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Abstract—In this work we employ integer- and fractional-
order viscoelastic models in a one-dimensional blood flow
solver, and study their behavior by presenting an in-silico
study on a large patient-specific cranial network. The use of
fractional-order models is motivated by recent experimental
studies indicating that such models provide a new flexible
alternative to fitting biological tissue data. This is attributed
to their inherent ability to control the interplay between
elastic energy storage and viscous dissipation by tuning a
single parameter, the fractional order a, as well as to account
for a continuous viscoelastic relaxation spectrum. We per-
form simulations using four viscoelastic parameter data-sets
aiming to compare different viscoelastic models and highlight
the important role played by the fractional order. Moreover,
we carry out a detailed global stochastic sensitivity analysis
study to quantify uncertainties of the input parameters that
define each wall model. Our results confirm that the effect of
fractional models on hemodynamics is primarily controlled
by the fractional order, which affects pressure wave propa-
gation by introducing viscoelastic dissipation in the system.

Keywords—1D blood flow, Viscoelasticity, Fractional-order

constitutive laws, Global stochastic sensitivity.

INTRODUCTION

The vascular wall is a heterogeneous soft tissue with
complex bio-mechanical properties that vary over dif-
ferent locations in the arterial tree and the temporal
state of the response (deformation/relaxation). It is
comprised of three different layers: the intima (mainly
endothelial cells), the media (mainly smooth muscle
cells), and the adventitia (mainly collagenous fibers).12

This structure highlights two key functions, namely,
reversible energy storage (elasticity) and energy dissi-
pation (viscosity).

Constitutive laws for biological tissue can be derived
using integer-order differential equations that model
stress–strain relations using additive combinations of
purely elastic and viscous elements.12 The simplest
integer-order models of linear viscoelasticity are the
Voigt and standard linear solid (SLS or Kelvin–Zener)
models.10 The Voigt model can be constructed by the
parallel combination of a spring and a dashpot and it is
the simplest model that accounts for creep and hys-
teresis phenomena. Similarly, the SLS model is con-
structed using the parallel combination of a spring with
a spring and a dashpot in series, and it accounts for
creep, hysteresis and stress relaxation phenomena.

Due to their simplicity, these models have been used
in several 1D blood flow studies to describe arterial
wall viscoelasticity.1,4,8,22,23,28 In Alastruey et al.,1 a 1D
model employing a Voigt viscoelastic model is assessed
in comparison with in vitro measurements of flow in 37
silicone branches representing the largest central sys-
temic arteries in the human. In Reymond et al.,23 a
more generalized integer-order viscoelastic model is
considered, and 1D simulations are compared against
in vivo measurements in a patient-specific network of
94 large systemic arteries. Both studies show good
agreement between simulations and measured data,
indicating that 1D models may capture the most sig-
nificant features of the pulsatile flow and pressure
waveforms. However, they mainly focus on larger
systemic arteries, where the arterial wall response is
known to be predominantly elastic,5,6 whereas the
effect of wall viscoelasticity on hemodynamics is minor
and only manifested in distal locations,23 where the
arterial wall appears to be more muscular.

Fung’s quasi-linear viscoelasticity (QLV) theory12

provides a path to constructing integer-order models
that accurately capture the time-depended response of
the arterial wall; however, estimating the elastic and
viscoelastic parameters that define these models in
different anatomic locations still remains a very chal-
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lenging task. In particular, one needs to address the
lack of clinical data, the local and patient-specific
nature of parameter values, the dynamic variation that
parameters such as the Young’s modulus E may
exhibit during the cardiac cycle, etc. Also, as reported
in Doehring et al.,9 the sensitivity on these parameters
(especially the long viscoelastic relaxation time) is high.
These are key limiting factors for considering integer-
order QLV models in 1D blood flow simulations of
large arterial networks with high spatial variability in
mechanical properties and presence of regions where
the viscoelastic response of the wall may be significant.

An alternative approach to modeling the viscoelas-
tic behavior of arteries based on fractional calcu-
lus17,18,20 has been introduced in Craiem and
Armentano,5 Craiem et al.,6 and Doehring et al.,9

where the cell and tissue biomechanics are modeled by
fractional-order differential equations. Under this
framework, a spring represents a zero-order element
(purely elastic response) and a dashpot corresponds to
a first-order element (purely viscous response). A
fractional order 0< a < 1 results in a new flexible
element type, the so-called spring-pot,17 which essen-
tially interpolates between the purely elastic and vis-
cous behaviors and can be thought of as a large set of
weighted integer-order spring/dashpot pairs arranged
in parallel.19 This gives rise to a very interesting
physical interpretation: the fractional order introduces
a fractal tree-like hierarchical structure, naturally
allowing for separation of material and global time
scales (see Doehring et al.,9 Fig. 1). In contrast to the
discrete relaxation spectrum of linear Voigt and SLS
integer-order models, fractional-order models exhibit a
continuous relaxation distribution, spanning all fre-
quencies above zero, up to infinity. Therefore, frac-
tional-order models can be naturally put under the
context of QLV and be considered as good candidates
for modeling biological tissue, which in reality shows
continuous relaxation.12

