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The dynamic properties of fluid, including diffusivity and viscosity, are temperature-
dependent and can significantly influence the flow dynamics of mesoscopic non-isothermal
systems. To capture the correct temperature-dependence of a fluid, an energy-conserving
dissipative particle dynamics (eDPD) model is developed by expressing the weighting terms
of the dissipative force and the random force as functions of temperature. The diffusivity
and viscosity of liquid water at various temperatures ranging from 273 K to 373 K are
used as examples for verifying the proposed model. Simulations of a Poiseuille flow and a
steady case of heat conduction for reproducing the Fourier law are carried out to validate
the present eDPD formulation and the thermal boundary conditions. Results show that the
present eDPD model recovers the standard DPD model when isothermal fluid systems are
considered. For non-isothermal fluid systems, the present model can predict the diffusivity
and viscosity consistent with available experimental data of liquid water at various
temperatures. Moreover, an analytical formula for determining the mesoscopic heat friction
is proposed. The validity of the formula is confirmed by reproducing the experimental
data for Prandtl number of liquid water at various temperatures. The proposed method is
demonstrated in water but it can be readily extended to other liquids.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Dissipative particle dynamics (DPD) is a particle-based method introduced by Hoogerbrugge and Koelman [1] for per-
forming mesoscopic simulations of complex fluids. Initially, DPD was designed to have the advantages of large timescale in
lattice–gas automata (LGA) and mesh-free algorithm in molecular dynamics (MD) leading to computational efficiency dra-
matically higher compared to MD [1]. To fulfill this expectation, the basic component of DPD was defined as a coarse-grained
particle which represents a cluster of molecules instead of atoms/molecules themselves. With the larger spatial and time
scale, DPD modeling has been successfully used in larger fluid systems which are beyond the capacity of MD simulation;
examples include polymer and DNA suspensions [2–4], red blood cells in blood flow [5,6], and platelet aggregation [7].

The interaction between DPD particles consists of the conservative force, the dissipative force and the random force.
The conservative force is a soft repulsive force due to the interaction potential between particles. The dissipative force or
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the drag force reduces the velocity difference between particles and hence it dissipates the thermal kinetic energy of the
system [8], while the random force generates a stochastic force on each DPD particle. These two forces together satisfy
the fluctuation–dissipation theorem and act as a thermostat to maintain the system at a constant temperature [9]. In other
words, the DPD method is limited to isothermal systems and is not valid for modeling non-isothermal systems because the
total energy of the DPD system is not conserved [10].

To extend the isothermal DPD equations to modeling heat transport in non-isothermal fluid systems, DPD with energy
conservation was developed by introducing the internal energy as an additional property to the DPD system [10,11]. The
energy-conserving DPD model is known in the literature as eDPD [12]. Similarly to the standard DPD method, each eDPD
particle is associated with its internal energy in addition to other quantities such as position and momentum. As a result,
the heat transfer can be modeled by the exchange of the internal energy between particles. The eDPD model has been
successfully applied to study heat transfer in natural convection [13], heat conduction in nanocomposites [12], heat transfer
in nanoparticles suspensions [14] and heat flow [15]. Moreover, with the consideration of energy equation, the eDPD method
is able to model phase change [16].

However, the dependence of dynamic properties on temperature has not been correctly modeled in previous eDPD
models. In standard DPD and previous eDPD models, the kinematic viscosity of fluid can be roughly predicted [17] by υ =
45kB T /4πγρr3

C + 2πγρr5
C /1575 in which the first term is directly proportional to the temperature T , thus the kinematic

viscosity increases with increasing temperature; however, the opposite is true. The kinematic viscosity of simple liquids
such as water, ethanol and glycerin decreases when the temperature increases [18]. Generally, the diffusivity, viscosity and
thermal conductivity of liquids are temperature-dependent and these properties can significantly influence the behavior of
viscous flow in non-isothermal systems. It is of importance to model correctly the relationships between the properties of
liquid and temperature when non-isothermal fluid systems are considered.

The objective of the present work is to propose a model for capturing the correct temperature-dependent properties
of fluids. Specifically, liquid water is used as an example for verifying the eDPD model we propose. The diffusivity and
viscosity of liquid water as well as its Schmidt number and Prandtl number in the range of 273 K to 373 K are reproduced
with the present eDPD model. The relationships between the dynamic properties of eDPD fluid and the expressions of
the dissipative and random forces have been analyzed. The exponent of the weighting function in the dissipative force is
chosen as a temperature-dependent variable and, in particular, a simple quadratic function of temperature is suggested.
Results for the diffusivity and viscosity as well as Schmidt number at various temperatures are presented and compared
with the available experimental data of liquid water. Furthermore, an analytical formula for determining the mesoscopic
heat friction is proposed, which is validated by reproducing the experimental data for Prandtl number of liquid water at
various temperatures. The proposed method is not limited to liquid water, and it can be readily extended to other fluids for
modeling the correct dependence of thermal hydrodynamic properties in terms of temperature.

The paper is organized as follows. In Section 2 we describe details of eDPD formulation and its parameters, including an
analytical formula for determining mesoscopic heat friction (Section 2.1) and a methodology for imposing thermal boundary
conditions (Section 2.2). Section 3 presents our validation of the eDPD model and the boundary method (Section 3.2), and
the performance of the present eDPD model in reproducing correctly the temperature-dependent properties consistent with
experiments (Section 3.3). We conclude with a brief summary in Section 4.

