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article-based modeling of shapes and
dynamics of red blood cells in health and disease

Xuejin Li,a Petia M. Vlahovskab and George Em Karniadakis*a

We review recent advances in multiscalemodeling of themechanics of healthy and diseased red blood cells

(RBCs), and blood flow in themicrocirculation.We cover the traditional continuum-basedmethods but also

particle-based methods used to model both the RBCs and the blood plasma. We highlight examples of

successful simulations of blood flow including malaria and sickle cell anemia.
Blood is composed primarily of RBCs suspended in plasma with
volume fraction (hematocrit) about 40%. Progress towards
realistic computer simulations of blood ow hinges on accu-
rately resolving the mechanics of RBCs over a wide range of
spatial and temporal scales: from membrane microstructure to
collective behavior of many cells. This is a very active research
area, see for recent reviews.1–5 Here we overview the theoretical
and computational approaches towards the modeling of
healthy and diseased RBCs with focus on the most recent
contributions, as summarized in Table 1.

The healthy human RBC is a nucleus-free cell; it is essentially
a membrane encapsulating hemoglobin solution. The
membrane consists of a lipid bilayer supported by an attached
spectrin-based skeleton, see Fig. 1a. They are connected by
different transmembrane proteins. Traditionally, continuum
models based on elasticity theory and uid dynamics have been
used for studying blood dynamics on macroscopic length and
time scales. However, particle-based approaches are gaining
popularity in recent years as a promising tool for multiscale
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computational simulations. Fig. 1b illustrates the basic idea
behind the continuum- and particle-based approaches. The
continuum framework treats the RBC membrane and embed-
ding uids as homogeneous materials,6,7 while particle-based
models either account for the membrane structure, e.g., by
describing it as a network of springs8,9 or represent the bulk
uids as particulate medium,10,11 or both.12,13 Currently, there is
a great variety of modeling approaches since there is no
universal solution for all blood ow related problems. Eventu-
ally, the cross-fertilization between continuum and particle-
based methods will lead to practical yet physics- and biology-
accurate, and computationally efficient methods that can tackle
a broad range of hemodynamics problems relevant to human
health.
1 Equilibrium shapes and fluctuations
1.1 Continuum-based models

The composite bilayer-spectrin membrane is very thin
(�10 nm), hence on length scale of the cell (microns) the
membrane can be treated as a 2D viscoelastic interface
embedded in a 3D space. Under stress, the lipid bilayer stores
elastic energy in bending, while the cross-linked polymer
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Table 1 Summary of computational approaches employed for RBC modeling

Particle-based
model

Continuum-based
model

RBC equilibrium shapes O O
RBC uctuations O �
RBC dynamics TT motion O O

TB motion O O
SW motion O O

RBC dynamics in disease O �

Fig. 1 The equilibrium shape of a healthy human RBC is a biconcave disk
approximately 8.0 mm in diameter and 2.0 mm in width. (a) A schematic view of
the RBC membrane; reproduced from ref. 14 with permission from Elsevier. (b) A
sketch of the particle- and continuum-based RBC models; adapted from ref. 15.
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network in stretching and shearing. The development of a
continuum-based computational model then centers at the
choice of material laws to describe the energy–strain relation of
the 2D membrane.

The cost for bending is described by several models based on
the Helfrich energy:16 the SCM, the BCM and the ADE model.17

For example, the SCM energy of a membrane patch with
area A is

Eb ¼ k

2
#
A

ð2H � C0Þ2dAþ kg #
A

KGdA; (1)

where k and kg are known bending elastic moduli, H and KG are
the mean and the Gaussian curvatures. C0 is the bilayer spon-
taneous curvature, which is intrinsic curvature due to asym-
metry in packing density of the lipid molecule's head and tail.18

The term involving KG contributes a constant to the total energy
and hence it can be dropped if the topology of the surface does
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not change. A more general form of the curvature energy is
given by the ADE model,17 which adds to the SCM energy a
contribution due to the area difference between the neutral
surfaces of the lipid monolayers DA and the area difference
determined by the number of lipid molecules DA0 in each
monolayer

EADE ¼ k

2

p

AD2
ðDA� DA0Þ2; (2)

where �k is a material parameter and D is the monolayer
thickness.

