Such expression involves
non-local functionals of the random forcing process f and it will be provided in §4.
As we shall see in the next subsection, if we do not include the limit derivative
(2.15)—i.e. the differential constraint complementary to equation (2.8)—within
the set of equations, then the system (2.8)–(2.10) turns out to be undetermined,
in the sense that it possibly admits an infinite number of solutions.3

(a) Example: ill-posedness of the boundary value problem (2.8)–(2.10)

Let us consider the following trivial first-order dynamical system driven by a
smooth random force f (t; u):

ẋ(t; u) + x(t; u) = f (t; u)

and x (t0; u) = x0(u).

}
(2.17)

For the purposes of the present example, it is enough to set f (t; u) = sin(t) + x(u),
where x(u) is a Gaussian random variable. Let us also assume that the initial
state of the system x0(u) is Gaussian distributed with zero-mean, and that x0(u)

3In the numerical scheme employed by Sapsis & Athanassoulis (2008), this multiplicity was
overcome by using a representation of the solution to equation (2.8) in terms of a Gaussian kernel.
This introduces implicitly a symmetry in the covariance structure of the system, which ultimately
results in a closure model.
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is independent of x(u). The analytical solution to (2.17) is obviously

x(t; u) = e−(t−t0)
[∫ t

t0
e(t−t0)f (t; u)dt + x0(u)

]
= e−(t−t0)

[
x(u)(et−t0 − 1) + x0(u) + 1

2 et−t0(sin(t) − cos(t))

− 1
2(sin(t0) − cos(t0))

]
. (2.18)

This allows us to obtain the joint probability of x(t; u) and f (s; u) by
using the classical mapping approach (Papoulis 1991, p. 142). Specifically, we
consider the following mapping between the random variables (x(u), x0(u)) and
(x(t; u), f (s; u)):

x(t; u) = A(t)x(u) + B(t)x0(u) + C (t)

and f (s; u) = sin(s) + x(u),

}
(2.19)

where

A(t) def= 1 − e−(t−t0), B(t) def= e−(t−t0)

and C (t) def= 1
2

[
(sin(t) − cos(t)) − e−(t−t0)(sin(t0) − cos(t0))

]
.

⎫⎬
⎭ (2.20)

This yields the joint response-excitation probability density function

p(a,b)
x(t)f (s) = 1

2pB(t)
exp

[
−1

2
(b − sin(s))2 − (a − A(t)b + A(t) sin(s) − C (t))2

2B(t)2

]
.

(2.21)

It is straightforward to verify that (2.21) satisfies

lim
s→t

vp(a,b)
x(t)f (s)

vt
= v

va

(
ap(a,b)

x(t)f (t)

)
− b

vp(a,b)
x(t)f (t)

va
, t ≥ t0 a, b ∈ R, (2.22)

which is the equation arising from equation (2.8) by setting g(a, t) = −a. Also, the
marginal compatibility condition (2.9) as well as the constitutive relations (2.10)
are obviously verified. However, if we set C (t) = a(t) in (2.21), where a(t) is an
arbitrary function such that a(t0) = 0, then we easily see that we still have a
probability density function satisfying equations (2.22), (2.9) and (2.10) and the
initial condition. This suggest that this boundary value problem is not well-posed,
in the sense that it admits an infinite number of solutions. In addition, we remark
that setting C (t) = a(t) in (2.21) is not the only degree of freedom we have,
as other solutions can be constructed. These observations provide a definitive
answer to the question raised by Sapsis & Athanassoulis (2008, p. 295), regarding
the solvability theory of the system (2.8)–(2.10). The multiplicity of solutions
admitted by such system arises because the correlation structure between the
response process xt and the excitation process fs was not properly taken into
account in the formulation of the theory.
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3. An evolution equation for the response probability density

In the past few decades, many researchers attempted to determine a closed
equation describing the evolution of the response probability density of a
stochastic system driven by coloured random noise (Stratonovich 1967; Fox
1986; Faetti & Grigolini 1987; Hänggi & Jung 1995; Moss & McClintock 1995).
Perhaps, the first effective approach was developed by the school surrounding
Stratonovich (1967). The starting point is the functional representation of the
response probability density. For the system (2.1), we have

p(a)
x(t) = 〈d(a − xt[f ])〉, (3.1)

where the average is with respect to the joint probability functional of the
excitation process and the initial state. Differentiation of (3.1) with respect to
time yields

vp(a)
x(t)

vt
= − v

va

(
g(a, t)p(a)

x(t)

)
− v

va
〈ftd(a − xt[f ])〉. (3.2)

This equation can be evaluated further if one has available an expression for
the average appearing in the last term at the right-hand side. Among different
methods devised to represent such quantity, we recall small correlation time
expansions (Stratonovich 1967; Dekker 1982; Fox 1986; Lindenberg & West 1983)
(see also §4 and appendix B), cumulant resummation methods (Lindenberg &
West 1983; Lindenberg et al. 1989), functional derivative techniques (Hänggi
1978a,b, 1985), path integral methods (Pesquera et al. 1983; Wio et al. 1989;
McCane et al. 1990; Venkatesh & Patnaik 1993), decoupling approximations
(Hänggi & Jung 1995) and operator projection methods (Grigolini 1981; Faetti &
Grigolini 1987).