2. Governing equations

The energy-conserving dissipative particle dynamics (eDPD) method is developed based on the standard DPD framework
[10,11]. Similarly to the standard DPD method, each eDPD particle is considered as a coarse-grained particle, which rep-
resents a group of actual fluid molecules instead of atom/molecule directly. The time evolution of an eDPD particle i is
governed by the conservation of momentum and energy and is described by the following set of equations [12]:

dri

dt
= vi, (1)

dvi

dt
= Fi =

∑
i �= j

(
FC

i j + FD
ij + FR

i j

)
, (2)

C v
dTi

dt
= qi =

∑
i �= j

(
qC

ij + qV
ij + qR

ij

)
, (3)

where t , ri , vi and Fi denote time, and position, velocity, force vectors, respectively, Ti the temperature, C v the thermal
capacity of eDPD particles and qi the heat flux between particles. The summation is carried out over all other particles
within a cutoff radius rC . The three components of Fi including the conservative force FC

i j , dissipative force FD
ij and random

forces FR
i j are expressed as [17]:

FC
i j = αi j(T )ωC (ri j)ei j, (4)
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FD
ij = −γi jωD(ri j)(ei j · vi j)ei j, (5)

FR
i j = σi jωR(ri j)ξi j
t−1/2ei j, (6)

where ri j is distance between particles i and j, ei j the unit vector from particle j to i, and vi j = vi − v j the velocity
difference. ωC (r), ωD(r) and ωR(r) are the weight functions of FC , FD and FR , respectively. Here, αi j(T ) are repulsive
force parameters given by αi j(T ) = 5.0kB T (κ−1

c − 1.0)/ρ for recovering the compressibility κc of materials of interest [17];
a common choice for liquid water is αi j(T ) = 75.0kB T /ρ in which kB is the Boltzmann constant, T the temperature and
ρ the number density of the eDPD particles. Also, γi j are the dissipative coefficients and σi j are the strengths of random
force. ξi j are symmetric Gaussian random variables with zero mean and unit variance, and are independent for different
pairs of particles and at different times [19]. The dissipative force and random force together act as a thermostat when the
dissipative coefficient γi j and the amplitudes of white noise σi j satisfy the fluctuation–dissipation theorem [10] requiring
σ 2

i j = 4γ kB Ti T j/(Ti + T j) and ωD(r) = ω2
R(r). A common choice of the weight function is ωC (r) = 1 − r/rC and ωD(r) =

ω2
R(r) = (1 − r/rC )s for r � rC and zero for r > rC .

The heat flux between particles accounting for the collisional heat flux qC , viscous heat flux qV , and random heat flux
qR are given by [12,13,20]:

qC
i =

∑
j �=i

ki jωCT(ri j)

(
1

Ti
− 1

T j

)
, (7)

qV
i = 1

2C v

∑
j �=i

{
ωD(ri j)

[
γi j(ei j · vi j)

2 − (σi j)
2

m

]
− σi jωR(ri j)(ei j · vi j)ζi j

}
, (8)

qR
i =

∑
j �=i

βi jωRT(ri j)dt−1/2ζ e
i j, (9)

where kij and βi j determine the strength of the collisional and random heat fluxes. The parameter kij plays the role of
a thermal conductivity given as kij = C2

vκ(Ti + T j)
2/4kB in which κ is interpreted as mesoscale heat friction coefficient

[11–14], and β2
i j = 2kBkij . The weight functions ωCT(r) and ωRT(r) in Eqs. (7) and (9) are given as ωCT(r) = ω2

RT(r) = (1 −
r/rC )sT in which sT is the exponent of the weight functions. The case of sT = 2.0 corresponds to the typical quadratic
weighting function, which is adopted in the present work following the choice of Refs. [14,20,21].

Dimensionless variables that are suitable for interpretation of the results are introduced to carry out the simulations.
The temperature of reference T ∗ = 300 K is used to scale the temperatures, thus the temperatures ranging from 273 K to
373 K are represented by the dimensionless temperature T = 0.91 to 1.2433. The heat capacity of each eDPD particle is
normalized by the Boltzmann constant k∗

B given by Cv = C∗
v L∗3/ρk∗

B in which C∗
v is the volumetric heat capacity of the

fluid, L∗ the length of reference, and ρ the number density of eDPD particles. For example, C∗
v = 4.167 × 106 J m−3 K−1 for

water at 300 K and k∗
B = 1.381 × 10−23 J K−1, so given a length unit L∗ = 11 nm and ρ = 4.0 one gets Cv = 1.0 × 105 for

the simulations. All the quantities without physical units are the dimensionless variables from now on.