Recent experimental studies have confirmed the
ability of fractional-order models to capture the
dynamic response of the vascular wall. Specifically, in
Craiem and Armentano5 the authors proposed a
fractional-order Voigt model (FO-Voigt) and accu-
rately described the viscoelastic mechanical response of

the aorta of a sheep in-vivo with a minimal set of
estimated parameters. Also, in Craiem et al.,6 uniaxial
loading experiments were performed to strips cut from
healthy human aortas, and a FO-Voigt model was
successfully fitted to measured stress–relaxation data.
Similarly, in Craiem et al.,7 FO-Voigt and fractional-
order SLS (FO-SLS) models were calibrated to accu-
rately reproduce in-vivo data from ascending aorta
segments of four human donors. In Doehring et al.,9 a
fractional stress relaxation function corresponding to a
FO-SLS model was integrated in the QLV framework
to successfully model aortic valve cusp biomechanics,
while demonstrating significantly lower sensitivity on
the input parameters as compared to a standard QLV
model with a continuous relaxation spectrum. These
recent findings indicate that fractional order models
may offer a new powerful alternative for describing
arterial wall mechanics, reducing the parameter esti-
mation count and overcoming the sensitivity limita-
tions of integer-calculus-based QLV models.

In this paper, we present a nonlinear, time-domain
1D blood flow formulation integrated with integer-
and fractional-order viscoelastic wall models. We per-
form blood flow simulations in a large patient-specific
network and compare integer- and fractional-order
SLS models, calibrated with experimental data
reported in the literature. Our main scientific goal is to
quantify the effect of the fractional-order and the vis-
coelastic relaxation response on the computed flow and
pressure wave propagation. Finally, we present a glo-
bal sensitivity analysis study for which we have con-
sidered a stochastic fractional-order SLS model by
introducing uncertainty in the parameters that define
its viscoelastic behavior.

METHODS

The derivation of a model describing viscous 1D
incompressible flow in a compliant tube is based on the
assumptions of axial symmetry, dominance of the axial
velocity component, radial displacements of the arte-
rial wall, and constant internal pressure on each cross
section (see Fig. 1). This formulation leads to a non-
linear hyperbolic system of equations that yields con-
servation of mass and momentum in space–time
(A, U) variables (for a detailed analysis see Formaggia
et al.11 and Sherwin et al.25)

@A
@t þ

@ðAUÞ
@x ¼ 0

@U
@t þU @U

@x ¼ � 1
q
@p
@xþ Kr

U
qA;

(
ð1Þ

where x is the axial coordinate across the vessel’s
length, t is time, A(x, t) is the cross-sectional area of
the lumen, U(x, t) is average axial fluid velocity,FIGURE 1. Flow in a 1D compliant tube (from Sherwin et al.25).
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Q(x, t) = AU is the mass flux, p(x, t) is the internal
pressure averaged over the tube’s cross-section,
Kr = 222lp is a friction parameter that depends on
the velocity profile chosen,27 and l is the blood vis-
cosity. Here, we assume a constant blood viscosity
since Non-Newtonian effects are known to be minor in
larger systemic arteries.11,24 Introducing a profile that
satisfies the no-slip condition we can recover the axi-
symmetric fluid velocity u(x, r, t)

uðx; r; tÞ ¼ U
fþ 2

f
1� r

R

� �f
� �

; ð2Þ

where, R(x, t) is the lumen radius, f is a constant, and
r is the radial coordinate. Following Smith et al.,27

f = 2 returns the standard Poiseuille flow profile, while
f = 9 gives a good fit to experimental blood flow data.

In order to solve Eq. (1) for (A, U), we need to
provide a pressure–area relation.11,25 The most basic
and popular choice is based on the purely elastic tube
law, in which stress r and strain e are related as

rðtÞ ¼ E�ðtÞ; ð3Þ

where,

r ¼ rðp� pextÞ
h

and � ¼ 1

1� m2
r� r0
r0

ð4Þ

Here, pext is the external pressure on the arterial wall,
E is the Young modulus of the wall, h is the wall
thickness, m is the Poisson ratio, and r0 is the lumen
radius corresponding to a reference cross-sectional
area A0 = pr0

2 at equilibrium state (p, U, A) =

(pext, 0, A0).
Substituting Eq. (4) in Eq. (3) we arrive at the purely

elastic pressure–area relation

p ¼ pext þ bð
ffiffiffiffi
A
p
�

ffiffiffiffiffiffi
A0

p
Þ; ð5Þ

where b is defined assuming that 1ffiffiffi
A
p can be approxi-

mated by 1ffiffiffiffi
A0

p :

b ¼
ffiffiffi
p
p

Eh

ð1� m2ÞA0
ð6Þ

While one can employ more realistic nonlinear
elastic stress–strain laws,29 in this study we aim to
study the sensitivity of the flow with respect to visco-
elasticity. To this end, we choose to model elastic
behavior using the simple elastic tube law of Eq. (5)
that has been extensively used in the literature.1,11,13,25

