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a b s t r a c t

While probabilistic methods have been used extensively in simulating stationary power systems, there

has not been a systematic effort in developing suitable algorithms for stochastic simulations of time-

dependent and reconfiguring power systems. Here, we present several versions of polynomial chaos

that lead to a very efficient approach especially in low dimensions. We consider both Galerkin and

Collocation projections, and demonstrate how the multi-element decomposition of random space leads

to effective resolution of stochastic discontinuous solutions. A comprehensive comparison is presented

for prototype differential equations and for two electromechanical systems used in an electric ship.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The advent of modern power electronics and large-scale power
converters is ushering in a new age for electric ship-propulsion.
This is embodied in the All-Electric Ship (AES) concept, where a
set of prime movers is used to power all loads on the ship-
propulsion, weaponry, HVAC, lighting, and other systems [1]. This
paradigm has a number of well-known advantages relative to
conventional ships, including reduced fuel usage, reduced main-
tenance, and increased design flexibility. An integrated power
system (IPS) is required to effectively manage the many sensors,
motors, relays, and processors that make up the system.

At the design stage, performance and robustness of candidate
solutions are evaluated by studying system response to variations
in loading conditions and in system parameters. For low-
dimension systems having simple dynamic behavior, this can be
achieved by deterministically varying a few parameters at a time.
Exploring the space in a methodical or ad hoc manner, the
designer hopes to gain insight into the system behavior, and may
be able to uncover conditions of unacceptably high sensitivity.
When many uncertainties exist or when the system response is
more complex, the deterministic technique will be less successful,
in part because complex simulations simply take longer to run,
and because the matrix of coincident parameters to vary grows
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exponentially with the number of random dimensions. For these
cases, a stochastic approach is more appropriate; the uncertain-
ties are assumed to take a specific distribution, and the outcome
of the calculation is a statistical description of the system
behavior. Research projects have been conducted on the AES
problem under deterministic load and parameter deviations [2,3],
while stochastic analyses have been largely applied to terrestrial
power systems for reliability assessment [4,5] and for uncertainty
analysis of load and system performance [6–11].

The most common approach for stochastic simulation in large-
scale systems is Monte Carlo integration. The technique is simple
to implement, using forward simulations of the system response.
The so-called quasi-Monte Carlo techniques [16] regularize the
random points, so as to achieve improved convergence. Alter-
natives we consider and compare in this paper are the Galerkin
and Collocation projection techniques using polynomial chaos.
The Galerkin approach yields an explicit functional relationship
between random variables and stochastic solutions, represented
in terms of a spectral decomposition. In the Collocation technique,
the stochastic solutions can be obtained from simulations at nodal
points in the random space.

The method of generalized Polynomial Chaos (gPC), based on
the Galerkin projection [12–15], has been successfully applied for
stochastic analysis in various applications, such as finite elements
in solid mechanics [12], fluid dynamics [16], and electrical circuits
[17]. Major advantages of the gPC technique are that a probability
density function, as well as statistical moments of system
variables, can be obtained explicitly after solving nodal system
equations. The limitation associated with the gPC is the expansion
complexity of non-polynomial terms onto the orthogonal poly-
nomial-chaos basis.
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The Probabilistic Collocation Method (PCM), based on the
Collocation projection approach of polynomial chaos, has been
used for examining the transient behavior of utility power systems
[6,7] and ocean circulation [18]. The theory underlying the
PCM, here called the Full-grid PCM, is the numerical Gauss-
quadrature, an efficient numerical integration technique [19] for
low-dimensional problems. When the dimension of stochastic
inputs increases as in a large-scale system, the computational
cost of the Full-grid PCM becomes prohibitive. Therefore, another
collocation technique of numerical integration-Smolyak quadra-
ture [20,21] (referred to as the Sparse-grid PCM ) has been in
recent use.

The accuracy of stochastic solutions from both techniques
deteriorates quickly, when there exists a low regularity, e.g., a
discontinuity, in the stochastic solutions. To this end, the Multi-
Element technique or the h-type refinement of the random space
in both approaches gives a promising result to further improve
solution accuracy [14,22].

In this paper, Section 2 introduces the concept of polynomial
chaos from both Galerkin and Collocation approaches as well as
their Multi-Element formulations. The performance of these
techniques is compared on several test cases, and two multi-rate
dynamical power systems in Section 3. Section 4 presents a brief
summary and discussion of the main findings.
2. Polynomial chaos methods

According to the Cameron–Martin theorem [23], the so-called
Wiener–Askey polynomial chaos expansion can approximate and
describe all stochastic processes with finite second-order moment;
this is satisfied for most physical systems. The Askey scheme of
polynomials contains various classes of orthogonal polynomials, and
their associated weighting functions are identical to the probability
density function of different distributions. As shown in [15], these
Askey polynomial schemes yield an optimal (exponential) conver-
gence of stochastic solutions for their corresponding probability
distributions. First, let us define a general form of the Stochastic
Differential Equation (SDE) in a complete probability space (O, F , P),
where O is the event space, P the probability measure, and F the
probability distribution associated with P, as follows:

Lðt;o;uÞ ¼ f ðt;oÞ; ð1Þ

where t is defined within a temporal domain [0,T], T is the final time,
oAO ranging within the support of F ;L is a linear or nonlinear
operator including the differentiation, and f is a forcing term.
Expressing the SDE in this form, uncertainties can be incorporated in
both the L operator and f such that the stochastic solution, u(t,o),
reveals a propagation of these uncertainties in the system through
time. Throughout this study, xi(o) for i=1,y,d are assumed to be d-
dimensional independent, identically distributed (i.i.d.) continuous
random variables.

In a realistic situation, uncertainty of system parameters and
loads tend to vary within a specified range. Therefore, the uniform
and exponential distributions are most suitable to represent these
uncertainties rather than the Gaussian distribution, related to the
Hermite chaos, as described in [17]. Our stochastic analysis of
power systems is associated with the i.i.d. uniform distribution
xAU½�1;1�. Next, we describe the underlying theory of these
stochastic algorithms as well as their advantages and disadvan-
tages from an implementation perspective.

2.1. Galerkin projection

The main concept of the generalized Polynomial Chaos (gPC) is
to employ the spectral expansion of u(t, o) and f(t, o) in terms of
the weighted sum of orthogonal polynomial bases, associated
with their modal coefficients. A general second-order random
process can be concisely expressed in the following form:

uðt;oÞ ¼
X1
i ¼ 0

uiðtÞfiðxðoÞÞ; ð2Þ

where fi denotes the polynomial basis from the Wiener–Askey
polynomial chaos, expressed as a function of a d-dimensional
random variable x. This form of expansion converges optimally in
the L2 sense. The type of the proper polynomial basis to be
employed depends on the pdf of the random variable x. This is
dictated by a ‘‘correspondence principle’’ where the form of the
orthogonality weight in the polynomials matches the correspond-
ing probability measure [15]. For example, the classical case is the
Hermite polynomials whose weight is the Gaussian distribution;
similarly, the Legendre polynomials correspond to uniform
distribution, the Laguerre polynomials to exponential distribu-
tions, the Jacobi polynomials to Beta distributions, etc. This
correspondence can be extended to non-analytic polynomials
beyond the Askey class of polynomials, as first proposed in [32].