(a) Consistency of the response-excitation theory with the classical
response theory

It is important at this point to prove that the response-excitation theory is
consistent with classical approaches for the response probability density function.
This establishes a full correspondence between the two methods. To this end, let
us first consider the differential constraint (2.8) and integrate it with respect to
the variable b from −∞ to ∞. This yields

vp(a)
x(t)

vt
= − v

va

(
g(a, t)p(a)

x(t)

)
− v

va

(∫∞

−∞
bp(a,b)

x(t)f (t) db
)

. (3.3)

Now, let us take a closer look at the last term at the right-hand side of
equation (3.3). By definition (2.2), we have∫∞

−∞
bp(a,b)

x(t)f (t) db =
∫∞

−∞
b〈d(a − xt[f ])d(b − ft)〉 db

= 〈d(a − xt[f ])
∫∞

−∞
bd(b − ft) db〉

= 〈d(a − xt[f ])ft〉. (3.4)
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If we substitute this result into equation (3.3), we obtain exactly equation (3.2).
Therefore, we have shown that the differential constraint (2.8) is consistent with
the classical response approach for random noise with arbitrary correlation time.
This result extends the one obtained by Sapsis & Athanassoulis (2008) for systems
driven by white noise.

Next, we consider the evolution equation (2.16). By following the same steps
that led us to the consistency result just discussed, we can show that the classical
response approach is also included in equation (2.16). In fact, if we perform
an integration with respect to b from −∞ to ∞, we see that the last term in
equation (2.16) vanishes. This is due to the properties of the probability density
function at ±∞. Therefore, both the differential constraint (2.8) and the full
evolution equation (2.16) are consistent with the classical response theory.

4. Correlation between two functionals of the random forcing process

By using functional analysis, it is possible to obtain a representation of
the correlation structure between two arbitrary functionals Ft[f ] and Gs[f ] of
the random forcing process (where the subscripts in F and G denote the time
at which those functionals are evaluated) in terms of a functional power series
involving the cumulants of the forcing process itself. The general result was first
determined by Klyatskin (1974) (see also Klyatskin 2005, p. 70) in an operator
form as

〈Ft[f ]Gs[f ]〉 =
〈 〈

Ft[f ]Zf [v + i(d/df (t))]
Zf [v]Zf [v(d/idf (t))]

〉∣∣∣∣∣
v=d/idf (t)

Gs[f ]
〉
, (4.1)

where the symbol d/d(·) denotes a Volterra functional derivative (Volterra 1959;
Beran 1968) and Zf is the Hopf characteristic functional of the excitation
process, i.e.

Zf [u] = 〈ei
∫t

t0
f (t;u)u(t)dt〉. (4.2)

Later on, Bochkov & Dubkov (1974) obtained similar results, first for the
correlation of two regular functionals of a Gaussian random process and
subsequently for two regular functionals of two arbitrary processes (Bochkov et al.
1977). The general formula is

〈Ft[f ]Gs[f ]〉 = 〈Ft[f ]〉〈Gs[f ]〉

+
∞∑

m=1

m∏
i=1

∞∑
pi ,qi=1

1
pi !qi !

∫ t

t0
· · ·

∫ t

t0︸ ︷︷ ︸
pi

∫ s

t0
· · ·

∫ s

t0︸ ︷︷ ︸
qi

〈
dp1+···+pmFt[f ]

df (t(1)
1 ) · · · df (t(m)

pm )

〉

×
〈

dq1+···+qmGs[f ]
df (t(1)

1 ) · · · df (t(m)
qm )

〉

× Cpi+qi (t
(i)
1 , . . . , t(i)

pi
, t

(i)
1 , . . . , t(i)

qi
) dt(i)

1 · · · dt(i)
pi

dt
(i)
1 · · · dt(i)

qi
, (4.3)
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where Cpi+qi (t
(i)
1 , . . . , t(i)

pi , t
(i)
1 , . . . , t

(i)
qi ) denote the cumulants of f . We recall that

equation (4.3) is valid for all s < t. Some care is needed if we consider functionals
up to final time s = t (Hänggi 1978a; Hänggi & Jung 1995). This fact has been
also pointed out by Klyatskin (2005, p. 71), who noticed that the expansion (4.3)
does not always give the correct result in the limit s → t. This means that the
limiting procedure and the procedure of expansion in the functional power series
sometimes do not commute.

In the particular case where Gs[f ] = fs, the cumbersome relation (4.3)
simplifies to

〈Ft[f ]fs〉 = 〈Ft[f ]〉〈fs〉 +
∞∑

m=1

1
m!