Viscoelastic Models of the Arterial Wall

Fung’s QLV theory12 provides a unifying framework
under which general soft tissue constitutive laws can be
formulated. Such models are often characterized by a

constant hysteresis over a wider frequency range. Based
on this approach we have a stress–strain relation of the
form

rðx; tÞ ¼
Z1
0

Gðt� cÞ @�
eðx; cÞ
@c

dc; ð7Þ

where G(t) is the stress relaxation function and
ee(x, t) is the static elastic response of the tissue. The
presence of the convolution integral in Eq. (7) makes
the stress depend upon the strain time history, but it is
the choice of the stress relaxation function that ulti-
mately determines the tissue model. Typically, one
introduces a parametric representation of G(t) that fits
given experimental measurements.28,29 In the following
sections we present the fractional-order SLS model and
its implementation in a one-dimensional blood flow
solver.

The Fractional SLS Model
(Fractional Kelvin–Zener Model)

Before we present the fractional version of the SLS
model, we start with the classical definition of the
Caputo fractional derivative of order a18

C
0D

a
t fðtÞ :¼

1
Cðn�aÞ

Rt
0

fðnÞðsÞ
ðt�sÞaþ1�n ds; n� 1<a<n

dnfðtÞ
dtn ; a ¼ n

8><
>: ; ð8Þ

where a > 0 is a real number, n is an integer, and Cð�Þ is
the Euler gamma function. We note that for a „
n, the Caputo derivative is a non-local operator that
depends on the history of f in the interval [0,t].

The fractional order generalization of the SLS
model is constructed using the parallel combination of
a spring with a spring in series with a spring-pot. The
stress is related to strain as

rðtÞ þ sa
r
C
0D

a
t rðtÞ ¼ E �ðtÞ þ sa

�
C
0D

a
t �ðtÞ

h i
ð9Þ

We observe that simpler fractional- and integer-order
viscoelastic models as well as the purely elastic tube
law appear as limiting cases in the above equation.
Namely, for a = 1, we recover the classic integer-order
SLS model, while taking sr = 0 results to the frac-
tional-order Voigt model.

Thermodynamic consistency of the FO-SLS model
requires a monotonically decreasing stress relaxation
function, which further implies that the fractional time
derivatives of both the stress and the strain must be of
the same order a.2,19

By employing the Laplace transform, we can express
the FO-SLS stress relaxation function as
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GðtÞ ¼ E
s�
sr

� �a

þE s�
sr

	 
a

�1
� �

Ea;1 �
t

sr

	 
a� �
; ð10Þ

where Ea,b(t) is the two parameter Mittag-Leffler
function, known as the fractional generalization of the
exponential

Ea;bðtÞ :¼
X1
n¼0

tn

Cða� nbÞ ð11Þ

Compared to the standard exponential function, the
Mittag-Leffler function exhibits very different behav-
ior18: for small times it exhibits a much faster decay
than the exponential, while at the limit t fi ¥ the
decay is only algebraic. This heavy tail decay is what
characterizes the Mittag-Leffler function as a super-
slow process.18

Another important observation here is that for the
FO-SLS model the idea of relaxation times must be
revised. Under the fractional setting, they no longer
represent single discrete relaxation frequencies but they
should be rather be interpreted as break-frequencies in
a Cole–Cole model sense, around which the model
characteristics change.19

Finally, by substituting the FO-SLS stress relaxa-
tion function of Eq. (10) in Eq. (7), integrating by parts
and employing the definitions in Eq. (4) we arrive at
the FO-SLS pressure–area relation

pðx; tÞ ¼ pext þ pEðx; tÞ þ pVðx; tÞ; ð12Þ

where pE, pV correspond to the elastic and viscoelastic
pressure contributions, respectively.

pEðx; tÞ ¼ s�
sr

� �a

bð
ffiffiffiffi
A
p
�

ffiffiffiffiffiffi
A0

p
Þ

pVðx; tÞ ¼ 1

sr
1� s�

sr

	 
a� �Z t

0

Ea;0 �
t� c
sr

	 
a� �
pEðcÞdc

ð13Þ

We observe that the FO-SLS model introduces
stress–strain memory effects that in the long time limit
decay algebraically due to the Mittag-Leffler relaxation
kernel.18 It is important to note here that thanks to the
linearity of the time-fractional ODE governing the
fractional-order SLS model (Eq. (9)), the Laplace
transform allows us to arrive to Eq. (12), which cor-
responds to the exact solution of Eq. (9).