A classic model for the elastic energy associated with the
stretch and shear of the spectrin polymer network is19–21

Ee ¼ KA

2
#a2dAþ m#bdA (3)

where a¼ l1l2� 1 and b¼ (l1� l2)
2/2l1l2 are the local area and

shear strain invariants and l1 and l2 are the local principal
stretches. KA and m are the elastic moduli for stretch and shear,
respectively. Higher-order nonlinear elastic terms can be
included in the strain energy eqn (3) to describe very deformed
equilibrium shapes such as echinocytes22,23 and RBC linear and
nonlinear elastic deformations.24,25

The lipid bilayer endows the RBC membrane with large
resistance to changes in area. Accordingly, the main control
factor in cell deformability is the surface area-to-volume ratio.
The more deated the cell, the more shape congurations it can
adopt. The departure of the cell shape from a sphere (which is
the least deformable shape), is quantied by the reduced
volume

v ¼ V

4p

3
R0

3

;R0 ¼
�
A=4p

�1=2
: (4)

The reduced volume of the healthy RBC is v � 0.65.
Accordingly, RBCs display a rich palette of shapes under equi-
librium and non-equilibrium conditions. Next, we discuss the
equilibrium ones, while in Section 2.1 we analyze RBC shapes
under ow.

Equilibrium RBC shapes correspond to minima of the sum
of the bending and elastic energies eqn (1)–(3) as a function of
the reduced volume. Minimizing only the bending energy
highlights features of the RBC shape arising from the properties
of the lipid bilayer alone, without the presence of the cytoskel-
eton. The discocyte equilibrium shape of the RBC corresponds
to a minimum of the bending energy at the reduced volume of
the healthy RBC.17 However, there are shapes which can not be
explained solely by bending energy such as the spiculated
morphology known as echinocyte (Fig. 2, upper right three
pictures). Lim et al.22 proposed the combination of the bending
and elastic energies to model the stomatocyte-discocyte-echi-
nocyte sequence. Membrane elasticity implies memory, and
models incorporating elastic energy depend on the choice of
unstressed (rest) conguration. Khairy and Howard23 recently
explored the role of the resting shape of the cytoskeleton and
found that prolate ellipsoid resting shape gives rise to a larger
variety of echinocytic shapes (I–III), see Fig. 2. However, the
Soft Matter, 2013, 9, 28–37 | 29
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Fig. 2 Shape transformation pathways of RBCs obtained from experimental
investigations (upper) and theoretical predictions (lower). Reproduced from
ref. 23.
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issue regarding the stress-free shape of the RBC has not yet been
settled.26 Khairy et al.27 found that disruption of the spectrin
network leads to the formation of the elliptocyte, which led to
the conclusion that even though the discocyte is a minimal
shape, the membrane-associated cytoskeleton is needed to
stabilize it.
1.2 Particle-based models

The RBC membrane is very so; its bending rigidity lies
between 25 and 195 kBT (here kB is the Boltzmann constant and
T is the room temperature), similar to that of lipid bilayers.28,29

As a result, the membrane is easily bent by thermal noise and
the RBC shape uctuates. The structure and dynamics of lipid
bilayer membranes has received a lot of attention.30,31 The
composite nature of the RBC membrane brings about new
challenging features. Experiments show that uctuations are
not isotropic on the RBC surface, with smaller amplitudes in the
RBC center and on the side.32 Moreover, it appears that RBC
uctuations may be sensitive to ATP concentration although
this is still an open issue.33,34 These experimental observations
challenge the continuum view of the RBC membrane. Since the
spectrin cytoskeleton is only sparsely connected to the lipid
bilayer, nonthermal (ATP-driven) shape uctuations may reect
topological defects induced in the cytoskeleton network by
ATP.35

The architecture of the spectrin network was rst incorpo-
rated in studies of equilibrium states.8,9 Hydrodynamic effects
needed to describe dynamic uctuations were recently
included.36,37 These spectrin-based models are limited by high
computational cost. A possible solution to this problem is to
reduce the number of degrees of freedom through mapping of a
spectrin-based model onto coarse-grained structures. In fact,
some simple particle-based models have been used extensively
in modeling deformable particles such as RBCs.38,39 More
recently, DPD method was employed in a systematic CG
procedure for modeling RBCs,40 which served as a basis of a
general MS-RBC model12 that included membrane viscosity and
external/internal uid viscosity contrast. The MS-RBC simula-
tions predicted that the RBC membrane uctuations depend on
location,41 in agreement with experiment.32
30 | Soft Matter, 2013, 9, 28–37
In the MS-RBC model, the RBC membrane is represented by
a 2D triangulated network with Nv vertices, where each vertex is
represented by a DPD particle. The vertices are connected by Ns

visco-elastic bonds to impose proper membrane mechanics.
Specically, the elastic part of bond is represented by