The ui(t) is the ith modal coefficient, the set from which
statistics can be directly calculated. In numerical implementation,
the expansion onto the orthogonal polynomial basis must be
truncated at P terms; P=(d+p)!/d!p!, where d and p, respectively,
are the dimension of random variable x and the highest order of
the polynomial chaos. With the assumption of xiAU½�1;1�, the
Legendre polynomial chaos is chosen as the basis, fi, because of
its optimal convergence property. Then, we substitute this
spectral expansion of u and f into Eq. (2) and project this equation
onto the p-order polynomial chaos basis using the Galerkin
projection, /L;fiS¼/f ;fiS for i¼ 0; . . . ;P. Due to the orthogo-
nal property of the Wiener–Askey polynomial chaos we have

/fi;fjS¼/f2
i Sdij; ð3Þ

where dij is the Kronecker delta and /�; �S represents the inner
product on the support of the random variable x. As a result, we
obtain a set of (P+1) coupled deterministic equations for the
modal coefficients.

Once the time integration of the modes is complete, the first
and second moments (i.e., the mean and variance solutions) can
be directly calculated from the zero mode and from a summation
of the squared modal amplitudes, each multipled by /f2

i S, as
shown below:

m1ðuðt; xÞÞ ¼ u0ðtÞ; ð4Þ

m2ðuðt; xÞÞ ¼
XP

i ¼ 1

u2
i ðtÞ/f

2
i S: ð5Þ

The accuracy of the stochastic solution can be improved by
increasing the polynomial order – ‘‘p-type’’ refinement – which
leads to an exponential convergence rate for continuous solutions.

2.1.1. Multi-element gPC (MEgPC)

According to Wan and Karniadakis [14], if the domain of
random inputs (o) is decomposed into multiple elements, the
accuracy of stochastic solutions can be further improved,
especially in the cases of discontinuity in stochastic solutions or
of long-time integration. As a result of this ‘‘h-type’’ refinement,
the local integration error at each time step can be reduced and
the solution can be approximated more accurately within smaller
domains. We will briefly explain the basic concept of the
Multi-Element gPC (MEgPC) [14] with d-dimensional random
variables.

First, let nðoÞ ¼ ½x1ðoÞ; . . . ; xdðoÞ�, denote a vector of the uni-
form random variables in d dimensions. Second, we decompose
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the domain of the random variable into N non-intersecting
intervals or elements,

Ek ¼ ½ak
1; b

k
1Þ � � � � � ½a

k
d; b

k
dÞ for i¼ 1; . . . ; d: ð6Þ

The domain of each element is contained within a hypercube,
½ak

1; b
k
1Þ � � � � � ½a

k
d; b

k
dÞ, where ai and bi denote a lower and upper

bound of the ith element, respectively. Therefore, we must scale
the local random variables associated with each element
(fk
¼ ½zk

1ðoÞ; . . . ; z
k
dðoÞ�) accordingly with its conditional probabil-

ity density function, pzk ¼ 1=ðbk
i�ak

i Þ, where i¼ 1; . . . ; d and
k¼ 1; . . . ;N. The mapping of random variables from global to
local domain (i.e., the element) is governed by the following
relationship:

zk
i ¼

bk
i�ak

i

2
xk

i þ
bk

i þak
i

2
; ð7Þ

where the global random variable, xk
i , is contained within the

½ak
i ; b

k
i Þ range. The local random variable, zk

i , is also a uniform
random variable; therefore, we can apply the gPC with the
Legendre polynomial chaos basis to solve the SDE, Lðt; fðxÞ;uÞ ¼
f ðt; fðxÞÞ, locally in each of the N elements. Using Bayes’ Rule and
the total probability theorem, the m-order global statistical
moments (mm(u(x)) can be calculated from the m-order local
statistics (mm(u(z))) as shown below:

mmðuðt; xÞÞ ¼
XN

k ¼ 1

pzkmmðuðt; zÞÞ: ð8Þ

There are several issues that need to be addressed for an accurate
and efficient implementation of the aforementioned ideas. We
define the original layout of elements as a ‘‘coarse’’ level, which
we will refine by creating more elements. To this end, for
simplicity in the numerical implementation we choose to split the
element by half along the direction we refine. In order to decide
when to refine we adopt two possible criteria. The first one
employs the local gPC expansion and investigates the rate of
convergenced by looking at the decaying of the coefficients, e.g.,
the last coefficient. If the decay is slow (given a pre-determined
threshold) we proceed with the splitting of the element.
Alternatively, we can compute the local variance in that particular
element and if that is too large compared with some reference
value we then split the element. Both criteria are effective but the
latter is more economical in the collocation version of polynomial
chaos as it avoids expensive multi-dimensional projections that
the former method would require.

In addition, we need to assign the initial condition after
splitting the random dimension into multiple elements, which
can be done by solving the a linear system [14]. Let us denote the
expansion of state variables at the coarse level, x̂

k
ðxk
Þ ¼PP

i ¼ 0 x̂
k
i fkðx

k
Þ for k=1,y, N, for N elements. If we split each

element into two sub-elements at the refined level, the state-
variable expansion can be expressed as ~xk

ðzk
Þ ¼

PP
i ¼ 0

~xk
i fkðz

k
Þ for

k=1,y,2N. To assign the initial condition for ~xk
i , we must solve the

following linear system:

f00 f10 . . . fP0

f01 f11 . . . fP1

^ ^ & ^

f0P f1P . . . fPP

0
BBBB@

1
CCCCA

~x0

~x1

^
~xP

0
BBBB@

1
CCCCA¼

XP

i ¼ 0

_xifiðz
0
Þ

XP

i ¼ 0

_xifiðz
1
Þ

^XP

i ¼ 0

_xifiðz
P
Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; ð9Þ

where fij=fi(zj).
2.2. Collocation projection

The Probabilistic Collocation Method (PCM) is an alternative
approach to solve stochastic equations using the polynomial
chaos. Instead of expanding the stochastic solution onto the
polynomial chaos basis, the Collocation approach evaluates
the SDE at the abscissas of the polynomial chaos, i.e., the roots
xi(o) of the Legendre polynomials, as follows:

Lðt; niðoÞ;uÞ ¼ f ðt; xiðoÞÞ: ð10Þ

The stochastic solutions are then computed according to a
numerical quadrature with the weight function associated with a
specified probability distribution. Therefore, when the systems
become larger and more complex, the simplicity of the PCM
framework, which is only repetition runs of the deterministic
solver, results in a faster algorithm than the gPC, particularly in
high dimension problems. In this section, two collocation techni-
ques, Full- and Sparse-grid collocation, are explained in detail along
with a framework for the multi-element technique.