∫ t

t0
· · ·

∫ t

t0︸ ︷︷ ︸
m

〈
dmFt[f ]

df (t1) · · · df (tm)

〉

× Cm+1(s, t1, . . . , tm) dt1 · · · dtm . (4.4)

This generalizes the well-known Furutsu–Novikov–Donsker formula

〈Ft[f ]fs〉 = 〈Ft[f ]〉〈fs〉 +
∫ t

t0

〈
dF [f ]
df (t1)

〉
C2(s, t1) dt1, (4.5)

which is valid when f is a Gaussian process.4 A substitution of equation (4.4) with
Ft[f ] = d(a − xt[f ]) into equation (3.2) yields the so-called coloured noise master
equation pioneered by Hänggi (1978a,b). Such equation describes the evolution of
the response probability of a first-order dynamical system subjected to additive
zero-mean coloured random noise

vp(a)
x(t)

vt
= − v

va

(
g(a, t)p(a)

x(t)

)
− v

va

∞∑
m=1

1
m!

∫ t

t0
· · ·

∫ t

t0︸ ︷︷ ︸
m

〈
dm[d(a − xt[f ])]
df (t1) · · · df (tm)

〉

× Cm+1(s, t1, . . . , tm) dt1 · · · dtm . (4.6)

The summation at the right-hand side of this equation involves the response
process itself, i.e. xt[f ], through the response function of the system. Therefore,
equation (4.6) is not in a closed form, meaning that it requires further
manipulations in order to be computable. In the simpler case of zero-mean
Gaussian forcing processes, equation (4.6) reduces to

vp(a)
x(t)

vt
= − v

va

(
g(a, t)p(a)

x(t)

)
− v

va

∫ t

t0

〈
d

df (s)
d(a − xt[f ])

〉
C2(t, s)ds, (4.7)

where
d

df (s)
d(a − xt[f ]) = − v

va
d(a − xt[f ])dxt[f ]

dfs
. (4.8)

Therefore, the problem of finding the evolution of the response probability in the
presence of Gaussian forcing has been reduced to the evaluation of the response
function dxt[f ]/dfs, which is given as a functional Volterra derivative of the process
4In order to see this, let us recall that the cumulants Cn(t1, . . . , tn) of a Gaussian process are exactly
zero for n ≥ 3 and therefore equation (4.4), in this particular case, reduces to equation (4.5).

Proc. R. Soc. A (2012)

 on January 24, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/


Equation for the response-excitation PDF 769

xt[f ] with respect to fs. A general framework for calculating such a response
function is the operator approach of Martin et al. (1973) (see also Phythian 1977;
Jouvet & Phythian 1979; Jensen 1981). However, for simple dynamical systems
described by equation (2.1), the response function can be calculated directly from
the equation of motion. In fact, if we functionally differentiate (2.1) with respect
to fs, we obtain

d
dt

dxt[f ]
dfs

= vxg(xt[f ], t)dxt[f ]
dfs

+ d(t − s), (4.9)

where we have denoted by vxg
def= vg(x , t)/vx . This is a first-order linear differential

equation in dxt[f ]/dfs whose general solution, corresponding to the initial
condition dxt0[f ]/dfs = 0,5 is given by

dxt[f ]
dfs

= e
∫t

t0
vx g(xq [f ],q)dq

∫ t

t0
d(t − s) e− ∫t

t0
vx g(xq [f ],q)dq dt

= Q(t − s) e
∫t

s vx g(xq [f ],q)dq , (4.10)

where Q(t − s) is a step function expressing causality (i.e. the force fs acts on the
path xt[f ] only when s ≤ t). At this point, we can write equation (4.7) as

vp(a)
x(t)

vt
= − v

va
(g(a, t)p(a)

x(t)) + v2

va2

〈
d(a − xt[f ])

∫ t

t0
e

∫t
s vx g(xq [f ],q) dqC2(t, s) ds

〉
.

(4.11)

This shows that the evolution of the response probability density theoretically
involves the entire history of the response process xt[f ] from t0 to t in a functional
integral form. Many approximate analytical methods have been developed in the
past in order to obtain explicit closures of equation (4.6) or equation (4.11). In
appendix B, we recall the small correlation time approximation method.

(a) Separation of the joint response-excitation probability density function

The joint response-excitation probability density function (2.2) is defined as the
average of the product of two functionals of the excitation process, namely Ft[f ] =
d(a − xt[f ]) and Gs[f ] = d(b − fs). We have already seen how to disentangle the
correlation structure of two functionals of the random forcing process in terms of
the statistical properties of the process itself (see equation (4.3)). In the particular
case of Gaussian forcing processes, we have that Ci = 0 for i > 2, and therefore
the general expression (4.3) simplifies to

〈Ft[f ]Gs[f ]〉 = 〈Ft[f ]〉〈Gs[f ]〉 +
∞∑

m=1

1
m!