An alternative way of formulating the required
pressure–area relation arises from directly discretizing
the Caputo time derivatives in the fractional constitute
law that defines each model using an appropriate dis-
cretization technique. The easiest and most popular

way of doing this is by employing the Grünwald–
Letnikov formula20:

C
0D

a
t fðtÞ ¼ lim

Dt!0
Dt�a

X1
k¼0

GLa
kfðt� kDtÞ;

GLa
k :¼ k� a� 1

k
GLa

k�1;

ð14Þ

with GL0
a = 1. By substituting the Grünwald–Letnikov

formula in Eq. (9), we can formulate the pressure–area
relation for the FO-SLS model as

pðx; tÞ ¼ pextþ
1þ sa

�Dt
�a

1þ sa
rDt

�a
pEðx; tÞþ Dt�a

1þ sa
rDt

�a

�
X1
k¼0

GLa
k sa

�p
Eðt� kDtÞ� sa

rpðt� kDtÞ
� �

;

ð15Þ

where the last term in the summation is the total elastic
and viscoelastic pressure from previous time steps.

An attractive feature of this approach is that for a
small time step Dt; which is typically the case for the
high-order polynomial approximations employed here
(due to the Courant–Friedrichs–Lewy (CFL) condi-
tion), the Grünwald–Letnikov coefficients exhibit fast
decay properties. This enables us to reduce the com-
putation of the convolution sum in Eq. (15), by using a
‘‘short memory’’ principle,20 and approximate the
viscoelastic memory effects using only a portion of the
response history, disregarding any terms in the Grün-
wald–Letnikov expansion that are below a cutoff
threshold. However, the elastic behavior of larger
systemic arteries typically corresponds to low values of
the fractional order,5,6 and the accurate evaluation of
these convolutions using the ‘‘short memory’’ principle
requires one to consider history effects from the last four
cardiac cycles. Our numerical experiments indicate that
this is the minimum amount of time-history required by
the Grünwald–Letnikov formula to give numerically
stable and convergent results for the problem consid-
ered. With our goal being the long-time integration of
Eq. (1), using a time step as low as Dt ¼ 10�6; and with
each cardiac cycle being about 1 s long, this results to
storing at least 4 9 106 values per history point. This
value, in combination with the requirement to compute
a convolution sumat each quadrature point and for each
time step, renders the simulation completely unrealistic
even on modern supercomputers. In ‘‘Evaluation of
Hereditary Integrals’’ section, we will present a formu-
lation that alleviates the computational complexity
introduced by fractionality, and finally arrive at a
computable workflow that employs the exact solution of
Eq. (9) and accounts for the full time history in the
evaluation of hereditary integrals.
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Numerical Method

The system of is hyperbolic and can be discretized in
space using the Discontinuous Galerkin method.25

Here, we present a brief outline of the numerical
method first introduced in Sherwin et al.25 The system
of Eq. (1) can be written in conservative form as

@U

@t
þ @FðUÞ

@x
¼ SðUÞ; U ¼

A

U

	 

;

F ¼
AU

U2

2 þ
pE

q

" #
þ

0
pV

q

" #
; SðUÞ ¼

0

�22lp U
qA

" # ð16Þ

The computational domain X consists of arterial
segments, which can be divided in Nel elemental non-
overlapping regions Xe ¼ ðxLe ; xRe Þ; such that xe

R =

xe+1
L for e = 1, …, Nel. The solution in each element is

approximated by an expansion of orthogonal Legen-
dre polynomials. Under the Discontinuous Galerkin
formulation, the solution may be discontinuous across
elemental interfaces, with global continuity being
recovered by solving a Riemann problem for the
upwinded flux F that propagates information between
the elemental regions and the bifurcations of the sys-
tem. At the inlet and outlet boundary elements, the
fluxes are upwinded by means of the boundary con-
ditions; the hyperbolic nature of the system requires
only one boundary condition at each terminal end.
Finally, time-integration is performed using a standard
second-order accurate Adams–Bashforth scheme.25

At bifurcation and junction points of the network
we require continuity of the characteristics (Riemann
invariants), conservation of mass and continuity of
total pressure (see Sherwin et al.25 for a detailed ana-
lysis). Terminal vessels are typically coupled to 0D
lumped parameter models. Here we employ a
3-parameter Windkessel model, in which we need to
a-priori specify the total peripheral resistance down-
stream of the outlet Rt, and a corresponding compli-
ance C, based on parameter estimation or clinical
measurements.11

It is important to note that viscoelasticity adds
dissipation, leading to a system that is no longer
strictly hyperbolic. However, the conservative elastic
contribution is still dominant, thus allowing us to
employ the aforementioned Discontinuous Galerkin
methodology without any numerical issues. We have
observed that in cases in which the viscoelastic
response is significant (integer-order models or frac-
tional models with a close to 1.0) and the relaxation
times ratio s�

sr
becomes too large, the scheme becomes

unstable. In such cases, due to the explicit nature of
our method, stability is only recovered by decreasing
the time-step sufficiently so that it resolves the viscous
time scale. Alternatively, this issue could be alleviated

by using a total variation diminishing (TVD) implicit
time integration scheme,26 however at the expense of
increased computational cost and implementation
complexity.