2.2.1. Full-grid PCM (FPCM)

For the uniform random process, the Full-grid PCM (FPCM)
relies on the non-equidistant abscissas of the Legendre
polynomials for specifying the collocation points and the
Gauss–Legendre quadrature rule for computing statistics. Similar
to the p-refinement, the more collocation points per random
dimension, Nc, the better the accuracy of stochastic solutions
becomes. However, the collocation points from the full-tensor
product in the full-grid PCM is non-nested, as illustrated in Fig. 1.
When points at one level of Nc are re-used at a higher level, we say
the points are nested.

The one-dimensional Gauss-quadrature formula, which is a
well-known numerical integration technique, yields the exact
integral for any function in a polynomial form of order less than
or equal to 2Nc�1. An approximation of the d-dimensional
integration by the full-tensor product, �, of the one-dimensional
Gauss–Legendre quadrature [19] is shown below:

mðuðt; nÞÞ ¼
Z

O
uðt;nÞWðnÞdn¼

XNc1

i1 ¼ 1

� � �
XNcd

id ¼ 1

uðt; xi1 . . . xid Þ

�ðwi1 � � � � �wid Þ; ð11Þ

where xij and wij are, respectively, the one-dimensional colloca-
tion points and associated weights of the Ncj-order polynomial
chaos in the j dimension over a probability domain, O, and uðt; nij

Þ

denotes the deterministic solution evaluated at these collocation
points. For a high-dimensional random process, the number of
collocation points in the full-grid PCM grows exponentially as a
function of Nd

c to maintain the same degree of exactness; another
quadrature rule with sparse structure, introduced next, can
further reduce the computational burden.

2.2.2. Sparse-grid PCM (SPCM)

With the nested property of Chebyshev polynomials of the first
kind, the Smolyak quadrature and the Clenshaw–Curtis formula
forms can be used in the Sparse-grid PCM (SPCM) to significantly
reduce the computational cost and to maintain the accuracy of
stochastic solutions, especially in a system with large random
dimensions.

In one dimension, the non-equidistant extreme points of the
Chebyshev polynomials can be written in an analytical form as a
cosine function [20]:

xLi ¼�cos
pði�1Þ

n1
L�1

ð12Þ
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Fig. 1. Non-equidistant and non-nested abscissas of collocation points in the full-

grid PCM with Nc=10 (cross) and Nc=11 (circle) in two random dimensions (x1, x2).
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Fig. 2. Non-equidistant and nested collocation points for L=5 (cross) and L=6

(circle) of the sparse-grid PCM in the two random dimensions.
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for i=1,y,L, where n1
L denotes the number of L-level collocation

points in one dimension. n1
L ¼ 2L�1

þ1, for lZ2. To approximate an
integral, the sparse-grid PCM employs the weight, wLi, from the
Clenshaw–Curtis formulas as follows:

wLi ¼
2

n1
L�1

1þ2
X0ðn1

L
�1Þ=2

j ¼ 1

1

1�4j2
cos

2pði�1Þj

n1
L�1

 !
ð13Þ

for 2r irn1
L�1 and wL1 ¼wLn1

L
¼ 1=n1

L ðn
1
L�2Þ.

P
0 notation denotes

that the last term of the summation is divided by a factor of two.
Instead of using the Gauss-quadrature, Smolyak’s quadrature is
used for calculating stochastic solutions.

Let us define a notation of the one-dimensional quadrature
formula for the L level as follows: Q1

L u¼
Pn1

L

i ¼ 1 uðxLiÞwLi. Then, the
difference quadrature formula ðD1

L uÞ is defined as the difference of
one-dimensional quadrature formula between the higher and
lower level: D1

k u¼ ðQ1
k�Q1

k�1Þu. The d-dimension Smolyak quad-
rature formula [24] can be constructed as a function of either D1

L u

or Q1
L f :

Qd
L u¼

X
jLijr Lþdþ1

ðD1
L1 � � � � �D1

LdÞu

or ð14Þ

Qd
L u¼

X
Lr jLijrLþdþ1

ð�1ÞLþd�jLij�1
d�1

jLij�l

 !
ðQ1

L1 � � � � � Q1
LdÞu:

From a numerical implementation point of view [24], expression
(14) can be written explicitly in terms of nested grid points and
weights as

Qd
L u¼

X
jLijr Lþdþ1

Xn1
L

j1 ¼ 1

� � �
Xnd

L

jd ¼ 1

wLjuðnLjÞ; ð15Þ

where nLj denotes the d-dimensional vector of ðxL1j1
; . . . ; xLdjd

Þ.
Also, the nested weight can be written as

wLj ¼
X

jLþkjr Lþ2d�1

zðL1þk1Þj1
. . . zðLdþkdÞjd

; ð16Þ

where zðLþkÞj1 ¼wLj if k=1, or zðLþkÞj1 ¼wðLþk�1Þm�wðLþk�2Þn if k41
and xLj=x(L+ k�1)m=x(L +k�2)n.

The SPCM using the Clenshaw–Curtis formulas can provide an
accurate result for integrating polynomial functions of orders up
to n1
L�1. Fig. 2 shows the characteristics of the nested collocation

points of the SPCM in two random dimensions.

2.2.3. Multi-element PCM (MEPCM)

Parallel to the MEgPC, a basic concept of Multi-Element PCM
(MEPCM [22]) is to divide the random variable into multiple
elements such that the degree of randomness in the original space
is reduced in proportion to the number of elements. Let us
consider the orthogonal polynomial as a function of the random
variable in a d-dimensional hypercube, n¼ ½x1; . . . ;xd�, where
xiAU½�1;1� with a constant PDF of 1/2. By separating the random
variable ðnÞ in the global level into N non-overlapping elements
(Ek), the local element in a d-dimensional hypercube can be
expressed as in Eq. (6). As a result, the local random variable (zk)
in each element can be computed by the mapping relationship,
given in Eq. (7).

The main difference between the MEgPC and MEPCM is the
method of mapping the initial condition from current-level meshes
to those in a refined level. At each time step, the system solutions,
f(xi), are evaluated only at the nodal points in the current-level
meshes. If one of the elements in the current mesh is split into two
new elements at the next time step, initial conditions of new
elements can be either assigned directly from the original element
in the case of nk

¼ fk or, in the case of nkafk, we must solve the
system at these new nodal points from an initial time. As a result,
the original FPCM or SPCM, associated with the global random
space, is decomposed into N sub-problems of the FPCM (ME-FPCM)
or SPCM (ME-SPCM), corresponding to N local elements. We refer
to Uniform ME-FPCM and ME-SPCM when the global random space
is divided into N equally spaced elements.