∫ t

t0
· · ·

∫ t

t0︸ ︷︷ ︸
m

∫ s

t0
· · ·

∫ s

t0︸ ︷︷ ︸
m

〈
dmFt[f ]

df (t1) · · · df (tm)

〉

×
〈

dmGs[f ]
df (t1) · · · df (tm)

〉 m∏
i=1

C2(ti , ti) dti dti . (4.12)

5We have assumed that the response process and the excitation process are independent at the
initial time.
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This formula was first obtained by Bochkov & Dubkov (1974). By using equation
(4.12), we can separate the joint response-excitation density (2.2). To this end,
we simply substitute Ft[f ] = d(a − xt[f ]) and Gs[f ] = d(b − fs) in (4.12) to obtain

p(a,b)
x(t)f (s) = p(a)

x(t)p
(b)
f (s)

+
∞∑

m=1

(−1)m

m!
vmp(b)

f (s)

vbm

∫ t

t0
· · ·

∫ t

t0︸ ︷︷ ︸
m

〈
dm[d(a − xt[f ])]
df (t1) · · · df (tm)

〉 m∏
i=1

C2(ti , s) dti , (4.13)

where we have used the identities〈
dm[d(b − fs)]

df (t1) · · · df (tm)

〉
= (−1)m

vmp(b)
f (s)

vbm

m∏
j=1

d(s − tj). (4.14)

Clearly, if f is white noise and s < t, then equation (4.13) implies the well-known
result

p(a,b)
x(t)f (s) � p(a)

x(t)p
(b)
f (s). (4.15)

This suggests that when we are dealing with a weak correlation structure in the
noise, only the linear term in C2 should be retained in the expansion (4.13). In this
case, the joint probability density function (2.2) can be approximated as

p(a,b)
x(t)f (s) � p(a)

x(t)p
(b)
f (s) +

vp(b)
f (s)

vb
v

va

∫ t

t0

〈
d(a − xt[f ])dxt[f ]

dft1

〉
C2(t1, s) dt1. (4.16)

The first term in (4.16) represents the white noise approximation of p(a,b)
x(t)f (s) when

s < t. The second term can be evaluated explicitly by using either equation (B 5)
or equation (B 7) obtained in appendix B. This yields a representation of the
joint response-excitation probability density function, which is based on a time
asymptotic closure of the correlation structure between the response and the
excitation processes. For instance, in the case of weakly coloured exponential
correlation function, we obtain

p(a,b)
x(t)f (s) � p(a)

x(t)p
(b)
f (s) + D

vp(b)
f (s)

vb
v

va

⎡
⎣ p(a)

x(t)

1 − �vag(a, t)
(1 − e−(t−t0)(�−1−vag(a,t)))

⎤
⎦,

(4.17)

where � and D are two positive parameters that control, respectively, the
correlation time and the correlation amplitude of the noise (see appendix B).
It can be shown that formula (4.17) satisfies the marginal compatibility
condition (2.9).

(b) Computable evolution equations for the response and the response-excitation
probability density functions in a weakly coloured approximation

By using the small correlation time expansions obtained in appendix B, it is
possible to obtain a closure approximation of equation (4.11) exploiting the fact
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that the response process, in this case, is nearly Markovian. To this end, we simply
substitute, e.g. equation (B 5) back into equation (4.11) to obtain

vp(a)
x(t)

vt
= − v

va

(
g(a, t)p(a)

x(t)

)
+ D

v2

va2

⎡
⎣ p(a)

x(t)

1 − �vag(a, t)
(1 − e−(t−t0)(�−1−vag(a,t)))

⎤
⎦ ,

(4.18)

where � and D are the correlation time and the correlation amplitude of f (see
equation (B 1)), respectively. Similarly, a substitution of equation (4.17) into the
last term at the right-hand side of equation (2.16) results in the following integro-
differential equation for the joint response-excitation probability density function
of the system:

vp(a,b)
x(t)f (t)

vt
= − v

va

(
g(a, t)p(a,b)

x(t)f (t)

)
− b

vp(a,b)
x(t)f (t)

va

−
vp(b)

f (t)

vt

∫∞

−∞
p(a,b)

x(t)f (t) db − D
v2p(b)

f (t)

vtvb
v2

va2

×
[

1
1 − �vag(a, t)

(
1 − e−(t−t0)(�−1−vag(a,t))

) ∫∞

−∞
p(a,b)

x(t)f (t) db
]
. (4.19)

Let us recall that evolution equations based on small correlation time expansion
are known to have some technical difficulties owing to possible negative
diffusivity and absence of uniform convergence (Fox 1984; Fox 1986, p. 471;
Hänggi 1989, p. 319).