Evaluation of Hereditary Integrals

A major computational challenge in considering
viscoelastic models is posed by the need to evaluate the
convolution integral in the expression for the visco-
elastic pressure component, pV(t). This evaluation
quantifies the stress–strain memory dependencies and
needs to be repeated at every time step, and for every
quadrature point of the domain. A naive implemen-
tation of this operation scales quadratically with the
number of time steps, introducing a major computa-
tional bottleneck, both in terms of floating point
operations and memory requirements. Here, we briefly
present the methods and techniques we employed in
this work to alleviate this issue and obtain a comput-
able workflow.

Integer-Order SLS Model Following the approach
of Steele et al.,28 we explore the properties of the classic
SLS exponential relaxation kernel and derive a simple
updating rule that is independent of the time history
imposed by the convolution operator.

ItþDt¼
ZtþDt

0

e�
ðtþDt�cÞ

sr pEðcÞdc¼ e�
Dt
srItþ

ZtþDt

t

e�
ðtþDt�cÞ

sr pEðcÞdc;

ð17Þ

where the last term corresponds to the time interval
½t; tþ Dt� and can be computed using standard quad-
rature rules. This effectively allows us to consider the
full history of the arterial wall response, without
introducing any computational or memory bottleneck,
as only the solution from the last time step needs to be
stored.

Fractional-Order Models Due to the presence of
power law (FO-Voigt model) or Mittag-Leffler
(FO-SLS) relaxation kernels, fractional-order models
do not admit the separability concept introduced
above to obtain a simple updating rule for the hered-
itary integral. However, one can still avoid the ‘‘brute
force’’ computation by appropriately choosing a smart
algorithm. Here, we have employed the method
developed by Lubich and Schädle.15 Assuming that the
convolution kernel is analytic for t> 0 and locally
integrable, López-Fernández et al.,14 have proved that
this method computes the convolution integral with
spectral accuracy.

The key advantages of this algorithm is that it only
requires Oðn log nÞ operations and OðnÞ memory,
compared with the Oðn2Þ operations and memory
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needed by a ‘‘brute force’’ approach for computing
convolutions with n steps of history. Another advan-
tage is that, for the FO-SLS model, we avoid the direct
numerical approximation of the Mittag-Leffler func-
tion, and we only need to evaluate the Laplace trans-
form of its derivative.15

We also report that in simulations where we adop-
ted a ‘‘brute force’’ approach for computing Eq. (12),
and directly evaluated the Mittag-Leffler function
using the algorithm by Podlubny,21 the solver suffered
from instabilities triggered by errors in the approxi-
mation of the Mittag-Leffler function, with stability
being recovered only when the function was approxi-
mated to very high accuracy. Since here we are inter-
ested in long-time integration of Eq. (1), direct
approximation of the Mittag-Leffler function for long
times and at the required level of accuracy is further
problematic as it introduces a significant computa-
tional cost.

In the next section we present patient-specific sim-
ulation results of the 1D model in Eq. (1), coupled to
purely elastic (Eq. (3)), and the SLS and FO-SLS
(Eq. (12)) viscoelastic models. Integer- and fractional-
order Voigt models are just limiting cases of the
FO-SLS model and will be omitted from our attention
in what follows.

RESULTS

Simulation Setup

All simulations were performed for a large patient-
specific network that provides a detailed geometrical
representation of the 50 largest arteries in the human
brain, see Fig. 2. The data was obtained at the
Department of Neurosurgery at Children’s Hospital,
Boston MA, USA. First, the 3D geometry was
reconstructed from high-resolution magnetic reso-
nance images (MRI) using an ‘‘in house’’ developed
software package, and then, the 1D domain was
extracted from the centerlines of the 3D vasculature.
Consequently, the 1D representation considers arteries
as straight tapering tubes, preserving the mean diam-
eter and length of each of the 3D segments, while
omitting curvature as well as bifurcation and junction
branching angle information. The exact dimensions,
model parameters and details of the reconstruction
process for this network are given in Grinberg et al.13

Flow is driven from PC-MRI flowrate measure-
ments at the four inlets (see Fig. 2): internal carotid
(ICA) and vertebral (VA) arteries.13 The 21 distal
outlets are coupled to 3-element Windkessel models
with parameters obtained from Grinberg et al.13 Given
the unavailability of pressure data measurements, these
parameters are generally hard to estimate and may

have a significant effect on the flow characteristics,
leading to even incorrect results.23 Here, we have
observed that the chosen data set leads to low sensi-
tivities and a physiologically correct solution for our
case of interest (see Grinberg et al.13). The purely
elastic response of the arterial wall is quantified by the
b parameter, the values of which have also been taken
from Grinberg et al.13

Regarding spatial discretization, the number of DG
elements is primarily chosen with respect to the vessel’s
length. Mesh refinement is performed in regions of
high flow gradients, with the final choice of the local
polynomial order used (typically 3–8) resulting from
mesh independence studies that ensure accurate reso-
lution of the flow dynamics. Following Grinberg
et al.,13 we have a system with 200 degrees of freedom,
and the computed solution does not depend on further
resolution refinement. The initial conditions for all
simulations are (A, U)t=0 = (A0, 0), and convergence
to a periodic solution is obtained after two cardiac
cycles. To ensure stability we have chosen a very small
time-step Dt ¼ 6� 10�6s; a consequence of the high
polynomial order that leads to a strict CFL condition
and the viscoelastic dissipation introduced by the wall
response. The computation of one cardiac cycle takes
30 s for elastic or integer-order viscoelastic models, and
15 min for fractional-order models (on a desktop with
eight cores of Intel Xeon E5607@2.27 GHz).