Then, local statistical measures (mm(f(z))) in each element are
computed by the Gauss quadrature formula for the FPCM and the
Smolyak quadrature formula for the SPCM. To calculate the global
mth moments (mm(f(x))), Bayes’ rule and the law of total
probability can be applied as follows:

mmðf ðxÞÞ ¼
Z
½1�1;1�d

f mðxÞWðxÞdx¼
XN

k ¼ 1

pzk

Z
½�1;1�d

f mðzk
ÞWðzk

Þdzk;

ð17Þ

where the integral can be evaluated according to the
Gauss–Legendre and the Smolyak quadratures for FPCM and
SPCM, respectively.
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3. Results

Generally, the accuracy of solution, the efficiency of computa-
tion, and the simplicity of implementation must be considered in
comparing the performance of stochastic simulation algorithms.
Foremost, a convergence study shows how accurate the stochastic
solutions become as the governing parameters of these algo-
rithms vary. The governing parameters of MC, gPC, FPCM, SPCM,
and Multi-Element techniques are as follows: number of realiza-
tions (Nr), polynomial order (p), number of collocation points (Nc),
level (L), and number of elements (N). Because the gPC and PCM
methods both derive from quadrature rules, we expect that when
Nc�p, similar errors are obtained for the two methods. The
number of operations performed at each time step (or computa-
tional time to achieve a given accuracy) indicates the algorithm’s
efficiency. All numerical computations in this study are performed
with the Microsoft C++ compiler on an Intel Pentium 4 3.0 GHz
Processor. Note that the accuracy of stochastic solutions is limited
in this paper by the numerical machine precision, which is on the
order of 10�15.

To study the rate of convergence, we use the L2 norm
difference between estimated and reference solutions of
mean and variance, normalized by the L2 norm of the reference
solution. This normalized L2 norm difference is similar to that
defined in [15]. When the system is large and more complex, an
analytical or exact stochastic reference solution is impossible to
find. Then, the exact solution can be replaced by a computed
solution for which the extrapolated error is at least an order of
magnitude below that of the results presented. The error
measurements of mean y and variance s2

y solutions can be
ε

Fig. 3. Quadratic first-order SDE: plot of L2 error of mean (left) and variance (

ε

Fig. 4. Quadratic first-order SDE: plot of L2 error of mean (left) and variance (right) err

(thin line).
expressed as follows:

emean ¼
jjjyðtÞ�yexactðtÞj2
jjyexactðtÞjj2

; ð18Þ

evar ¼
jjs2

y ðtÞ�s2
y;exactðtÞjj2

jjs2
y;exactðtÞjj2

: ð19Þ

3.1. Quadratic nonlinear first-order SDE

A first-order SDE is considered of the form

dy

dt
¼�ky2 with yðy�0Þ ¼ y0 ¼ 1 and tA ½0;5� ð20Þ

and a random variable decay rate k¼ kþskx, where x is a
uniform distribution, xAU½�1;1�. The deterministic solution is
y(t)=y0/(y0kt+1). Exact solutions of mean and variance, used as
reference solutions, are

yexactðtÞ ¼
1

2tsk
‘n

y0tðkþskÞþ1

y0tðk�skÞþ1

�����
�����; ð21Þ

s2
exactðtÞ ¼

y2
0

ð1þy0ktÞ2þðy0sktÞ2
�

1

4t2s2
k

‘n
y0tðkþskÞþ1

y0tðk�skÞþ1

�����
�����

 !2

:

Consider the case where k ¼ 2, sk=2, and tA ½0;5�. We examine
the p-convergence of the gPC with p=[1,2,3,4,5] and the FPCM
with Nc=[2,3,4,5,6], as shown in Fig. 3. The convergence rates are
exponential in the order of Oðe�pÞ for the gPC and of Oðe�ðNc�1ÞÞ for
the PCM. Both methods exhibit similar L2 errors, and thus the
relationship between gPC and PCM is Nc=p+1, as expected.
ε

right) as a function of polynomial order p for the gPC and Nc for the PCM.

ε

ors as a function of number of elements, N, using MEPCM (thick line) and MEgPC
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For N-convergence using MEgPC with p=[1,2,3] and MEPCM
with Nc=[2,3,4], the error convergence can be divided into two
regimes: non-asymptotic and asymptotic. In the asymptotic, the
convergence rates of MEgPC and MEPCM are approximated by
OðN�2ðpþ1ÞÞ and OðN�2ðNc ÞÞ, respectively, as shown in Fig. 4. Again,
for the same accuracy, Fig. 4 confirms that Nc=p+1. For this
simple problem, the gPC and PCM methods are nearly identical.

3.2. System of SDEs

Here we consider a system of three nonlinear SDEs, referred to
as the Kraichnan–Orszag (K–O) system, first considered in [25] who
employed the Wiener–Hermite expansion. It was reported that
employing such an expansion leads to a divergence of the numerical
solution from the true stochastic solutions as time increases.
Recently, Wan and Karniadakis [14] have revisited this problem
and resolved the divergence issue using a multi-element approach.

This system is represented by the ODEs:

dy1

dt
¼ y1y3; ð22Þ

dy2

dt
¼�y2y3; ð23Þ

dy3

dt
¼�y2

1þy2
2: ð24Þ
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Fig. 5. Continuous K–O system: the L2 norm error of mean and variance solutions

as a function of Nr exhibits the algebraic convergence rate of OðN�1=2
r Þ using MC

and of OðN�1
r Þ using QMC.

ε

ε

Fig. 6. Continuous K–O system: the L2 norm error of mean and variance solutions with r

(right).
It is highly sensitive to the initial conditions; when the initial
conditions are random variables, the stochastic solution can be
either continuous or discontinuous in the initial conditions; see
[14–22] for more details.
3.2.1. Continuous solutions in three random dimensions

We first investigate the convergence rate and efficiency of each
algorithm in the case when the stochastic solutions are contin-
uous. Let us assign the random initial conditions as follows:
[y1(0,x), y2(0,x), y3(0,x)]=[½y1ð0; xÞ; y2ð0; xÞ; y3ð0; xÞ� ¼ ½

ffiffiffi
2
p

=4þ
0:1x1ðoÞ;

ffiffiffi
2
p

=4þ0:1x2ðoÞ; x3ðoÞ�. The reference solution is nu-
merically computed from FPCM with Nc=80.

We consider the relationship of the convergence rate and
computational cost as a function of the random dimension among
five stochastic algorithms: (1) MC and QMC, (2) FPCM, (3) uniform
ME-FPCM with Nc=[2,5,10], (4) SPCM, and (5) uniform ME-SPCM
with L=5. As shown in Fig. 5, the MC and QMC convergence rates
are OðN�1=2

r Þ and OðN�1
r Þ, respectively, as expected.

Fig. 6 shows the exponential convergence of the FPCM and
SPCM, described as functions of Nc and L, respectively; this
exponential rate also holds as the random dimension increases.
However, the convergence rate of SPCM can be classified into non-
asymptotic and asymptotic regimes. Again, an empirical
convergence relation for the asymptotic range is our main
interest and asymptotic convergence of SPCM appears faster
than convergence of FPCM. However, it should be noted that
Nc � 2L, so that a direct performance comparison must consider
the computational cost versus the solution accuracy. Fig. 7 shows
that the uniform ME-FPCM also has an asymptotic convergence
regimes, with rate OððN=dÞ�2Nc Þ. The error of the uniform ME-
SPCM with L=5 as a function of N decreases faster than that of the
ME-FPCM with Nc=5 because of more collocation points in the
SPCM than in the FPCM for L=Nc in three-dimensional random
dimensions; this anomaly only happens for small number of
dimensions. The convergence rate of the uniform MEgPC with p=1
again agrees well with that of the uniform ME-FPCM with Nc=2
due to the relationship between gPC and FPCM mentioned in the
previous section.