5. Ordinary differential equations involving random parameters

The response-excitation theory developed in the previous sections can be applied
also to equations involving random parameters. This class of problems obviously
includes equations driven by random processes represented in terms of a
Karhunen–Loève series. To fix ideas, let us consider the first-order system

ẋ(t; u) = h(x(t; u), t; x1(u), . . . , xM (u)), x(t0; u) = x0(u), (5.1)

where (x1(u), . . . , xM (u)) is a vector of random variables with known joint
probability density function. For instance, the multivariable function h could
be in the form

h(x(t; u), t; x1(u), . . . , xM (u)) = g(x(t; u), t) +
M∑

k=1

xk(u)jk(t), (5.2)

the second term being the finite-dimensional Karhunen–Loève representation
of the random forcing appearing in equation (2.1). In order to determine an
evolution of the joint response-excitation density associated with the system (5.1),
it is convenient to identify as ‘excitation’ the random vector (x1(u), . . . , xM (u)).
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Thus, we look for an equation satisfied by the joint density

p(a,b1,...,bM )
x(t)x1···xM

def= 〈d(a − xt[x1, . . . , xM ])
M∏

k=1

d(bk − xk)〉. (5.3)

A time differentiation of (5.3) yields

vp(a,b1,...,bM )
x(t)x1···xM

vt
= − v

va
〈d(a − xt)ẋ t

M∏
k=1

d(bk − xk)〉 (5.4)

= − v

va
〈d(a − xt)h(xt , t; x1, . . . , xM )

M∏
k=1

d(bk − xk)〉, (5.5)

i.e.

vp(a,b1,...,bM )
x(t)x1···xM

vt
= − v

va

(
h(a, t; b1, . . . , bM )p(a,b1,...,bM )

x(t)x1···xM

)
. (5.6)

This is a possibly high-dimensional but closed and exact linear partial differential
equation in two variables (t and a) and M parameters (b1, . . . , bM ) which can be
solved numerically by exploiting recent advances in numerical methods for high-
dimensional systems such as proper generalized decomposition (Chinesta et al.
2010; Nouy 2010a), sparse grid collocation (Foo & Karniadakis 2008, 2010) or
functional ANOVA techniques (Rabitz et al. 1999; Cao et al. 2009; Yang et al.
submitted). We remark that equations of the type (5.6) were first determined a
long time ago by Dostupov & Pugachev (1957). More recently, Li & Chen (2008)
introduced a similar theory in the context of stochastic dynamics of structures
(Li & Chen 2009, ch. 7–8; Chen & Li 2009).

6. A numerical application to a tumour cell growth model

In order to verify the correctness of the aforementioned equation (5.6), we present
here a numerical example. In particular, we consider the transient properties
of the tumour cell growth model under immune response recently proposed by
Zeng & Wang (2010). This model includes additive as well as multiplicative
coloured noises (see also Fiasconaro et al. 2006) and it is described by the
equations

ẋ(t; u) = g(x(t; u)) + h(x(t; u))f (t; u) + h(t; u), x(0; u) = x0(u), (6.1)

where x(t; u) denotes the population of tumor cells at time t while

g(x) def= x(1 − qx) − b
x

x + 1
, h(x) def= − x

x + 1
. (6.2)

In equation (6.2), b is the immune rate and q is related to the rate of growth of
cytotoxic cells. These parameters are typically set to q = 0.1, b = 2.26. Also, the
random process f (t; u) represents the strength of the treatment (i.e. the dosage
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Table 1. Number or terms Mi appearing in the series expansions (6.4) as a function of the correlation
times �i (see equation (6.3)). The truncation is performed in order to retain 97% of the total energy
in the time interval [0, 1].

�i ∞ 2 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002
Mi 1 1 2 3 5 9 18 43 85 170 423

of the medicine in chemotherapy or the intensity of the ray in radiotherapy)
while h(t; u) is related to other factors, such as drugs and radiotherapy, that
restrain the number of tumour cells. We shall assume that f (t; u) and h(t; u)
are two independent Gaussians random processes with zero mean and correlation
functions given by

〈f (t; u)f (s; u)〉 = D1

�1
e−6(t−s)2/�2

1 , 〈h(t; u)h(s; u)〉 = D2

�2
e−6(t−s)2/�2

2 , (6.3)

where �i and Di (i = 1, 2) denote, respectively, the correlation times and the
correlation amplitudes6 of the processes f (t; u) and h(t; u). The factor 6 at
the exponents has been introduced in order to make the correlation functions
approximately zero when |t − s| � �i (Venturi et al. 2008). Also, the initial
condition x0(u) for the tumour density is set to be a standard Gaussian variable
with mean 〈x0(u)〉 = 7.266. This mean value corresponds to the state of stable
tumour (Zeng & Wang 2010) in the absence of random noises. We expand both
processes f (t; u) and h(t; u) in a finite-dimensional Karhunen–Loève series

f (t; u) =
M1∑
k=1

fk(t)xk(u), h(t; u) =
M2∑
k=1

jk(t)zk(u), (6.4)

where {x1(u), . . . , xM1(u)} and {z1(u), . . . , zM2(u)} are two sets of zero-mean
i.i.d Gaussian random variables, while fk(t) and jk(t) are non-normalized
eigenfunctions arising from the spectral decomposition of covariance kernels (6.3).
The truncation of the series (6.4) is performed in order to retain 97 per cent of
the total energy in the time interval [0, 1]. The corresponding number of terms
M1 and M2 is shown in table 1, as a function of the correlation time.