Vs ¼
X

j˛1.Ns

"
kBTlm

�
3xj

2 � 2xj
3
�

4p
�
1� xj

� þ kp

ðn� 1Þln�1
j

#
; (5)

where lj is the length of the spring j, lm is the maximum spring
extension, xj¼ lj/lm, p is the persistence length, kBT is the energy
unit, kp is the spring constant, and n is a specied exponent.
The membrane viscosity is imposed by introducing a viscous
force on each spring. The bending resistance of the RBC
membrane is modeled by

Vb ¼
X

j˛1.Ns

kb

h
1� cos

�
qj � q0

�i
; (6)

where kb is the bending constant, qj is the instantaneous angle
between two adjacent triangles having the common edge j, and
q0 is the spontaneous angle. In addition, the RBC model
includes the area and volume conservation constraints, which
mimic the area-incompressibility of the lipid bilayer and the
incompressibility of the interior uid, respectively. The corre-
sponding energy is given by

Vaþv ¼
X

j˛1.Nt

kd
�
Aj � A0

�2
2A0

þ ka
�
A� Atot

0

�2
2Atot

0

þ kv
�
V � V tot

0

�2
2V tot

0

;

(7)

where Nt is the number of triangles in the membrane network,
A0 is the triangle area, and kd, ka and kv are the local area, global
area and volume constraint coefficients, respectively. The terms
Atot0 and Vtot0 are the specied total area and volume,
respectively.

The MS-RBC model is multiscale, as the RBC can be repre-
sented on the spectrin level, where each spring in the network
corresponds to a single spectrin tetramer with the equilibrium
distance between two neighboring actin connections of
�75 nm. On the other hand, for more efficient computation, the
RBC network can also be highly coarse-grained with the equi-
librium spring lengths of up to 500–600 nm. The internal and
external uids are modeled by free DPD particles. External/
internal uid separation is enforced by bounce-back reections
of uid particles at a moving membrane surface.

The RBC membrane network consists of triangles whose
edges have different lengths; this may cause local stress artifacts
in simulations, thus, the triangulation method employed is
important. The triangulation quality is affected by edge lengths
and by vertex angles. Several different types of triangulation
strategies such as point charges,42 advancing front,43 and energy
relaxation methods,15 can be employed to generate the mesh of
RBC membrane network. Fig. 3a–c shows the RBC shapes at
equilibrium for different triangulation strategies. The RBC
triangulated by the point charges method and by the advancing
front method show pronounced buckling (Fig. 3a) and a non-
biconcave shape (Fig. 3b) for realistic bending and elastic RBC
properties due to strong local stresses. The characteristic
This journal is ª The Royal Society of Chemistry 2013
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Fig. 3 RBC shape evolution for different triangulation strategies (a–c). Repro-
duced from ref. 15. Simulated sickle RBC with elongated shape (d), classical sickle
shape (e), and granular shape (f). Adapted from ref. 44 with permission from
Elsevier.
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biconcave RBC shape is achieved by using the energy relaxation
method with the advancing front triangulation.

The MS-RBC model can be applied to study RBCs in disease
like SCA. For example, Lei and Karniadakis44,45 employed the
MS-RBC model to quantify the morphology of sickle-shaped
RBCs. In their simulations, the RBC membrane is deformed by
exerting surface tension at different anchor points to mimic the
distortion effect of HbS bers on the RBC membrane. Starting
from the original biconcave shape, the RBC membrane
undergoes various deformations, and several different types of
sickle cell membranes typically observed in experiments46 are
constructed, see Fig. 3d–f. The sequence of events in SCA is:
nucleation, polymerization, cell deformation, and then vaso-
occlusion, revealing that HbS polymerization is the primary
cause of the clinical disease manifestations. Numerical
models may be helpful to understand how sickling occurs
and how it affects RBC dynamics. To this end, the self-assembly
of coarse-grained models of HbS was simulated with DPD in
ref. 47. Chain chirality was conrmed to be the main driver for
the formation of HbS bers. Li and Lykotratis48,49 simulated
the thermal behavior of HbS bers and proposed that the
continuous polymerization of HbS bers and additional
unzippering of these bers can explain the formation of HbS
ber networks.
2 RBC shapes and dynamics in flow