2.1. Mesoscale heat friction

The transport properties including diffusivity, viscosity and thermal diffusivity of the eDPD fluid are output properties
instead of input parameters. Several researchers [2,17,22] have investigated the expression of the diffusivity and the vis-
cosity in terms of DPD parameters. With the interaction between particles described by Eqs. (4)–(6) and ωD(r) = ω2

R(r) =
(1 − r/rC )s , a rough prediction of diffusivity and kinematic viscosity can be obtained by assuming the radial pair distri-
bution function g(r) = 1.0 corresponding to ideal gases [2,17]. This assumption simplifies the derivations and as reported
in Ref. [17] it leads to approximately 10–30% deviation from the computed results. The weighting function versus r/rC for
various exponents is plotted in Fig. 1. It clearly shows that smaller s yields a stronger particle interaction than the stan-
dard quadratic one for a given configuration of particles. Thus, the variation of the exponent s results in the changes of
the diffusivity and the viscosity. Similar to the method mentioned in Refs. [2,17] the diffusivity of the eDPD fluid can be
approximated by:

D = 3kB T (s + 1)(s + 2)(s + 3)

8πγρr3
C

. (10)

The kinematic viscosity of a simple DPD system consists of two parts and can be approximated by:

υ = 3kB T (s + 1)(s + 2)(s + 3)

16πγρr3
C

+ 16πγρr5
C

5(s + 1)(s + 2)(s + 3)(s + 4)(s + 5)
, (11)

where the first term is the contribution from the diffusion motion of particles while the second term is from the dissipative
forces. The standard DPD model is only valid for isothermal systems, since the fluctuation–dissipation theorem yields the
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Fig. 1. Generalized weighting functions of the dissipative force and the random force for different exponent s.

Fig. 2. (a) Effect of the dissipative coefficient γ on the diffusivity D and the kinematic viscosity υ of eDPD fluid calculated by Eqs. (10) and (11). (b) Effect
of the exponent s of the weighting function on the diffusivity D and the kinematic viscosity υ of eDPD fluid. The solid and dashed lines are the values
of D and υ calculated by Eqs. (10) and (11) while the lines with symbols are the values of D and υ obtained by individual eDPD simulations at ρ = 4.0,
α = 18.75kB T , γ = 4.5, rC = 1.0 and kB T = 1.0.

relationship σ 2 = 2γ kB T ; taking σ or γ as a constant makes no difference to the DPD system. However, for non-isothermal
systems, the thermal fluctuation becomes larger as the temperature increases. Keeping σ constant means that the strength
of thermal fluctuation does not change with the variation of temperature, which is contrary to the physics. We use γ rather
than σ in Eqs. (10) and (11) because given γ the strength of random force σ = √

2γ kB T increases with the increase of
temperature, which is consistent with the physics.

Eqs. (10) and (11) indicate that both the diffusivity D and the kinematic viscosity υ of the eDPD fluid increase with the
increase of temperature when the variables in Eqs. (10) and (11) (except temperature) are kept constant. However, for most
of the simple liquids such as water, ethanol and glycerin, the diffusivity increases but the kinematic viscosity decreases
with increasing temperature [18]. In order to simulate the flow dynamics of such liquids, at least one of the parameters
ρ , rC , γ and s should be function of temperature so that the eDPD model can reproduce the correct dynamic behavior of
non-isothermal fluid systems. The number density ρ and the cutoff radius rC are fixed after the fluid system is constructed,
and they are not variables in the eDPD system. Thus, only the dissipative coefficient γ and the exponent of the weighting
function s can be modeled as functions of temperature.

Fig. 2(a) illustrates the effect of the dissipative coefficient γ on the diffusivity D and the kinematic viscosity υ of an eDPD
fluid. To obtain smaller viscosity and larger diffusivity, one has to reduce the value of γ when the temperature increases,
since the amplitude of the Gaussian white noise is related to γ and given by σ 2 = 2γ kB T , the reduction of the dissipative
coefficient γ means that hotter systems have smaller thermal fluctuations, which is contrary to the correct physics. Thus, the
dissipative coefficient γ cannot be defined as such a function of temperature for modeling the temperature-dependent dif-
fusivity and viscosity of eDPD fluid. Fig. 2(b) shows the effect of the exponent of the weighting function s on the diffusivity
D and the kinematic viscosity υ of eDPD fluid. For most of the simple liquids, their diffusivity increases but the kinematic
viscosity decreases when the temperature increases. It can be found in Fig. 2(b) that D increases while υ decreases with
increasing s when 0 < s < 1.5.

However, Eqs. (10) and (11) are obtained in the context of zero conservative force and can give only a rough estimate of
the diffusivity and the viscosity of eDPD systems [17]. In practice, eDPD simulations include the conservative force which
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would affect the properties of eDPD fluid. To verify that the range of 0 < s < 1.5 is still valid in the presence of conservative
force, individual eDPD simulations with repulsive coefficient α = 75kB T /ρ are carried out to study the effect of s on the
diffusivity and the viscosity. Results in Fig. 2(b) show that Eqs. (10) and (11) for estimating the values of D and υ are quite
accurate in the range of 0 < s < 1.5. Furthermore, Fig. 2(b) reveals that the range of 0 to 1.5 is still valid for modeling the
temperature-dependent properties after the conservative force is included.

Suppose s is a function of temperature and the dissipative coefficient γ is a constant, the amplitude of the Gaussian
white noise given by σ 2 = 2γ kB T would increase as temperature increases, which indicates that hotter systems have larger
thermal fluctuations consistent with the physical intuition. Thus, the exponent of the weighting function s is a good option
for modeling the temperature-dependent diffusivity and viscosity of eDPD fluids. In the present work, s is defined as a func-
tion of instantaneous temperature of the eDPD particles, and the details for choosing the function for s will be introduced
in Section 3.3.