Comparison of Integer- and Fractional-Order
Viscoelastic Models

We have performed 1D blood flow simulations in
the aforementioned cranial network using the integer
order SLS, and the fractional order SLS pressure–area
relation defined in Eqs. (12) and (13). The integer-
order SLS pressure–area relation is determined by the
triplet {b, se, sr}, while, its fractional-order counter-
part, is described by {b, a, se, sr}. The nature of these
parameters is patient-specific and their values vary
among anatomic locations, pathologies, age, etc.3

Moreover, their accurate estimation in the clinical
setting for various locations in an arterial network is a
very challenging task. This leads to a very scarce
selection of measured data in the literature, mostly
corresponding to the aorta, the carotids and femoral
arteries under ex-vivo or in-vivo conditions.

In this study, we have chosen four different relaxa-
tion time parameter sets from the literature, two for
the integer order SLS and two for the fractional-order
SLS model. The first set (model SLS1) corresponds to
the estimations of Valdez-Jasso et al.,29 where an
integer-order SLS model was calibrated to fit measured
data for the thoracic descending aorta and the carotid
artery under ex vivo and in vivo conditions in ovine and
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human arteries. The second set (model SLS2) employs
the parameters reported by Lundkvist et al.16 for a
healthy human femoral artery under ex vivo condi-
tions. The third set (model FO-SLS1) is based on the
measurements of Doehring et al.,9 where a fractional-
order SLS model was calibrated to ex vivo data for
porcine aortic valve cusps. Finally, the fourth set
(model FO-SLS2) corresponds to the mean values
predicted by Craiem et al.7 for a fractional-order SLS
model fitted to in-vivo data from human ascending
aorta segments. For comparison purposes we have also
included the results obtained in Grinberg et al.13 using
the 1D model with a purely elastic pressure–area
relation (model Elastic). Since our goal here is the
comparison of different viscoelastic models, we have
kept the same elasticity parameters reported in Grin-
berg et al.13 for all cases considered. Table 1 summa-
rizes the viscoelastic models we have employed in this
section and their corresponding parameters.

In Figs. 3 and 4 we present the computed wave-
forms for flowrate and pressure as well as the pressure–
area hysteresis loops due to viscoelastic dissipation at
representative locations of the arterial network. We
observe that all wall models except SLS2 lead to very
similar flowrate wave propagation. However, with
each model introducing a different amount of visco-

elastic dissipation (see Fig. 4), the resulting local
pressure waves present a variability up to 15%,
although all models predict a very similar pressure
drop between the inlets and the outlets. This is some-
what expected since the wall response is predominately
elastic for all cases. The integer-order viscoelastic
models correspond to a fractional order of a = 1.0, yet
a strong viscoelastic behavior is not observed due to
the chosen relaxation times se £ 2sr in both SLS1 and
SLS2. Similarly, the relatively low values of the frac-
tional order a in the FO-SLS1 and FO-SLS2 models
leads to a dominant elastic response. Note, however,
that the change in relaxation times from model SLS1
to SLS2 results to a significant change in the local
pressure wave in each vessel (see Fig. 4), with the SLS2
model producing a stiffer response and predicting
much smaller cross sectional wall displacements. This
finding highlights the parametric sensitivity of the
integer order SLS model: the discrete relaxation times
{se, sr} dictate the viscoelastic wall response and
strongly depend on the anatomic location. This
dependence on the relaxation times introduces a caveat
for using the integer order SLS model in simulations of
large patient-specific arterial networks for which we
only hope to have an estimate of se and sr at few
limited anatomic locations.

On the other hand, the behavior of the fractional
models is dictated by the fractional order a which
controls the interplay between elastic energy storage
and viscoelastic dissipation. To better understand the
role of a we red consider a FO-SLS model and vary the
fractional order between 0 £ a £ 1 while keeping the
same relaxation timescales with the SLS1 model:
se = 0.050 s and sr = 0.025 s. In Fig. 5 we present the
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FIGURE 2. Left: Patient-specific cranial network from Grinberg et al.13 Right: PC-MRI flowrate measurements at the four inlets (L.
ICA, R. ICA, L. VA, R. VA).

TABLE 1. Viscoelastic model parameters.