Experimental observations of RBC behavior in ows mimicking
the microcirculation reveal dramatic deformations and rich
dynamics. A RBC in steady shear ow deforms into an ellipsoid
that can TT (the cell shape and orientation with respect to the
ow direction remains steady, while the membrane rotates as a
TT), TB, or SW (TT accompanied by oscillations in the inclina-
tion angle).50 Oscillatory shear gives rise to chaotic dynamics.51

In capillary ows, RBCs adopt symmetric parachute or asym-
metric slipper shapes depending on connement and ow
rate.1,52 Similar behavior is also exhibited by other membrane
bound particles such as vesicles2 and capsules.6,7 For example,
This journal is ª The Royal Society of Chemistry 2013
vesicles made of pure lipid bilayer can undergo TT or TB in
linear (shear) ows,53,54 and can adopt parachute- and slipper-
shapes in quadratic (capillary) ows.55

The explanation of these behaviors has been attempted with
various theoretical approaches, ranging from reduced analytical
models to detailed numerical simulations. Since the problem is
inherently non-equilibrium, energy minimization is not appli-
cable; instead the cell shape and motion is determined by the
balance of membrane and viscous ow stresses.
2.1 Continuum-based models

2.1.1 GOVERNING EQUATIONS. At the length-scale of the RBC,
inertia is unimportant and RBC motion and deformation are
determined by the balance of viscous and membrane stresses.
The viscous stresses associated with bulk uid motion are
calculated from the Stokes equations. The membrane stresses
are obtained from the variation of bending and elastic energies.
For example, eqn (1) yields

sk ¼ �k[(2H � C0)(2H
2 � 2KG + C0H) + 2Vs

2H]n. (8)

The area-incompressibility constraint is treated by the use of
a local Lagrange multiplier, which adds an additional term to
the free energy of the membrane

Ð
gdA. The corresponding

stress is

sg ¼ 2gHn � Vsg. (9)

The elastic behavior can be described by various constitutive
laws,7,56 which for small membrane deformations reduce to a
linear stress–strain relation (a 2D equivalent of Hooke's law)57,58

sm ¼ 2(KA � m)(Vs$d)Hn � (KA � m)VsVs$d

� mVs$[Vsd$Is + Is$(Vsd)
†] (10)

where d is the displacement of a material particle of the
membrane from its unstressed position. The surface gradient
operator is dened as Vs ¼ Is$V, where the matrix Is ¼ I � nn
represents a surface projection. For an area-incompressible 2D
membrane the displacement and surface velocity elds are
solenoidal

Vs$d ¼ 0, Vs$v
m ¼ 0, (11)

and the elastic stresses depend only on the shear elastic
resistance.

Under stress, energy can be stored by the membrane in
elastic deformation or dissipated by viscous friction. Membrane
viscous stresses depend not on the strain (d) but on the rate of
strain (vm); for a Newtonian interface, the expression for the
viscous stress is analogous to eqn (10) but with the surface
velocity vm instead of d, and the surface shear viscosity hm in
place of m.

Dimensional analysis of the governing equations shows that
RBC dynamics is controlled by several dimensionless parame-
ters. One subset depends solely on cell geometry and uid
properties: reduced volume v and viscosity ratio l ¼ hi/ho.
Soft Matter, 2013, 9, 28–37 | 31
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The rest are ow-dependent: capillary number based on the
bending rigidity Cak ¼ hoR0

3G/k, and capillary number based on
the shear elasticity Cam ¼ hoR0G/m, where G is the shear rate. In
the case of Poiseuille ow, the curvature of the ow is another
relevant parameter.

2.1.2 ANALYTICAL MODELS. Theoretical models for the
dynamics of a deformable RBC assume a nearly spherical shape,
i.e. v � 1, because this simple geometry is amenable to analyt-
ical solutions. Accordingly, these “capsule”models provide only
qualitative information because the RBC's equilibrium shape is
a biconcave disk. However, the analytical solutions allow to take
into account all features of the membrane rheology thereby
providing valuable physical insight and results that are useful to
validate numerical models.