Even though the convergence rate per dimension of the FPCM
stays constant, its computation time grows with a cubic power of
Nc in three random dimensions. For the uniform ME-FPCM with
uniform distributed elements, the cost per fixed accuracy is
always greater than that of the FPCM, as shown in Fig. 8. The
computational cost of the SPCM increases even faster than that of
the FPCM (Nc

d) and the uniform ME-SPCM may offer some benefit
over the SPCM. The FPCM and MC provide the most and least
efficient algorithms, respectively, in terms of the cost per
accuracy, when the stochastic solutions are continuous and
smooth.
ε

ε

espect to collocation points using FPCM (left) and with respect to level using SPCM
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3.2.2. Discontinuous solutions in three random dimensions

With the three random initial conditions: [x1(o), 0.1x2(o),
x3(o)] for the Kraichnan–Orszag system, discontinuity occurs on
both the y1 and y2 planes [22]; thus the stochastic solutions are no
longer smooth and continuous, and the time constants of mean
and variance are longer than in the continuous case. The results
from the QMC with Nr=5�106 for tA ½0;15� are used as a
reference solution to compute the convergence error.

We compare the performance among these five stochastic
algorithms: (1) MC and QMC, (2) FPCM, (3) uniform ME-FPCM
with Nc=[2,5,10], (4) SPCM, and (5) uniform ME-SPCM with L=5.
Our main focus in this section is the effect of the sparseness of
collocation points as well as of the uniform decomposition of
random space. As illustrated in Fig. 9, MC and QMC again yield the
convergence rate of OðN�1=2

r Þ and OðN�1
r Þ, respectively. According

to Fig. 10, an algebraic convergence rate of FPCM is on the order of
OðN�1:2

c Þ. Also, the SPCM yields an algebraic convergence, and its
rate of convergence is on the order of OðL�9Þ. The N-convergence
of the uniform ME-FPCM and ME-SPCM is shown in Fig. 11. The
uniform ME-FPCM exhibits an algebraic convergence as a function
of N/d, on the order of OððN=dÞ�1

Þ. In this case, the uniform ME-
SPCM provides an algebraic convergence more prominently than
the uniform ME-FPCM. One explanation of this better slope is that
the sparse collocation points as a function of either level or
element number are located much more at the boundary and the
zero-axis of the hypercube, where the planes of discontinuity
occur, than the full collocation points.

In terms of the cost for fixed accuracy, Fig. 12 shows that QMC
is the most efficient, but the uniform ME-SPCM becomes more
competitive against QMC in the higher accuracy region. The
multi-element technique significantly improves the efficiency of
both FPCM and SPCM in the presence of the discontinuities in
stochastic solutions.
3.3. An open-loop induction machine with the infinite bus

The parametric uncertainty in a 200-hp induction machine
directly connected to an infinite bus is considered in this section
in terms of both error convergence and uncertainty propagation.
The configuration of this system is shown in Fig. 13. This
induction machine is a scaled-down version of the machine
used in a propulsion system of the AES system, a model of which
is considered in the next section. All parameters are given in
Appendix I and [26]. The machine equations with quadratic
nonlinearities consist of seven state variables: three rotor flux
linkages per second ½c0eqr ;c

0e
dr ;c

0e
0r�, the rotor’s angular velocity

[or], and three stator or tie-line currents ½ieqt ; i
e
dt ; i

e
0t�. Two states,

c0e0r and ie
0t , are uncoupled from the others.

In this study, the uncertainty of a rotor resistance (r0r) is
modeled as a time-dependent variable, i.e., a random process.
Normally, the rotor resistance fluctuates with the operating
temperature. Thus, we can represent this time-dependent
parameter (r0r) with the Karhunen–Loeve (KL) expansion
[27], described in the following form: r0rðt;oÞ ¼ r 0rþsrPK

i ¼ 1

ffiffiffiffi
li

p
ciðtÞxiðoÞ, where r 0r and sr are, respectively, the mean

and standard deviation of the rotor resistance. The li and ci are an
eigenvalue and an eigenfunction associated with the ith term of
the KL expansion, truncated at K terms; x(o) is the random
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Fig. 10. Discontinuous K–O system: the L2 norm error of mean and variance solutions with respect to collocation points using FPCM (left) and to level using SPCM (right).
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Fig. 13. A one-line diagram of the induction machine connected to the infinite bus

through an RL tie line.
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Fig. 14. Three realizations of the rotor resistance modeled by the three-term KL

expansion using the exponential covariance function with Lc=10 s.
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variable as a function of random seed o. In this process, we
assume that ci and li are determined from an exponential
covariance function: Cðt1; t2Þ ¼ s2

r e�jt2�t1j=Lc , governed by the
correlation length (Lc). In both cases, the values of r 0r and sr are
0.0261 p.u. and 0.01. Three realizations from the three-term KL
expansion of r0r are shown in Fig. 14. The random dimension, d,
equals to three in this case.

The stochastic responses of the q-axis stator current, ieqs, during
start-up dynamics of the 200-hp induction machine are shown in
Fig. 15 for tA ½0;3� s when the rotor resistance is a random
process. These responses include fast transient dynamics from
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Fig. 15. Stochastic mean (left) and variance (right) of ie
qs in per unit for the 200-hp induction machine.
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Fig. 16. Induction machine with infinite bus: the L2 error in mean and variance as
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electrical components, stator and rotor windings, and slow
dynamics of a mechanical subsystem with rotor inertia. The
solutions using the FPCM with Nc=5 diverge somewhat from the
reference solution after 2 s, but the uniform ME-FPCM with Nc=5
and N/d=4 closely follows the reference solution. The reference
solution in this case is obtained from the uniform ME-FPCM, with
Nc=5 and N/d=32.

For a three-dimensional random process (with d=K=3) with
tA ½0;3� s, the convergence rate and computational efficiency are
compared among these stochastic algorithms: (1) MC and QMC,
(2) uniform ME-FPCM, and (3) uniform MEgPC. We did not
perform sparse-grid calculations for this case. According to
Fig. 16, the MC and QMC still yield the algebraic convergence
rates of OðN�1=2

r Þ and OðN�1
r Þ, respectively.