Similar to the diffusivity and the kinematic viscosity, the thermal conductivity is an output property as well. It is nec-
essary to construct the relationship between the macroscopic thermal conductivity and eDPD parameters. Considering an
eDPD system whose transport of energy is dominated by the dissipative interactions, the macroscopic thermal conductivity
η can be calculated by [15,23]:

η = 2π

3

ρ2

T 2

rC∫
0

r4kωCT(r)g(r)dr, (12)

where k = C2
vκT 2/kB and ωCT(r) the weight function used in Eq. (7). Given ωCT(r) = (1 − r/rC )sT an analytical prediction

for the thermal conductivity η can be obtained by assuming the radial pair distribution function g(r) = 1.0 corresponding
to ideal gases, and it is given as:

η = 16πρ2κC2
vr5

C

kB(sT + 1)(sT + 2)(sT + 3)(sT + 4)(sT + 5)
. (13)

Specifically, when the typical quadratic weighting function (1−r/rC )2 is employed for ωCT(r) with sT = 2.0, then Eq. (13)
becomes

η = 2πρ2

315kB
κC2

vr5
C . (14)

The definition of the Prandtl number is Pr = ρυC v/η, which is a temperature-dependent dimensionless number and its
value can be obtained from available experimental data [18]. After replacing η by Pr in Eq. (14), we have a formula for
determining the mesoscale heat friction κ for the eDPD system given by:

κ = 315kBυ

2πρC vr5
C

1

Pr
, (15)

where υ is the kinematic viscosity which can be roughly approximated by Eq. (11) or given by the computed kinematic
viscosity. The expression of Eq. (15) is obtained based on the typical quadratic weighting function ωCT(r) = (1 − r/rC )2 and
a similar formula can be derived from Eq. (12) when a different weighting function is employed.

2.2. Boundary conditions

The boundary conditions at the mesoscale are crucial for the investigation of heat transfer in non-periodic systems.
Freezing some particles at desired boundaries but allowing them to interact with fluid particles is a common treatment in
DPD for modeling the surface of solid objects [24,25]. Since these solid walls made up by discrete particles induce large
unwanted density fluctuations in the vicinity of the walls [19], many attempts [19,24–26] have been made to reduce the
density fluctuations. Alternatively, Lei et al. [27] used effective forces to represent the presence of solid wall boundaries.
In the present work, we extend this boundary method to non-isothermal DPD systems for applying thermal boundary
conditions. Both the force and the heat flux contributions from the boundaries are imposed onto the particles for which the
distance from the boundaries is less than the cutoff radius rC . Since the solid wall particles are replaced by effective forces
and heat fluxes, there is no wall particles in the simulations when the boundary method is employed.

The effective boundary force and heat flux are extracted from the fluid–solid interactions using the continuum approxi-
mation. We integrate the force and heat flux contributions weighted by the local structure of the fluid which is described
by the radial distribution function g(r) over the part of the cutoff sphere that lies outside of the fluid domain, as shown
with the dark volume of Fig. 3. We choose a coordinate system with x-axis along the direction of the velocity component of
particle i parallel to the wall surface and z-axis perpendicular to the wall surface. 
V = vi − U is the instantaneous velocity
difference between particle i with velocity vi and the wall boundary with velocity U, while u and w denote the x and z
components of 
V, respectively.
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Fig. 3. Integration domains for the effective boundary force and heat flux. ΩF and ΩS represent the domain of fluid and solid wall, respectively. The number
of particles in the infinitesimal ring element is 2πρg(r)x dx dz in which ρ is the average number density and g(r) the radial distribution function. 
V is
the instantaneous velocity difference between particle i and the wall boundary.

Consider a planar wall surface or a wall surface with the radius of curvature far greater than the cutoff radius rC , then
the total conservative force FC (h) on the particle i due to the presence of wall boundary can be evaluated by:

FC (h) = 2πρnw

rC∫
z=h

√
rC

2−z2∫
x=0

F C (r)g(r)
z

r
x · dx · dz = f C (h)nw , (16)

where nw is the normal unit vector of the wall surface, ρ the number density of the eDPD particles, h the distance between
the particle and the wall boundary, and r = √

x2 + z2 as shown in Fig. 3. The x and y components of FC (h) parallel to the
wall surface vanish due to spherical symmetry. The value of the effective conservative force f C (h) is interpreted as the
pressure force in Ref. [28] to eliminate density fluctuations in the vicinity of the wall boundary.

The x component of the effective dissipative force on the particle i contributed by the wall boundary can be calculated
by:

FD‖(h) = −πργ uex

rC∫
z=h

√
rC

2−z2∫
x=0

ωD(r)g(r)x3 · dx · dz

= −γD‖(h)uex, (17)

where γD‖(h) is a function of distance from the particle i to the wall surface and ex the unit vector of x-axis.

Remark 1. The expression of FD‖(h) is different from the formula in Ref. [27] because the authors used the assumption of
linear velocity profile in the boundary, but our wall boundary is considered as a rigid body and has uniform velocity U.