In the case of pure lipid bilayer, the model demonstrates that
vesicle TB motion in simple shear ow originates from the area-
incompressibility of the membrane, which gives rise to shape-
dependent tension.59–61 The theoretical phase diagram of vesicle
behaviors (TT, TB, and SW) depends on three control parame-
ters, v, l, and Cak.62 This prediction was questioned by experi-
ments,54 but the discrepancies appear to be due to membrane
thermal undulations, which are not included in the model. This
conclusion is supported by the fact that amore accurate, higher-
order theory agreed with the numerical results for the phase
diagram.63,64 Further analytical work of vesicle dynamics
showed that TB can be suppressed by bilayer slippage65 or
application of a uniform electric eld in the velocity gradient
direction.66

In the case of the RBC, cell behavior in shear ow also
depends on the shear elasticity, Cam, and reduced volume of the
rest shape v0. At low shear rates, Cam � 1, the resistance to
shearing immobilizes the surface and the cell tumbles. As the
shear rate increases, the dynamics changes from TB to SW, and
the SW amplitude decreases with increasing shear rate. The SW
motion was attributed to a non-spherical rest shape, v0 s 1.
However, cell behavior near the transition generated some
controversy. Phenomenological models,50,67–69 which approxi-
mate the RBC by an ellipsoid of xed shape, predicted inter-
mittent behavior (SW periodically interrupted by a TB), for
which no evidence was found in the numerical simulations.70–72

A deformable cell was considered in the analyses by ref. 73–75.
The deformable capsule model73 showed that near the transi-
tion, intermittent behavior is found only if the capsule deforms
in the shear plane and does not undergo stretching or
compression along the vorticity direction; the intermittency
disappears if deformation along the vorticity direction occurs,
i.e., if the capsule “breathes”.

The small-deformation asymptotic theory has been applied
to study vesicles in Poiseuille ow76 or sedimentation.77

Intriguingly, despite the axial symmetry of the ambient ow,
non-axisymmetric solutions for the vesicle shapes are possible.
For example, in Poiseulle ow, in addition to centered
symmetric (parachute or bullet) shapes, off-centered asym-
metric (slipper) shapes exist at low ow strengths. These nd-
ings have been supported by numerical simulations,78 but in
experiments55 asymmetric slippers seem to be unstable. While
the problem for cell shapes and dynamics in capillary ows is
32 | Soft Matter, 2013, 9, 28–37
far from being fully solved, the analytical results suggest that
the cytoskeleton and the connement due to channel walls are
not essential for the appearance of the slipper.

2.1.3 COMPUTATIONAL MODELS. Numerical simulations
allow to explore large cell deformations as well as collection of
cells. A popular technique for solving multiphase ow problems
described by the Stokes equations, i.e., where inertial effects are
negligible, is the BIM.79–81 The method exploits the fact that the
equations of uid motion are linear and can be recast into an
integral equation for the evolution of the interface. For example,
for equiviscous encapsulated and suspending uids (l ¼ 1)

vm ¼ vN � 1

8pho

ð
A

ðG$smÞdA; (12)

where sm ¼ sk + sm + sg are the membrane stresses, G is the
Green's function for the Stokes equations, and vN is the applied
ow (the formulation for different viscosity uids is a bit more
cumbersome). Thus, the computation of the ow in the whole
3D uid domain is replaced by computation of the ow on the
2D membrane interface. The reduction of dimensionality
lowers considerably the computational effort.

A major challenge in the numerical simulations is to enforce
the local inextensibility of the membrane eqn (11); it results in a
very stiff problem with high computational cost.82 Recently, effi-
cient schemes for the BIM have been developed to study pure
lipid vesicles (shear-free interface m ¼ 0),64,83–87 multicomponent
membrane vesicles,88 and RBCs.55,89,90 These computations have
allowed to explore the behavior of an isolated vesicle in wall-
bounded shear ows,83 quadratic ows,78,91 and capillary ows.92

Collective dynamics of many vesicles has also been consid-
ered,93,94 but only to a limited extent and a systematic numerical
studyof suspension rheology is still lacking. Such simulationsare
needed to interpret the experiments on hydrodynamic interac-
tions between vesicles95 and the effective viscosity of suspensions
of RBCs and vesicles,96 which was found to depend non-mono-
tonically on l.