Again, the multi-element technique of gPC and FPCM with
uniformly distributed elements exhibits both asymptotic and
non-asymptotic convergence ranges, as shown in Fig. 17. For this
non-stationary random input, the convergence rate in the
asymptotic range of the uniform MEgPC and ME-FPCM are,
respectively, on the order of OððN=dÞ�2ðpþ1Þ

Þ and OððN=dÞ�2Nc Þ,
similar to the case with continuous solutions subjected to the
stationary random input. In addition, the relationship Nc=p+1
between gPC and FPCM remains unchanged when the input is a
random process. The FPCM still yields an exponential convergence
rate on the order of Oðe�0:3Nc Þ, as shown in Fig. 18.
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The computational costs of FPCM and gPC increase in
proportion to Nd

c nodal points and (p+d)!/p!d! modes, respec-
tively. Thus, gPC is more expensive than FPCM for the same
accuracy due to the mode coupling that results from the Galerkin
projection of polynomial chaos. Hence, the computational cost of
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Fig. 19. Induction machine with infinite bus: computational time versus evar using
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Fig. 20. A one-line diagram of the first configuration of the AC power distribution wi

dimensional random variables.
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Fig. 21. The reference stochastic mean (left three columns) and variance (right three col

IM1, and IM2 in per unit, obtained from QMC with Nr=1.2�106.
the uniform MEgPC with p=[1,4] is larger than that of the uniform
MEPCM with Nc=[2,5], as illustrated in Fig. 19.
3.4. AC power generation and propulsion systems

When the system becomes more complex, as in a shipboard
power system, the order of the mathematical model can increase
tremendously. We investigate now the performance of the best
stochastic algorithms from Monte Carlo and Collocation ap-
proaches with a large-scale system. In this section, the config-
uration of the shipboard power system consists of an AC
generation unit, a main three-phase radial bus, and two induction
motors as the propulsion system. This configuration in Fig. 20
represents a scaled-down version of the power distribution
system of a DDG-51 Navy destroyer [26]. The system consists of
(1) a 3.125 MW Synchronous Machine (SM) driven by a simplified
version of the Allison 501 gas turbine/governor, (2) the IEEE
Type 2 exciter/voltage regulator for controlling the generator’s
voltage, (3) an RL tie-line, and (4) 200-hp and 150-hp Induction
Machines (IM). Containing nonlinearities in both polynomial and
trigonometric forms, this model is composed of 26 ODEs.

In this case, we assume six parameters in the system to be
independent random variables, which includes [r0kq, r0fd, r0kd] of
the synchronous machine, r0r of both induction machines, and rt of
the tie line. All of these random variables, associated with the
uniform distribution, are assumed to vary within 710% of their
nominal values. For this simulation, the generator is assumed to
be initially in its steady-state condition and then suddenly the
th two open-loop induction machines for studying the stochastic analysis with 6

σ
Ψ

σ
ω

ω

σ
Ψ

σ
ω

ω

σ
Ψ

σ
ω

ω

umns) solutions of the q-axis stator flux linkage and normalized rotor speed of SM,
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two induction machines start from rest at 0 s. The start-up
transient of the two motors, similar to the previous section, as
well as an interaction among electric machines can be seen in
Fig. 21 for tA ½0;3� s. At first, the speed of the synchronous
machine drops and then the exciter compensates for an error in
the bus voltage by speeding up the generator before bringing the
synchronous machine’s speed back to its steady-state operation of
one per unit. In the first second, the start-up transient of both
induction machines dies out. Subsequently, the interactions
between synchronous and induction machines are illustrated in
the responses of the q-axis stator flux linkage of all machines. The
variance of all states of both motors contains a high peak directly
before reaching the steady state. This characteristic implies that
the open-loop response, especially immediately after the start-up
transient, is sensitive to the parameter variation. With the closed-
loop control of the exciter, the responses of the synchronous
machine’s variance have a smaller peak magnitude compared
with those of the induction machines.

To study the numerical performance of stochastic algor-
ithms—QMC, FPCM, SPCM, and uniform ME-SPCM—with this
large-scale system, the convergence rate and computational
efficiency are again considered. In this case, the reference solution
is obtained from the QMC with Nr=3�106. The error plots of the
SM q-axis stator flux linkage per second ðCr

qrÞ using the QMC are
shown in Fig. 22. In this system, the algebraic convergence rate of
OðN�1

r Þ is again obtained from the QMC. For the FPCM and SPCM
103 104
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Fig. 22. AC power generation and propulsion systems: for six random dimensions,

the L2 error in x1 or cr
qr is OðN�1

r Þ using QMC.
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Fig. 23. AC power generation and propulsion systems: for six-dimensional random dime

of Oðe�1:8LÞ using SPCM (right).
methods, Fig. 23 illustrates the L2 errors of ðCr
qrÞ. The rate of

convergence per random dimension using FPCM and SPCM is
exponential with Oðe�ð1:8�Nc ÞÞ or Oðe�ð1:8�LÞÞ. From an efficiency
aspect, the computing time per variance accuracy of all
algorithms, illustrated in Fig. 24, can be used for the per-
formance comparison among these stochastic algorithms. For
this large-scale system, the computational cost of the SPCM is an
order of magnitude less than that of the FPCM for the same
accuracy. Furthermore, the SPCM also becomes more efficient
than the QMC in the high-accuracy region. Unlike the results
with the small model in Section 3.2.1, the uniform ME-SPCM
improves the solutions’ accuracy but at a higher computational
cost than the SPCM.
4. Summary and discussion

We have presented several algorithms for solving stochastic
ODEs, with applications to electromechanical power systems. For
simplicity in the implementation we have modeled uncertainties
by uniform random variables, which we assumed to be indepen-
dent. Given the last assumption, we can readily replace the
uniform random variables to other types following a Beta
distribution, an exponential distribution, etc., by employing the
proper polynomial basis from the Askey class of polynomials [15].
The extension to arbitray pdf using numerical procedures to
ε Ψ

ε Ψ

nsions, the L2 errors in x1 or cr
qr are on the order of Oðe�1:8Nc Þ using FPCM (left) and
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Fig. 24. AC power generation and propulsion systems: for six-dimensional

stationary random inputs, the computational time per variance accuracy of the

QMC, FPCM, SPCM, and uniform ME-SPCM methods.
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Table 1
Summary of the best stochastic algorithm for various systems in Section 3.

Section Best stochastic algorithms Comment

3.2.1 (1) FPCM Smooth function and low dimension — good for quadratures

3.2.2 (1) QMC, (2) ME-SPCM Known discontinuities and multi-element may align with discontinuities

3.3 (1) FPCM, (2) ME-FPCM Smooth function and low dimension

3.4 (1) SPCM, (2) QMC Smooth function and dimension is high enough that Nd
c of FPCM is large

Table 2
Summary of the convergence rates for various stochastic algorithms in the case of

continuous and discontinuous stochastic solutions, where c is a constant, related

to the regularity of the solution.