The z component of the effective dissipative force on particle i is calculated by:

FD⊥(h) = −2πργ wez

rC∫
z=h

√
rC

2−z2∫
x=0

ωD(r)g(r)xz2 · dx · dz

= −γD⊥(h)wez. (18)

Then, the total dissipative force on particle i due to the presence of wall boundary is

FD(h) = −γD‖(h)uex − γD⊥(h)wez, (19)

where the negative signs indicate the x and z components of the effective dissipative force are in the opposite directions
of the relative velocity vectors uex and wez . In addition, the effective random force representing the fluctuation part of
interactions with the wall particles is given by [27]:

FR(h) = (
σR‖(h)ex + σR⊥(h)ez

)
ξ, (20)

where ξ is the random variable with Gaussian distribution, σ 2
R‖(h) = 2kB TγD‖(h) and σ 2

R⊥(h) = 2kB TγD⊥(h).
For an isothermal wall, the temperature of the wall is fixed, and let us denote it by T w ; similarly to the calculation of

the forces in Eqs. (16)–(20), we have the effective collisional heat flux due to the presence of the wall boundary:
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qC (h) = 2πρ

rC∫
z=h

√
rC

2−z2∫
x=0

qC (r)g(r)x · dx · dz

= πρC2
vκ

2kB

rC∫
z=h

√
rC

2−z2∫
x=0

ωCT(r)g(r)x · dx · dz · (Ti + T w)2
(

1

Ti
− 1

T w

)

= φ(h) · (Ti + T w)2
(

1

Ti
− 1

T w

)
, (21)

where Ti is temperature of particle i and φ(h) is a function of the height from the particle i to the wall surface. Eq. (21)
reveals that the effective collisional heat flux is affected by the difference of temperature between the particle i and the
wall boundary as well as their distance. The viscous component of the effective heat flux can be evaluated by:

qV (h) = πρ

2C v

rC∫
z=h

√
rC

2−z2∫
x=0

ωD(r)
(
γ u2x2 + 2γ w2z2 − 2σ 2)g(r)x · dx · dz, (22)

where u and w denote the x and z components of the velocity difference 
V = vi − U shown in Fig. 3. The third term of
Eq. (8) induced by the random force has zero mean thus it is ignored in the integration. The random component of the
effective heat flux is given as:

qR(h) = ϕ(h) · ξ e, (23)

where ξ e is an independent identically distributed random variable with Gaussian distribution independent of ξ , and
ϕ2(h) = 2kB(Ti + T w)2φ(h) is obtained from the relationships of ω2

RT(r) = ωCT(r) and β2
i j = 2kBkij where kij = C2

vκ(Ti +
T j)

2/4kB in Eqs. (7) and (9).

Remark 2. For non-isothermal systems the radial distribution function g(r) is calculated as follows in order to take into
account of its temperature dependence. When different temperatures T and the number densities ρ are expected on the
wall boundaries, their g(r) should be calculated independently. In practice, we estimate the number density ρ and the
temperature T on the wall boundaries and construct small periodic systems with these ρ and T for obtaining their g(r).
With estimated g(r) and ρ the effective forces and heat fluxes can be computed by Eqs. (16)–(23). If the effective forces and
heat fluxes induce significant density or temperature fluctuations, according to the results based on these effective forces
and heat flues, corresponding corrections on the estimate of ρ and T are made until no significant fluctuation is observed
in the vicinity of wall boundaries.

3. Results

3.1. Verification of energy conservation

The eDPD framework is supposed to be energy conserving [10]. However, to the best of our knowledge, no eDPD simu-
lation has been carried out to verify the energy conservation of the system. To check if the eDPD system has total energy
drift an eDPD simulation in a periodic domain of size 20.0 × 20.0 × 20.0 containing 32 000 eDPD fluid particles is per-
formed. The total energy E of an eDPD system consists of the potential energy P E = ∑− 1

2 αrC (1 − r/rC )2, the kinetic
energy K E = ∑ 1

2 mV 2 and the internal energy I E = ∑
Cv(T − T0) in which T is the temperature of eDPD particles and T0

is a reference temperature. The simulations are performed with the open source code LAMMPS [29], and a modified velocity-
Verlet algorithm [17] is utilized for the numerical integration of the eDPD equations with time step dt = 0.005,0.01 and
0.02. We plot the history of energies of the eDPD system during the simulation, as shown in Fig. 4. Results show that the
eDPD model does conserve the total energy of the system. The fluctuation of the total energy E is less than 0.1% and there
is almost no difference between the results of dt = 0.005 and dt = 0.01. However, compared to the results of dt = 0.005
and dt = 0.01, a larger time step dt = 0.02 induces a slight drift in the potential energy P E and the total energy E . This
reveals that the error is induced by time integration, which can be eliminated by using smaller time steps or a better time
integration scheme.

3.2. Validation of Fourier law

To validate the present eDPD formulation and the proposed boundary method, we simulate Poiseuille flow with a simple
eDPD fluid. First, a simulation of an equilibrium system of 20.0 × 20.0 × 20.0 in DPD units with periodic boundary condi-
tion in three directions was carried out for obtaining the radial distribution function g(r) of the eDPD particles, which is
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Fig. 4. History of the total energy E (top), the kinetic energy K E (second from top), the potential energy P E (second from bottom) and the internal energy
I E (bottom) of an eDPD system during simulations with three time steps dt = 0.005,0.01 and 0.02. The results are based on the set of parameters ρ = 4.0,
kB T = 1.0, α = 18.75kB T , γ = 4.5, rC = 1.58, s = 0.41 + 1.9(T 2 − 1), C v = 1.0 × 105 and κ is given by Eq. (15).