In figure 1, we plot several realizations of the response process x(t; u) for
different (randomly sampled) realizations of the forcing processes f (t; u) and
h(t; u). The case with very small correlation times falls within the range of
validity of the small correlation time approximation considered by Zeng & Wang
(2010). The effective Fokker–Plank equation (see §4b) overcomes the curse of
dimensionality, and it can be solved by standard numerical methods. However, for
large correlation times, such approaches cannot be employed for obvious reasons.7

6The correlation amplitude ultimately controls the amplitude of the process, namely, when D1 is
increased, then the amplitude of f (t; u) increases.
7For large correlation times, the series representation (B 4) cannot be truncated to first order in s.
This yields many additional terms in the closure approximation (B 5), which ultimately render the
closure itself not practical.
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Figure 1. Tumour dynamics x(t; u) corresponding to different (randomly sampled) realizations of
the excitation processes f (t; u) and h(t; u). Shown are three different scenarios having random
noises with different correlation times: (a) �i = 0.2, (b) �i = 0.02 and (c) �i = 0.002. For each case,
we sample three realizations of f (t; u) and h(t; u) and, correspondingly, we compute three responses
of x(t; u). The samples of f (t; u), h(t; u) and x(t; u) are plotted by using the same linestyle along
each row.

In these cases, we need to resort to other methods, e.g. methods based directly on
random variables as discussed in §5. To this end, we consider the following joint
response-excitation probability density associated with the system (6.1)–(6.4)

p(a,{bi},{cj })
x(t){xi}{zj }

def= 〈d(a − xt[{xi}, {zj}])
M1∏
k=1

d(bk − xk)
M2∏
k=1

d(ck − zk)〉, (6.5)

where the average is with respect to the joint probability density of the
variables {x1(u), . . . , xM1(u)}, {z1(u), . . . , zM2(u)} and the initial condition x0(u).
By differentiating equation (6.5) with respect to time and taking into account

Proc. R. Soc. A (2012)

 on January 24, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/


Equation for the response-excitation PDF 775

equation (6.1), we obtain

vp(a,{bi},{cj })
x(t){xi}{zj }

vt
= − v

va

[(
g(a) + h(a)

M1∑
k=1

bkfk(t) +
M2∑
k=1

ckjk(t)

)
p(a,{bi},{cj })

x(t){xi}{zj }

]
. (6.6)

This is a linear transport equation in two variables, t and a, and M1 + M2
parameters. Under the assumption that the initial state of the system x0(u) is
independent of {x1(u), . . . , xM1(u)} and {z1(u), . . . , zM2(u)}, the initial condition
for the joint density (6.5) is explicitly given by

p(a,{bi},{cj })
x0{xi}{zj } =

(
1
2p

)(M1+M2+1)/2

exp

⎡
⎣−1

2

⎛
⎝a2 +

M1∑
k=1

b2
k +

M2∑
j=1

c2
j

⎞
⎠
⎤
⎦. (6.7)

Once the solution to equation (6.6) is available, we obtain the response probability
of the system by marginalizing (6.5) with respect to {bk} and {cj}, i.e.

p(a)
x(t) =

∫∞

−∞
· · ·

∫∞

−∞︸ ︷︷ ︸
M1+M2

p(a,{bi},{cj })
x(t){xi}{zj } db1 · · · dbM1 dc1 · · · dcM2 . (6.8)

The numerical solution to equations (6.1) and (6.6) is computed by using
different approaches. Specifically, for the stochastic ODE problem (6.1), we
have employed both Monte Carlo (5 × 106 samples) and probabilistic collocation
methods (Foo & Karniadakis 2008). In the latter case, depending on the number
of random variables, we have used either Gauss–Hermite quadrature points or
sparse grid (level 2) points for xk and zj . On the other hand, the partial differential
equation (6.6) is first discretized in the a variable by using a Fourier–Galerkin
spectral method of order 50, and then collocated at either Gauss–Hermite points
or sparse grid points in the variables bk and cj . A second-order Runge–Kutta
scheme is used to advance in time both equations (6.1) and (6.6).