A great advantage of the BIM is the accurate computation of
the interface evolution. However, the method can not handle
topological changes such as budding, and it is restricted to zero-
Reynolds number (no inertia). To treat these effects, other
computational approaches are being developed, e.g., level-
set,97,98 phase-eld,99 immersed nite element,100 and front-
tracking.101,102 A simulation using the level-set method recently
showed that inertia suppresses vesicle TB motion in simple
shear ow.103 Another computational challenge is to include the
membrane thermal undulations; progress in this direction has
been made only for planar membranes.31,104,105

Finally, due to space restrictions, we do not discuss the large
body of literature on numerical simulations of capsules7,81 as
they mostly deal with area-extensible (e.g., neo-Hookean)
membranes.
2.2 Particle-based models

Particle-based computational methods come in several a-
vors.11 One option is to integrate the continuum membrane
This journal is ª The Royal Society of Chemistry 2013
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with particle model for the uid, e.g., as in LB method.71,106–108

Another approach is to model both the uid and the membrane
as particulate materials, using SPH,109–111 MPCD,112,113 and DPD.
The latter is a mesoscopic particle method in which each
particle represents a molecular cluster rather than an individual
atom. In a DPD simulation, the RBC membrane and
surrounding plasma can be seamlessly represented. Next, we
focus our attention to the DPD approach and some
applications.

The DPD approach simulates ow by interactions between
discrete particles. Early attempts to simulate blood ow
modeled the RBC as an elastic particle with an inner skeleton,
Fig. 4 (a) TB and TT frequency of a RBC in shear flow for different cases: (1) ho ¼
0.005 Pa s, hi ¼ hm ¼ 0 (circles); (2) ho ¼ hi ¼ 0.005 Pa s, hm ¼ 0 (squares); (3) ho ¼
hi ¼ 0.005 Pa s, hm ¼ 0.022 Pa s (triangles); reproduced from ref. 12 with
permission from Elsevier. In this figure, hm is the membrane viscosity, and ho and hi

are the viscosities of the external solvent and the internal cytoplasm, respectively.
(b) Plot of non-Newtonian relative viscosity (the cell suspension viscosity
normalized by the solvent viscosity) as a function of shear rate at H ¼ 45% and
37 �C; reprinted with permission from ref. 116. Symbols represent experimental
results from three different laboratories.

This journal is ª The Royal Society of Chemistry 2013
which is represented by a rectangular lattice of particles con-
nected by elastic springs.114,115 The MS-RBC is more physically
accurate model,12 but it is quite expensive computationally in
blood ow simulations. To simulate the ow of a dense RBC
suspension, a LD-RBC model, also based on DPD, was con-
structed as a closed torus-like ring of only ten colloidal particles
simulated as rigid DPD particles.13,116

An important characteristic of the dynamics of an individual
RBC in shear ow is the TT frequency. Simulations with
continuum models90,101,117,118 suggest that the membrane
viscosity needs to be accounted for in order to agree with the
experiments.119 Indeed, the MS-RBC model with membrane
viscosity12 captures this effect, see Fig. 4a.

DPD simulations have become quite practical to analyze the
ow of dense RBC suspensions.116 The simulations for shear
ow accurately predicted the dependence of blood viscosity on
shear rate, see Fig. 4b. A novel feature is the inclusion of
attractive cell–cell interactions which allows to investigate cell
aggregation and formation of rouleaux. Simulations in larger
tubes with diameters ranging from 10 mm to 40 mm successfully
reproduced several hemodynamic phenomena, including cell
migration towards the ow centerline, cell-free layer near the
wall and blunt velocity prole.12,13,120,121 Recently, more complex
geometries have been considered, e.g. the ow in a bifurcating
microuidic channel.122 The results quantied the blood-
plasma separation as a function of RBC deformability and feed
hematocrit level, which is agreement with experiment.123

In addition to DPD, the collective dynamics of RBCs has also
been studied with hybrid methods. For example, Noguchi and
Gompper112 employed MPCD, which combined a particle-based
hydrodynamics model for the solvent and a coarse-grained,
dynamically triangulated surface model for the membrane, for
efficiency in blood ow simulations. Simulations of small
clusters of RBCs with the MPCD method113,124 predicted three
distinct phases, one consisting of disordered biconcave RBCs,
another with parachute-shaped RBCs, and a third with slipper-
shaped RBCs. The LB-based methods have also successfully
simulated dense RBC suspensions.106,125–128 A coupled LB-FE
method, which combined the LB method for the uid phase
with a linear FE analysis describing RBC deformation, has been
developed for blood ows. The LB-FE method could not resolve
extreme deformations associated with RBC passage through
small tubes and TT regime. To overcome these problems, more
recently, the LB method was coupled with a spectrin-level based
model for the membrane.129
2.3 Dynamics of diseased RBCs