Fig. 5. (a) Radial distribution function g(r) of the eDPD particles. (b) f C (h) calculated by the integration in Eq. (16) and φ(h) calculated by the integration
in Eq. (21). The curves are based on the parameters of ρ = 4.0, α = 18.75kB T , γ = 4.5, rC = 1.58, s = 0.41 + 1.9(T 2 − 1), C v = 1.0 × 105 and κ is given
by Eq. (15).

necessary for computing the effective boundary forces and heat fluxes by Eqs. (16)–(23) representing the solid walls at the
upper and lower boundaries.

Fig. 5(a) shows the radial distribution function g(r) of the eDPD particles; it has a slight difference when T is changed
from 0.91 to 1.00. All the three components of the effective boundary force as well as the effective boundary heat flux can
be obtained by Eqs. (16)–(23) using the computed g(r) shown in Fig. 5(a). The conservative component of the boundary
force fC (h) and the collisional component of boundary heat flux are plotted in Fig. 5(b). The curves in Fig. 5(b) clearly
show that both fC (h) and φ(h) are decreasing functions of h. The value of fC (h) for T = 1.00 is greater than that for
T = 0.91 because the repulsive parameter αi j of the conservative force FC

i j varies directly with the temperature T . Other
components of the effective forces and heat fluxes have similar curves. Then, the best fitting functions of these curves are
utilized to impose the effective boundary force and effective boundary heat flux on the eDPD particles whose distance from
wall boundaries is less than the cutoff radius rC .

For the Poiseuille flow with pressure gradient acting in the x-direction on a fluid between two plates in the xy-plane,
both the velocity component and the pressure gradient in the vertical z-direction vanish identically so that the x-component
of the velocity u is dependent on only z and time t . In this simple case, the Navier–Stokes equations admit the exact
time-dependent solution given by [28]:

u(z, t) = Fd2

8υ

(
1 −

(
2z

d

)2)
−

∞∑
n=0

4(−1)n Fd2

υπ3(2n + 1)3
· cos

[
(2n + 1)π z

d

]
· exp

[
− (2n + 1)2π2υt

d2

]
, (24)
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Fig. 6. (a) Time-evolution of the velocity profile in Poiseuille flow and comparison with theoretical predictions at t = 1.0, 5.0, 10.0, 20.0 and at steady state.
(b) Density ρ , and temperature T profiles in Poiseuille flow with ρ = 4.0, α = 18.75, γ = 4.5, rC = 1.58, s = 0.41 and the computed kinematic viscosity of
eDPD fluid is 6.62. The simulation uses 43 200 particles in an isothermal computational domain of 60.0 × 6.0 × 30.0 in DPD units at kB T = 1.0.

Fig. 7. (a) Schematic of the geometry for the steady-state heat conduction between a cold wall TC and a hot wall T H . (b) Density ρ and (c) temperature
T profiles in the heat conduction between a cold wall (TC = 1.0) at z = −15.0 and a hot wall (T H = 1.21) at z = 15.0. The simulations use 43 200 eDPD
particles in a computational domain 60.0 × 6.0 × 30.0 in DPD units. The circle symbols represent the numerical results with constant αi j while gradient
symbols for αi j = 18.75kB (Ti + T j)/2.

where d is the separation of the plates, υ the kinematic viscosity, and F a force per unit mass given by:

F = 1

ρ

∂ p

∂x
= gx, (25)

where ∂ p/∂x is the pressure gradient. A body force field gx is applied on each eDPD particle, which is equivalent to imposing
a pressure drop of ρgLx on the channel of length Lx . The eDPD parameters for the Poiseuille flow are listed in the caption
of Fig. 6. The computational domain is divided into 51 bins along the z-direction. All local flow properties are obtained by
averaging enough sampled data. The transient velocity profiles are collected by carrying out 100 simulations from different
random seeds. The development of velocity profiles is shown in Fig. 6(a), as well as the density and temperature profile in
Fig. 6(b). The velocity profiles are in an excellent agreement with the theoretical solution given by Eq. (24). We also found
that density and temperature fluctuations near the boundaries are negligible.

The next test case for validation is heat conduction between a cold wall and a hot wall. Fig. 7(a) illustrates the geom-
etry of the problem, with the stationary fluid confined between a hot wall of T H = 1.21 and a cold wall of TC = 1.00.
The Fourier law gives linear spatial distribution of temperature for the steady-state heat conduction. Similarly to the last
case, independent simulations of an equilibrium system at kB T = 1.21 and 1.00 are carried out for obtaining the radial
distribution function g(r) of eDPD particles. Then the effective boundary forces and heat fluxes are calculated for imposing
the desired boundary condition on the fluid system. First, we use a constant conservative coefficient αi j , which does not
consider the variation of density when the temperature changes. Then a temperature-dependent conservative coefficient
given by αi j = 75kB T /ρ is used [17] to consider the effect of temperature on the density of fluid. Fig. 7(c) shows that both
expressions of αi j lead to the correct behavior of heat conduction in agreement with Fourier law. However, the profiles
of the density are different: constant αi j leads to a uniform density distribution, but temperature-dependent αi j results in
lower density for the hot fluid and higher density for the cold fluid as shown in Fig. 7(b), which is qualitatively consistent
with the character of simple fluids such as water. The fluid density of the case αi j = 18.75kB T is linear to temperature
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Fig. 8. Poiseuille flow combined with the heat conduction between a cold wall TC and a hot wall T H . (a) Density ρ , temperature T and viscosity ν
profiles between the cold wall (TC = 1.0) at z = −15.0 and the hot wall (T H = 1.21) at z = 15.0. (b) Velocity profile in the Poiseuille flow with heat
conduction and comparison with Navier–Stokes solution based on variable viscosities along the z direction. The simulations use 43,200 eDPD particles in
a computational domain 60.0 × 6.0 × 30.0 in DPD units. The circle symbols represent the numerical results with constant αi j while gradient symbols for
αi j = 18.75kB (Ti + T j)/2.

because a simple linear function is used for αi j . The results in Fig. 7(b) reveal that the effect of the temperature on the fluid
density can be modeled in eDPD by applying a temperature-dependent conservative force between eDPD particles.