In figure 2, we plot the time evolution of the response probability density of the
system, i.e. the tumour density, for excitation processes with very large correlation
time (�i = 10) compared with the period of integration, which is [0, 1]. We also
show the effects of a variation in the correlation amplitude D2 characterizing
the random process h(t; u) restraining the number of tumour cells. The observed
changes in the temporal evolution of the response probability density function are
consistent with the results of Zeng & Wang (2010). The relevant statistics, i.e. the
mean and the variance, of the tumour density are compared in figure 3 against
similar results obtained by using different stochastic approaches. This comparison
clearly shows that the transport equation (6.6) for the joint probability density
function is indeed correct and allows for accurate predictions. The discrepancy
observed in the lower right variance plot between the Monte Carlo solution
(continuous line) and the sparse grid (level 2) solution of equation (6.6) (two
variables and 11 parameters) is due to an insufficient integration accuracy when
evaluating the statistical moments from the response probability density function.
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Figure 2. Temporal evolution of the response probability density (6.8) of the tumour model
(6.1). The correlation time of both processes (6.1) is set at �i = 10 (i.e. we have M1 = M2 = 1)
while the amplitudes Di appearing in the correlations (6.3) are set to (a) (D1, D2) = (0.1, 5) and
(b) (D1, D2) = (0.1, 0.001).
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Figure 3. Time evolution of the mean and the variance of the tumour population for random
forcing processes f (t; u) and h(t; u) with different correlation times. Shown are results obtained
by using different stochastic methods: probabilistic collocation (PCM; Gauss–Hermite for �i = 10
(three dimensions)), and sparse grid level 2 for �i = 0.2 (11 dimensions) applied to the stochastic
ODE (6.1) (dashed-dotted line) and the PDF equation (6.6) (dashed line); Monte Carlo simulation
(5 × 106 samples) applied to the stochastic ODE (6.6) (continuous line).
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7. Summary

By using functional integral methods, we have determined an equation describing
the evolution of the joint response-excitation probability density function of a
first-order nonlinear stochastic dynamical system driven by coloured random
noise with arbitrary correlation time. This equation can be represented in
terms of a superimposition of two differential constraints, i.e. two partial
differential equations involving unusual limit partial derivatives. The first
one of these constraints was determined by Sapsis & Athanassoulis (2008).
We have addressed the question of computability of the joint response-
excitation probability density function as a solution to a boundary value
problem involving only one differential constraint. By means of a simple
analytical example, we have shown that such a problem is undetermined, in
the sense that it admits an infinite number of solutions. This result provides
a definitive answer to the question first raised by Sapsis & Athanassoulis (2008,
p. 295), regarding the solvability theory of the system of equations (2.8)–(2.10).
In order to overcome this issue, we have included an additional differential
constraint, i.e. the complementary constraint (2.15), which yields a complete
evolution equation for the joint response-excitation density. This equation,
however, involves an average requiring a closure approximation just like in the
classical response approach (Moss & McClintock 1995). Such approximation can
be constructed based on small correlation time expansions.

We have also studied nonlinear differential equations involving random
parameters. This class of problems can be reformulated in an exact way, i.e.
without any closure, in terms of a possibly high-dimensional linear transport
equation for the joint response-excitation probability density function of the
system. Such equation can be solved numerically by exploiting recent advances
in numerical methods for high-dimensional systems such as proper generalized
decomposition (Chinesta et al. 2010; Nouy 2010a), sparse grid collocation (Foo &
Karniadakis 2008, 2010) or functional ANOVA techniques (Rabitz et al. 1999;
Cao et al. 2009; Yang et al. submitted). In order to investigate this possibility, we
have applied one of these methods, i.e. sparse grid collocation, to the evolution
equation arising from the tumour cell growth model recently proposed by Zeng &
Wang (2010). This allowed us to simulate the dynamics of the tumour density for
Gaussian forcing processes with low to moderate correlation times, i.e. in a range
where the small correlation time expansion considered by Zeng & Wang (2010)
does not apply.

We would like to thank Prof. B. L. Rozovsky of Brown University for stimulating discussions and
very useful suggestions. This work was supported by OSD-MURI (grant no. FA9550-09-1-0613),
by DOE (grant no. DE-FG02-07ER25818) and NSF (grant no. DMS-0915077).

Appendix A. Differential constraints for the joint response-excitation
probability density function of a nonlinear pendulum

In this appendix, we show that the functional integral approach leading to the
differential constraint (2.8) can be extended, with minor modifications, to systems
that can be more general than those described by equation (2.1). To this end, let
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us consider the dynamics of a nonlinear pendulum subject to an external random
driving torque. A deterministic version of this problem has been extensively
studied in the past as a prototype problem to understand chaos and the routes
to chaos (D’Humieres et al. 1982; Blackburn et al. 1987; Gitterman 2005). The
equation of motion is

I q̈(t; u) + lq̇(t; u) + k sin(q(t; u)) = f (t; u), (A 1)

where I is the moment of inertia, l the damping constant, k sin(q) the restoring
torque, and f (t; u) the random (coloured in time) driving torque. Equation (A 1)
can be written as a first-order system as follows:

4̇(t; u) = −l

I
4(t; u) − k

I
sin(q(t; u)) + 1

I
f (t; u) (A 2)

and
q̇(t; u) = 4(t; u). (A 3)

The joint response-excitation probability density function for this system is

p(a,b,c)
q(t)q̇(t)f (s)

= 〈d(a − q̇t[f ])d(b − qt[f ])d(c − fs)〉. (A 4)

Differentiation with respect to t yields

vp(a,b,c)
q(t)q̇(t)f (s)

vt
= − v

va
〈d(a − q̇t)q̈td(b − qt)d(c − fs)〉

− v

vb
〈d(a − q̇t)d(b − qt)q̇td(c − fs)〉. (A 5)

Substituting (A 1) into (A 5) and taking the limit s → t gives the following
differential constraint for the joint probability density pq(t)q̇(t)f (s)(a, b, c)

lim
s→t

vp(a,b,c)
q(t)q̇(t)f (s)

vt
= 1

I
v

va

(
(la + k sin(b) − c)p(a,b,c)

q(t)q̇(t)f (t)

)
− v

vb

(
ap(a,b,c)

q(t)q̇(t)f (t)

)
. (A 6)

A partial integration of p(a,b,c)
q(t)q̇(t)f (t)

(a, b, c) with respect to ab yields the marginal
compatibility condition with the probability density function of the random
torque acting on the oscillator

∫∞

−∞

∫∞

−∞
p(a,b,c)

q(t)q̇(t)f (s)
da db = p(c)

f (s) ∀s, t ≥ t0. (A 7)

Appendix B. Small correlation time expansion for Gaussian forcing processes

In this appendix, we review a classical approach (Fox 1986) to determine a closure
approximation to the averages appearing in equations (4.11) and (4.16) based on
a small correlation time expansion.
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(a) Exponential correlation function

Let us consider a Gaussian random forcing term with exponential correlation
function

C2(t, s) = 〈f (t; u)f (s; u)〉 = D
�

e− |t−s|
� , (B 1)

where � characterizes the correlation time of the process while D denotes the
correlation amplitude. The parameter D ultimately controls the amplitude of the
process f (t; u). Let us calculate explicitly the last term appearing in equation
(4.11). To this end, we first consider

∫ t

t0
C2(t, t) e

∫t
t vx g(xq [f ],q) dq dt =

∫ t

t0

D
�

e−|t−t|/�+∫t
t vx g(xq [f ],q) dq dt

s=(t−t)>0= −D
�

∫ 0

t−t0
e−s/�+∫t

t−s vx g(xq [f ],q) dq ds

= D
�

∫ t−t0

0
e−s/�+∫t

t−s vx g(xq [f ],q) dq ds. (B 2)

At this point, we expand the function

Y (s) =
∫ t

t−s
vxg(xq[f ], q) dq (B 3)

in a power series around s = 0. This is a key step for the approximation of the
functional integral. Indeed, the variable s now represents the correlation time of
the response process and we expect that for small � we obtain small s. This is
consistent with the white noise limit, where the response process is Markovian
if the forcing process is white in time. Therefore, let us consider an expansion
about the Markovian case

Y (s) = Y (0) + Y ′(0)s + 1
2Y

′′(0)s2 + · · ·
= 0 + vxg(xt[f ], t)s − 1

2(vxvxg(xt[f ], t)ẋt[f ] + vxvtg(xt[f ], t))s2 + · · · .
(B 4)

For forcing processes with very small correlation time, we are allowed to retain
only the linear term in the power series expansion (B 4). This yields the following
approximation of the term (B 2)

∫ t

t0
C2(t, t) e

∫t
t vx g(xq [f ],q) dq dt � D

�

∫ t−t0

0
e−s(�−1−vx g(xt [f ],t)) ds

= D
1 − �vxg(xt[f ], t)(1 − e−(t−t0)(�−1−vx g(xt [f ],t)))
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and therefore 〈
d(a − xt[f ])

∫ t

t0
C2(t, t) e

∫t
t vx g(xq [f ],q) dq dt

〉

�
Dp(a)

x(t)

1 − �vag(a, t)
(1 − e−(t−t0)(�−1−vag(a,t))). (B 5)

(b) Gaussian correlation function

The approximation technique outlined in the previous subsection can be also
applied to zero-mean Gaussian forcing processes having Gaussian correlation
function

C2(t, s) = D√
2p�

e−(t−s)2/2�2
. (B 6)

In this case, we find (for � → 0)〈
d(a − xt[f ])

∫ t

t0
C2(t, t) e

∫t
t vx g(xq [f ],q) dq dt

〉

� D
2

p(a)
x(t) e(�vag(a,t))2/2

(
erf

(
t − t0√

2�
− �vag(a, t)√

2

)
+ erf

(
�vag(a, t)√

2

))
, (B 7)

where erf(·) denotes the standard error function.
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