Stochastic

algorithms

Convergence rate for

continuous

Convergence rate for

discontinuous

MC OðN�1=2
r Þ OðN�1=2

r Þ

QMC OðN�1
r Þ OðN�1

r Þ

gPC Oðe�pÞ Oðp�cÞ

FPCM Oðe�ðNc�1ÞÞ OððNc�1Þ�c
Þ

SPCM Oðe�LÞ OðL�cÞ

MEgPC OððN=dÞ�2ðpþ1Þ
Þ OððN=dÞ�c

Þ

ME-PCM OððN=dÞ�2Nc Þ OððN=dÞ�c
Þ
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compute orthogonal polynomials on-the-fly is also possible using
the techniques presented in [32]. However, the extension to
dependent random variables is non-trivial and very little work on
this subject has been done so far, e.g., see [33] and references
therein. Similarly, no work has been done yet on employing mixed
random variables following different pdfs.

Assuming sufficient regularity in the stochastic solutions, both
Galerkin and Collocation approaches of polynomial chaos provide
exponential convergence in the errors of the mean and the
variance; which algorithm performs the best depends on the
problem considered. This fast convergence translates into savings
of orders of magnitude compared with traditional Monte Carlo
methods, for a small number of random dimensions. The use of
sparse grids in the Collocation approach leads to enhanced
efficiency enabling simulation in higher dimensions, but for a
large number of random inputs the Monte Carlo method remains
the most efficient approach. Table 1 summarizes the best
stochastic algorithm for different systems in Section 3.

Table 2 summarizes the convergence rates of these algorithms
for both continuous and discontinuous stochastic solutions. The
convergence rates of all algorithms are described as functions of
their governing parameters and an arbitrary constant (c),
depending on the solution smoothness. The p and Nc or L

parameters of the Galerkin and Collocation techniques are given
per random dimension, where as the total number N of elements
of the multi-element technique is normalized by the random
dimension. Interestingly, the multi-element techniques have
convergence for the discontinuous K–O system that do not
depend on the polynomial order.

In fact, in the presence of discontinuities, both the Galerkin
and Collocation approaches lose their exponential convergence. In
this case, the decomposition of the random space into N

d-dimensional elements provides an effective treatment, espe-
cially if it is combined with adaptive domain decomposition. In the
present paper, we used uniform partitioning of elements, and
realized some improvements in the solution accuracy. In adaptive
domain decomposition, elements that exhibit large local variance
are split into sub-elements according to a pre-specified criterion,
e.g., targeting uniform values of variance everywhere; see [14,22].
This adaptive multi-element procedure is also very effective
for long-time integration as polynomial chaos converges
non-uniformly in time and hence higher resolution is required
to maintain fixed accuracy for all times. This situation is similar to
the numerical discretization of time-dependent partial differen-
tial equations, e.g., in the advection equation, where phase errors
grow in time unless higher resolution is adaptively provided [28].
We have implemented such adaptive multi-element polynomial
chaos procedures for the systems we have considered in the
current paper and preliminary results suggest that the most
effective approach is the multi-element probabilistic collocation
approach (MEPCM); this is also consistent with the findings of Foo
et al. [22]. The precise adaptivity criterion is crucial for a robust
stategy and we are currently working towards this goal; it seems,
however, that using the local variance computed element-wise as
sensitivity index is the most economical approach to adaptive
partitioning.

Finally, we comment on the ‘‘curse-of-dimensionality’’. Poly-
nomial chaos methods are very effective in low dimensions but in
high dimensions their fast convergence degrades very rapidly. The
use of sparse grids alleviates the situation but only slightly, so for
more than 10 or 20 dimensions the Monte Carlo method may be
more efficient for the same accuracy. Recent work in [34,35]
has addressed this issue where polynomial chaos methods are
combined with ANOVA (ANalysis Of VAriance) to truncate
the expansion at some ‘‘effective’’ dimension. Preliminary results
show that the good efficiency of polymial chaos methods can be
extended up to 500 dimensions at least for some classes of
problems. Future work on modeling electromechanical power
systems should address this important issue.
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Appendix A

For the propulsion system, we briefly describe the formulation
of a general mathematical model for the symmetrical three-phase
squirrel-cage induction machines with four poles and three-phase
windings in both the stator and rotor connected in a wye
configuration [29,26]. The governing equations are written in
the qd0 synchronous reference frame (denoted by superscript e).
The voltage equations of the stator and rotor windings can be
written as

ve
qd0s ¼�rsi

e
qd0sþ

oe

ob
T1c

e
qd0sþ

p

ob
ce

qd0s; ð25Þ

v0eqd0r ¼ r0ri0
e
qd0rþ

oe�or

ob
T1c

0e
qd0rþ

p

ob
c0eqd0r ; ð26Þ
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where ve
qd0s, ie

qd0s, cqd0s
e, and v0eqd0r , i0

e
qd0r , c0eqd0r are the stator and

rotor variables of voltage, current, and flux, expressed in a vector

form as fe
qd0s ¼ ½f

e
qs; f

e
ds; f

e
0s�

T and f 0
e
qd0r ¼ ½f

0e
qr ; f

0e
dr ; f

0e
0r �

T , respectively.

The resistance matrices rs and r0r are diag[rs, rs, rs] and diag[r0r, r0r,

r0r]. or and ob are the rotor angular and base velocities; the
synchronous speed oe is the same as ob in the absence of a
controller. The positive direction of stator current is assumed to
be outward from the stator winding. The prime symbol denotes
that the rotor variables are scaled by a stator to rotor turn ratio.

The equations of flux linkage per second are

ce
qd0s ¼�Xlsi

e
qd0sþc

e
mqd; ð27Þ

ce
qd0r ¼X0 lri0

e
qd0rþc

e
mqd; ð28Þ

where the flux leakage matrices Xls and X0lr are diag[xls,xls,xls] and

diag[x0 lr,x0lr,x0 lr]. We write ce
mqd ¼�Xbie

qd0sþArc
e
qd0r , where

Xb ¼ diag½xb; xb;0� with xb ¼ ðxmx0lrÞ=ðxmþx0lrÞ, and Ar ¼ diag½xb=x0lr ;

xb=x0lr ;0�. xm is the mutual inductance of the stator and rotor.

The dynamics of the mechanical subsystem can be written as

por ¼
ob

2H
ðTe�TLÞ; ð29Þ

where Te ¼ce
qsi

e
ds�c

e
dsi

e
qs and TL are the electromagnetic and load

torques, respectively. The p denotes a differential operator. The
rotor inertia (in seconds) is H.

The mathematical model of a three-phase salient-pole syn-
chronous machine, consisting of linear magnetic circuits and
neglecting any saturation [29,26], are described below; this
system is used as the power generation in the power system.
The fields produced by the winding currents are assumed to be
sinusoidally distributed around the airgap, ignoring the space
harmonics. The rotor windings consist of the field winding (fd)
and damper windings (kq and kd), and the stator windings
(qs,ds,0s) are symmetrical. The voltage equations of the stator and
rotor windings expressed in the qd0 rotor reference frame can be
written as the following:

vr
qd0s ¼�rsi

r
qd0sþ

or

ob
T1c

r
qd0sþ

p

ob
cr

qd0s; ð30Þ

v0qdrr¼ r0ri
0r
qdrþ

p

ob
c0rqdr ; ð31Þ

where (vr
qd0s, ir

qd0s, c
r
qd0s) and (v0rqdr , i0

r
qdr , cr

qdr) are the stator and

rotor variables of voltage, current, and flux, expressed in a vector

form as fr
qd0s ¼ ½f

r
qs; f

r
ds; f

r
0s�

T and f 0
r
qdr ¼ ½f

0r
kq; f

0fd
dr ; f

0r
kd�

T , respectively.