We have validated the non-isothermal model for hydrodynamic flow and heat conduction separately. It is necessary to
carry out one more test case including both hydrodynamic flow and heat conduction. A body force gx is applied on the fluid
confined between a hot wall of T H = 1.21 and a cold wall of TC = 1.00. Since the viscosity of hotter fluid is smaller than
that of colder fluid, as shown in Fig. 8(a), the variation of the viscosity along the z direction leads to an asymmetric velocity
profile. Fig. 8(b) shows the velocity profile; the peak of the velocity profile shifts to the side corresponding to the hotter
fluid. Given the viscosity profile υ(z) shown in Fig. 8(a), we numerically solve the Navier–Stokes equation ∇(υ(z) · ∇V) = gx
and obtain the velocity profile. The results show that the eDPD simulation gives a velocity profile in agreement with the
continuum Navier–Stokes solution and the no-slip boundary condition is expected when the boundary method is employed.

3.3. Temperature-dependent properties

The above three cases validate both the eDPD formulation and the boundary method. For an isothermal fluid system,
the present model captures the correct behavior of fluid as the standard DPD does. For a non-isothermal fluid system, the
present model can reproduce Fourier law in heat conduction between a hot wall and a cold wall. Our next objective is to
construct a model for capturing the correct dynamic properties of common fluids in non-isothermal systems.

The liquid water is employed as an example fluid in the present study; the experimental data of its self-diffusivity
at various temperature is taken from Ref. [30] and the kinematic viscosity is taken from Ref. [18]. At T ∗ = 300 K the
diffusivity of liquid water is 2.41 × 10−9 m2 s−1 and the kinematic viscosity is 8.57 × 10−7 m2 s−1 hence the Schmidt
number Sc = υ/D = 355.60. To capture the correct Schmidt number at T = 1.0 the parameters in eDPD system are defined
as ρ = 4.0, αi j = 75kB T /ρ , γ = 4.5, σ 2 = 2kB Tγ , rC = 1.58 and s0 = 0.41. From the eDPD simulations, we know that the
viscosity is affected strongly by the value of s as it changes the envelope of interaction. Considering the effect of temperature
on the dynamic properties of eDPD fluid, s is defined as a function of the temperature to reproduce the experimental data
of materials of interest. In the present work, a simple expression s(T ) = C1 + C2(T 2 − 1) is used and the coefficients C1 and
C2 are optimized to get consistent transport properties with the experimental data of liquid water. In the simulations we
use s = 0.41 + 1.9(T 2 − 1) so that 0 < s < 1.5 when the dimensionless temperature T changes between 0.91 and 1.2433.

As mentioned in Section 2.1 the diffusivity, kinematic viscosity and thermal conductivity are output properties instead
of input parameters. Although they can be roughly predicted by Eqs. (10), (11) and (13), respectively, their exact values can
be only obtained by simulating the eDPD system. We determine the self-diffusivity of the eDPD system by the mean-square
displacement

D = lim
t→∞

1

6t

〈∣∣r(t) − r(0)
∣∣2〉

, (26)

where |r(t) − r(0)|2 is the mean-square displacement (MSD). Fig. 9(a) shows the MSD of the eDPD system at T = 0.91, 1.00
and 1.11. The MSD has been scaled by 6.0 thus the slope of the line is the self-diffusivity for each case. It can be found in
Fig. 9(a) that the diffusivity increases when the temperature increases.

The kinematic viscosity of the eDPD system is computed from the periodic Poiseuille flow method [31]. The velocity
profile obtained for the periodic Poiseuille flow is shown in Fig. 9(b). The kinematic viscosity can be determined by fitting
the velocity profile with the analytical solution u(z) = gxz(d − |z|)/2υ in which υ is the kinematic viscosity, gx = 0.20 the
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Fig. 9. (a) Mean-square displacement (scaled by 6.0) of eDPD particles for different temperatures. The slopes of the lines are the self-diffusivity of eDPD
fluid. (b) Velocity profiles obtained using the periodic Poiseuille flow method for different temperatures. The lines are quadratic fitting curves for each case.
The simulations are carried out in a computational domain of 30.0 × 6.0 × 30.0 in DPD units with ρ = 4.0, αi j = 18.75kB (Ti + T j)/2, γ = 4.5, rC = 1.58,
s = 0.41 + 1.9(T 2 − 1) and gx = 0.2.