Model se (s) sr (s) s�
sr

a

SLS1 (Valdez-Jasso et al.29) 0.050 0.025 2.00 –

SLS2 (Lundkvist et al.16) 29.3 16.9 1.49 –

FO-SLS1 (Doehring et al.9) 1.84 0.076 24.12 0.29

FO-SLS2 (Craiem et al.7) 11.74 7.61 1.54 0.20
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computed pressure wave at the left internal carotid
artery (L. ICA) and the resulting pressure–area hys-
teresis loops for different values of a along with the
purely elastic and integer order viscoelastic response.
As expected, for a = 0 we recover the purely elastic
stress–strain response, while a = 1 returns the solution
of the integer order SLS1 model. For a £ 0.5 the
response is predominately elastic and the solution is
insensitive to the choice of relaxation times, with vis-
coelastic dissipation being only observed for large
relaxation times ratio (see Fig. 4 for model FO-SLS1).
Increasing the fractional order, the viscoelastic
response becomes more important and the choice of
relaxation times has a significant impact on the com-
puted solution, both in terms of the pressure waveform
and the amount of dissipation introduced in the
system. This is illustrated in Fig. 5, where we have
included results for the FO-SLS model with a larger
relaxation time ratio s�

sr
¼ 4; while keeping the same

short relaxation time sr = 0.025 s. This results to a
pronounced viscoelastic response that noticeably
affects the pressure wave propagation and the pressure–
area hysteresis loops.

For a = 1.0 the fractional-order SLS model repro-
duces the integer-order SLS model behavior and suf-
fers from the same sensitivities. However, experimental
studies in Craiem and Armentano,5 Craiem et al.,7 and

Doehring et al.9 suggest that a � 0:1� 0:3 for larger
systemic arteries, while they relate higher fractional
orders to smooth muscle activation, which is a key flow
auto-regulation agent in arteriolar networks. This may
well indicate that muscular small arteries and arterioles
exhibit higher fractional orders. Our simulations indi-
cate that for a 2 [0.0, 0.8], the effect of the FO-SLS
model on the computed blood flow is primarily
determined by the fractional order a with low sensi-
tivity on the relaxation times ratio used.

Global Sensitivity Analysis of the Stochastic Fractional
SLS Model

We consider a stochastic fractional order SLS model
in which a; s�

sr
; and sr are uniformly distributed

random variables with value range taken from the
literature: a 2 ½0; 1�; s�

sr
2 ½1; 2�; and sr 2 [0.02,20.0].

The corresponding three-dimensional parametric
space is discretized with the probabilistic collocation
method (PCM) on a tensor product grid generated
by the nodes and weights of Legendre polynomials.31

The number of collocation points per random dimen-
sion is 8, leading to a total of 512 sampling points. The
simulation ran in parallel on 2048 cores of BG/Q,
resulting to a total runtime of 1 h for three cardiac
cycles.
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FIGURE 3. Comparison of the four viscoelastic model parameter sets in Table 1 over one cardiac cycle: Top left—computed
flowrate at outlet # 23. Top right—computed flowrate at outlet # 29. Bottom left—computed flowrate at outlet # 44. Bottom
right—computed flowrate at outlet # 50.
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In Figs. 6 and 7 we present the computed mean
flowrate and pressure wave ± 1 standard deviation for
two representative locations in the network. The
flowrate wave shows a deviation of less than 5% from
the mean, indicating that wall viscoelasticity has a
minor effect on its propagation. This fact is also in
agreement with the results obtained when comparing
the integer and fractional-order SLS models (Fig. 3).
On the contrary, the pressure waveform displays sig-
nificant variations primarily with respect to the frac-
tional order a, but also with respect to the relaxation
times ratio when a fi 1 and the viscoelastic behavior is
pronounced. This identifies the role of viscoelastic

response as an agent that regulates pressure wave
propagation by introducing viscoelastic energy dissi-
pation. This effect is expected to be more pronounced
in distal locations where arteries are more muscular
and the associated fractional orders are high.

To further investigate the parametric sensitivity of
pressure wave propagation on viscoelasticity we have
performed a global stochastic sensitivity analysis study
by computing the standard ANOVA decomposition32

of the time-depended solution. Figure 8 shows the
contribution of each random parameter and their
second-order interactions to the total variance of the
solution corresponding to the pressure at one of the
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FIGURE 4. Comparison of the four viscoelastic model parameter sets in Table 1 over one cardiac cycle: Top left—computed
pressure at one of the inlets (L. ICA). Top right—computed pressure at outlet # 29. Bottom left—computed pressure–area hys-
teresis loop at one of the inlets (L. ICA). Bottom right—computed pressure–area hysteresis loop at outlet # 29.
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FIGURE 5. Computed pressure (left) and pressure–area hysteresis loop (right) at one of the inlets (L. ICA) for different values of
the fractional order 0 £ a £ 1 and sr 5 0.025 s, s�

sr
¼ 2: The dashed line corresponds to the integer-order model SLS1 (recovered for