Numerical simulations may be used for qualitative and quan-
titative interpretation and predictions of mechanical properties
and dynamic behaviors of RBCs in malaria and other hemato-
logical diseases. The particle-based RBC models are an ideal
tool to study the RBC dynamics in malaria.130–134 For example,
Fedosov et al.132 used the MS-RBC model in combination with
adhesive interactions to simulate the adhesive dynamics of
Pf-RBCs. Their simulation results revealed several types of cell
dynamics such as rm adhesion, RBC peeling off the surface
Soft Matter, 2013, 9, 28–37 | 33
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Fig. 5 (a) Illustration of the flow cytometer device. (b) DPD simulation images of
Pf-RBCs traveling in channels of converging (left) and diverging (right) pore
geometry at 0.48 Pa mm�1. Velocity vs. pressure for uninfected and ring-stage-
infected RBCs in the diverging (c) and converging (d) pore geometries. Adapted
from ref. 134.

Soft Matter Tutorial Review

Pu
bl

is
he

d 
on

 2
2 

O
ct

ob
er

 2
01

2.
 D

ow
nl

oa
de

d 
on

 2
4/

01
/2

01
4 

19
:3

2:
50

. 
View Article Online
followed by ipping from one side to the other or by detach-
ment from the wall, and very slow slipping along the wall. They
also simulated the effect of the solid parasite inside the Pf-RBCs
on their adhesive dynamics and found the presence of a rigid
body inside a RBC signicantly affects the RBC adhesive
dynamics.133 Imai et al.130 employed a mesh-free particle
method to study the microvascular hemodynamics arising from
the malaria infection. They examined ows in a circular
microchannel and found that the hydrodynamic interaction
between HRBCs and Pf-RBCs causes a train formation.131

Quantitative measurement of dynamic cell deformability for
various stages of Pf-RBCs and other types of blood cells is
signicant. Bow et al.134 combined experimental and computa-
tional methods to characterize the biomechanical properties of
cells in a high-throughput manner. In their experiment, they
introduced the ow cytometer device (Fig. 5a) to measure
dynamic mechanical responses of individual RBCs. In simula-
tions, they employed the MS-RBC model to translate the
experimental measurements into quantitative data describing
the mechanical properties of individual RBCs. Snapshots from
simulations showing passage of Pf-RBC through channels with
converging and diverging pore geometries were shown in
Fig. 5b. Their simulations were able to capture the effects of
pore geometry and changes of RBC properties arising from
parasitization quite well, see Fig. 5c and d.
3 Challenges and open questions

Continuum models allow the study of blood ow on macro-
scopic length and time scales; however, currently they do not
include membrane uctuations although there is recent
ongoing research towards this end.31,105 On the other hand,
particle-based methods can resolve cellular and sub-cellular
scales, and can model accurately membrane uctuations and
the cytoskeleton structure; however, they are computationally
34 | Soft Matter, 2013, 9, 28–37
very expensive to scale up to large domains. For example, 1 mm3

of blood contains about ve million RBCs that would require
more than a billion particles to be resolved accurately. Hybrid
(continuum–particle) models maybe the best solution for
effective simulations, balancing biophysical delity and
computational efficiency. Recent efforts have been directed
towards this approach, e.g., using particle-based plasma and
continuum-based RBCs. Given the discussion of this paper, the
opposite would be a better approach, i.e., combine
the continuum description to model the blood plasma with the
particle description for the RBCs. Technically this is quite
difficult and it would require combining particle-based
methods with immersed boundary method as was done recently
in ref. 135. Another challenge would be to develop a more
realistic RBC representation, e.g. to endow the spectrin-based
RBC models with more accurate structure, e.g., account sepa-
rately for the lipid bilayer and cytoskeleton but also include
explicitly the transmembrane proteins.

No matter what type of combination of continuum–particle
methods prevails in the future, ultimately, computations which
encompass all scales would require integration of both
approaches. Such simulations would potentially answer ques-
tions concerning the coupling of biochemistry and mechanics,
for example shear-induced ATP release5,136 and themechanics of
diseased RBCs,137 e.g., the link between HbS polymerization and
mechanics of sickled RBCs.138
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