The resistance matrices rs and r0r are diag[rs,rs,rs] and diag[r0kq, r0fd,
r0kd]. Again, the T1 matrix is used with voltage terms, induced by
the speed due to a reference frame transformation. The negative
sign in the stator voltage and flux linkage equations represent an
assumption that the positive direction of stator current is outward
from the stator winding.

The equations of flux linkage per second are given below:

cr
qd0s ¼�Xlsi

r
qd0sþc

r
mqd; ð32Þ

cr
qd0r ¼X0lri0qd0rrþT2c

r
mqd; ð33Þ

where the flux leakage matrices Xls and X0lr consequently are
diag[xls,xls,xls] and diag[x0lkq, x0 lfd, x0lkd]. T2 is simply the selection
matrix:

T2 ¼

1 0 0

0 1 0

0 1 0

2
6664

3
7775: ð34Þ
The expression of cr
mqd can be written as the following:

cr
mqd ¼�Xbir

qd0sþArc
r
qdr , where Xb ¼ diag½xbq; xbd;0� with

Xbq ¼ ð1=Xmqþ1=X0lkqÞ
�1 and Xbd ¼ ð1=Xmdþ1=X0lfdþ1=X0lkdÞ

�1:

Ar ¼

Xbq=X0lkq 0 0

0 Xbd=X0lfd Xbd=X0lkd

0 0 0

2
64

3
75: ð35Þ

The dynamics of the mechanical subsystem can be written as

por ¼
ob

2H
ðTpm�TeÞ; ð36Þ

pd¼or�oe; ð37Þ

where Te ¼cr
dsi

r
qs�c

r
qsi

r
ds and Tpm are the opposing electromagnetic

torque and driven torque from the prime mover, respectively.
Again, H denotes the rotor inertia (in seconds). The angle
difference between the the synchronous reference frame and

the rotor rotating frame is represented by d. To transform the
state variables from the rotor to synchronous reference frame,

the transformation matrix (rKe) can be applied to fr
qd0s. Due to the

Hermitian property of this transformation matrix, the inverse
transformation from the synchronous to rotor reference frame is

just the transpose of rKe:

rKe
¼

cosd sin d 0

�sind cosd 0

0 0 1

2
64

3
75: ð38Þ

A combustion engine, either a diesel engine or gas turbine
depending on the size of the vessel, supplies the mechanical
energy to the generator. The size of this combustion engine in the
electric-driven ship is usually smaller than that in the direct
mechanic-driven ship. For the purpose of examining the transient
stability of the power generation unit in the large-scale vessel, a
simplified model of a heavy-duty gas turbine is sufficient for this
study. Based on the mathematical model of the single-shaft gas
turbine in [30], the more simplified model, found in [26], is
mainly composed of the speed governor (SG), valve positioner
(VP), fuel system (FS), and turbine (Tpm). The state equation can be
expressed as the following:

pSG¼
Kc

Tc
1�

or

ob

� �
�

Kc

ob
por ; ð39Þ

pVP¼�
1

TFV
VPþ

1

TFV
ðSGþWF10sÞ; ð40Þ

pFS¼�
1

TFT
FSþ

1

TFT
VP; ð41Þ

where the torque supplied by the turbine shaft is given by the
following relation:

Tpm ¼ C1GT ðFS�C2GT ÞþCGNGT 1�
or

ob

� �
:

All parameters of this model, given in Appendix II, are obtained
from [26] to approximate the Allison 501 gas turbine.

Furthermore, the exciter/voltage regulator, controlling the
field winding of the synchronous generator, is modeled according
to a simplified model of the IEEE type 2 [31]. This type of exciter is
typically accepted in the industry due to the model’s simplicity.
Three main components of this exciter are an independent power
supply, a self-excited shunt field, and a stabilization feedback
associated with gains and time constants. However, we neglect
the nonlinear saturation in the shunt field. The state equations for



ARTICLE IN PRESS

Table 7
Parameters of the RL tie-line in per unit.

rt Lt Mt

0.005 0.01 0.004
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this type of exciter can be described as the following:

pVR ¼�
1

TA
VRþ

KA

TA
ðVref�Vt�VstabÞ; ð42Þ

pEfd ¼�
KE

TE
Efdþ

1

TE
VR; ð43Þ

pVf ¼
KF

TF1
VR�

1

TF1
Vf ; ð44Þ

pVstab ¼�
1

TF2
Vstabþ

1

TF2

KF

TF1
VR�Vf

� �
: ð45Þ

All parameters of this exciter model are given in the per unit
system in Appendix I. In this case, Vref is fixed at a constant voltage
of 1 p.u. and Vt is a magnitude of the generator’s stator voltage. Ki

and Ti, respectively, represent the gain and time constant
corresponding to each subcomponent.

To connect electric machines together, a three-phase transmis-
sion line can be modeled as a symmetrical, three-phase, series RL
circuit. This series RL circuit includes resistor (rt), self inductance
(Lt) from line leakage and magnetizing inductance, and mutual
inductance (Mt) from coupling of each line. The equations for the
three-phase RL tie line in the qd0 synchronous reference frame are

pie
qd0t ¼ L�1

qd0tðvqd0t�rti
e
qd0t�oeLqd0tT1ie

qd0tÞ; ð46Þ

where vqd0t represents the voltage difference between two
different buses or machines.
Appendix B

Please see Tables 3–7.
Table 4
Parameters of the 3.125 MW synchronous generator [26] in per unit with

Vbase=450 V.

rs r0kq r0 fd r0kd Xls X0 lkq

0.00515 0.0613 0.00111 0.02397 0.8 0.3298

X0 lfd X0 lkd Xmq Xmd H

0.13683 0.33383 1.0 1.768 2.137

Table 5
Parameters of the IEEE type 2 exciter/voltage regulator [31,26] in per unit.

TR VREF KA TA VRMAX VRMIN

0 1 400 0.01 8.4 0

KF TF1 TF2 KE TE

0.01 0.15 0.06 1 0.1

Table 6
Parameters of the simplified gas turbine with speed governor [26] in per unit.

Kc Tc TFV TFT WF10s C2GT C1GT CGNGT

22.5 0.55 0.01 0.05 0.23 0.251 1.3523 0.5

Table 3
Parameters of the induction machines [26] in per unit with Vbase=450 V.

Hp rs Xls Xm X0 lr r0r H

200 0.01 0.0655 3.225 0.0655 0.0261 0.922

150 0.0051 0.00553 2.678 0.0553 0.0165 1.524
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