a 5 1.0) with a larger relaxation times ratio: sr 5 0.025 s, s�
sr
¼ 4.
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inlets (L. ICA). Clearly, the fractional order a is the
most important parameter, with maximal influence
during the systolic phase. This confirms the results
presented in the previous sections, illustrating the
effect of viscoelastic dissipation (introduced by
increasing the fractional order) on the local pressure
wave. The second most important parameter is the
relaxation times ratio s�

sr
: In a similar fashion, a larger

ratio introduces viscoelastic dissipation which, in turn,
affects the local pressure, especially during the systolic

phase. The opposite situation is observed for the short
relaxation time sr, as it only appears to have a
noticeable variance contribution during the diastole.
black Finally, Fig. 8 shows the variance contributions
of pairwise interactions of the random parameters,
indicating that their effect on the flow is less signifi-
cant, especially during the systolic phase. We note that
although these results are expected for the larger cra-
nial arteries considered here, they provide a clear map
of how arterial wall viscoelasticity affects hemody-
namics.

DISCUSSION

We have performed deterministic and stochastic 1D
blood flow simulations in a large patient-specific cra-
nial network of compliant arteries corresponding to
four different viscoelastic parameter sets. To this end,
we have developed a fast parallel solver that supports
integer and, for the first time, fractional wall models,
enabling us to analyze in detail the effect of visco-
elasticity on pulse wave propagation. black The solver
can be made available to the community upon request
and it is written in C++, employing the MPI and
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FIGURE 6. Stochastic fractional viscoelastic model simulations: computed mean flowrate (in black) and a variation of 6 1
standard deviation (in red) at different anatomic locations. Left: outlet # 44. Right: outlet # 50.
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FIGURE 7. Stochastic fractional viscoelastic model simulations: computed mean pressure (in black) and a variation of 6 1
standard deviation (in red) at different anatomic locations. Left: inlet (L. ICA). Right: outlet # 29.
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decomposition of the computed pressure waveform at the inlet
(L. ICA). Si and Sij are the global sensitivity indices of each
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OpenMP libraries to enable parallel, multithreaded
processing.

First, we compared several models with the same
elasticity parameters while the viscoelastic parameters
are calibrated with data found in the literature. This
comparison study indicated that all models lead to a
similar flowrate wave propagation but the resulting
local pressure waves are highly affected by the amount
of viscoelastic dissipation introduced by each model.
We observed that the viscoelastic behavior of integer-
order models is strongly dependent on the choice of the
relaxation times, while for fractional models, the
response is dictated by the fractional-order. This fact
makes fractional-order models very flexible as their
conservative or dissipative nature is tuned by a single
parameter, the fractional order a, while sensitivity of
the solution to the relaxation parameters is only
observed as a fi 1. Consequently, fractional-order
wall models provide a flexible tool, which may not only
accurately capture the static response of the arterial
wall but also, by dynamically tuning the fractional
order a (which can be a function of time–space in
fractional PDEs). One very interesting thrust for future
work is neurovascular coupling, in which neural
activity could be used to dynamically tune a variable-
order fractional viscoelastic wall model model,
accounting for smooth muscle activation effects that
lead to vasodilation or vasoconstriction and provide a
pressure auto-regulation mechanism.30

To further investigate the behavior of fractional
viscoelastic models, a detailed uncertainty quantifica-
tion study was performed. Using a stochastic wall
model, we have computed a broad range of parametric
combinations and reported the mean solution as well
as the variabilities observed. We confirmed that wall
viscoelasticity has only minor effects on flowrate wave
propagation, while pressure waves and resulting wall
displacements present variability in their phase and
magnitude depending on the amount of viscoelastic
dissipation introduced by the fractional order. Finally,
by performing a global sensitivity analysis study, we
have quantified the relative importance of the visco-
elastic parameters and their second-order interactions
throughout the span of a full cardiac cycle.

One of the limitations of the present work is that the
viscoelastic behavior of each arterial wall model is
defined by a single global set of viscoelastic parameters
for all vessels. This is due the very limited availability
of experimental results for most of the cranial arteries
considered here. We believe that tuning the fractional-
order locally for every segment will lead to a more
concise modeling approach and we hope that future
experimental studies will shed more light on how to
appropriately choose it for different anatomic loca-
tions, pathologies, etc.

Finally, we must underline that validation is defi-
nitely the only path for accepting new tissue models,
yet it still remains a very challenging task. In cases
where local relaxation measurements are available,
simple integer-order viscoelastic models can be cali-
brated to yield as good results as more general models
with more relaxation timescales.29 However, noninva-
sive parameter estimation becomes very hard for most
distal anatomic locations, making these models suffer
from high sensitivity to the relaxation timescales.
These issues are key to the practical applicability of
any model, and the main reason that may lead one to
consider fractional-order models, leveraging on their
better sensitivity properties and ability to model con-
tinuous relaxation at the expense of a single additional
parameter, the fractional order a.
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