Fig. 10. Comparison of the temperature-dependent (a) diffusivity and (b) kinematic viscosity ranging from 273 K to 373 K between the experimental data
of liquid water [18,30] and the results of eDPD simulations. Both the diffusivity and kinematic viscosity are scaled by their value at 300 K. For eDPD fluids,
D∗ = 1.87 × 10−2, υ∗ = 6.62 at T = 1.00 and the corresponding Schmidt number (Sc) is 354.01 comparable to Sc = 355.60 of liquid water at 300 K.

body-force applied on eDPD particles and d = 15.00 the half-length of the computational domain in z-direction. From the
simulations we find D = 1.87 × 10−2, υ = 6.62 at T = 1.00 and the corresponding Schmidt number is 354.01 comparable
to the experimental data Sc = 355.60. Inserting the eDPD parameters in the approximate theoretical predictions Eqs. (10)
and (11) give D = 1.95 × 10−2, υ = 6.45 hence Sc = 331.33, which have errors less than 10% of the computed results.
When the temperature of the eDPD system is increased, as expected, the diffusivity of the eDPD fluid increases as shown
in Fig. 9(a) but the kinematic viscosity decreases as shown in Fig. 9(b). To test the performance of our non-isothermal
model in the entire range of 273 K to 373 K, the temperature-dependent diffusivity and kinematic viscosity are computed
by the same method as that used in Fig. 9, and the results are plotted in Fig. 10. Fig. 10(a) represents the comparison of
the temperature-dependent diffusivity between the results of eDPD simulations and the experimental data of liquid water.
It shows that the diffusivity is overestimated near 273 K and 373 K. However, the relative errors of diffusivity are less than
5% of experimental data for 290 K < T · T ∗ < 373 K. The temperature-dependent kinematic viscosity of eDPD fluid and the
experimental data of liquid water are plotted in Fig. 10(b); it can be observed that the kinematic viscosity is underestimated
near 273 K and 373 K. The relative errors of the kinematic viscosity of eDPD fluid are less than 10% of experimental data for
283 K < T · T ∗ < 353 K. The overestimation of diffusivity and underestimation of viscosity near 273 K and 373 K enlarge the
errors in Schmidt number. Fig. 11 shows the comparison of Schmidt number between the eDPD fluid and the experimental
data of liquid water. The relative error of Sc has its maximum 35% at 273 K and approximately 25% at 373 K, however, the
relative errors are less than 10% of experimental data for 293 K < T · T ∗ < 353 K.

Overall, the proposed eDPD model reproduces the correct temperature-dependent dynamic properties including the dif-
fusivity and the kinematic viscosity as well as Schmidt number comparable to the experimental data of liquid water for the
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Fig. 11. Comparison of the temperature-dependent Schmidt number for the temperature ranging from 273 K to 373 K between the experimental data of
liquid water [18,30] and the results of eDPD simulations.

Fig. 12. (a) Schematic of the geometry for measuring the thermal conductivity by heat conduction analog of periodic Poiseuille flow. (b) Temperature
profiles obtained using the heat conduction analog of periodic Poiseuille flow for different temperatures. The lines are quadratic solution given by Eq. (29)
based on constant thermal diffusivity.

temperatures ranging from 273 K to 373 K. Although the diffusivity is overestimated and the viscosity is underestimated
when the temperature approaches to 273 K and 373 K, the relative errors of these properties as well as Schmidt number
are less than 10% of experimental data for 293 K < T · T ∗ < 353 K.

Similar to the diffusivity and viscosity, the thermal conductivity is also an output property instead of input parameter
but it can be computed from other eDPD parameters such as C v and κ according to Eq. (14). We proposed an analytical
formula given by Eq. (15) for determining the mesoscopic heat friction κ but its validity has to be verified by measuring
the thermal conductivity of the eDPD fluid. The heat conduction of a fluid is governed by the heat equation, which follows
from the conservation of energy and it is given by:

ρC v
∂T

∂t
= η∇2T + ρq, (27)

where Cv is the specific heat, η the thermal conductivity and q the heat source. For steady state problems, the heat equation
simplifies to

λ∇2T = −Q , (28)

where λ is the thermal diffusivity given by λ = η/ρC v , and Q = q/Cv . By looking at the governing equation of heat con-
duction given by Eq. (28), it is noticed that Eq. (28) is the same as the governing equation of Poiseuille flow driven by
gravitational force υ∇2V = −g , in which the kinematic viscosity υ and the gravitational force g are replaced by the ther-
mal diffusivity λ and the heat source Q , respectively. Thus, we propose a heat conduction analog of periodic Poiseuille flow
to compute the thermal conductivity of eDPD fluid, and this method for determining the thermal conductivity is not limited
to eDPD but can be applied to other particle models as well.
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Fig. 13. Comparison of the temperature-dependent Prandtl number for the temperature ranging from 273 K to 373 K between the experimental data of
liquid water and the results of eDPD simulations. The simulations are carried out in a computational domain of 30.0×6.0×30.0 in DPD units with ρ = 4.0,
α = 18.75kB T , γ = 4.5, rC = 1.58, s = 0.41 + 1.9(T 2 − 1), C v = 1.0 × 105 and κ given by Eq. (15).

The heat conduction analog of periodic Poiseuille flow is obtained by applying a non-contact heat source such as mi-
crowave irradiation to each eDPD particle. For simplifying the simulation, a similar idea like in Ref. [31] for simulating
periodic Poiseuille flow is adopted. The fluid system is subdivided into two domains in z-direction as described in Fig. 12(a),
and a heat source +Q is applied in upper domain while a heat sink with same magnitude −Q is applied in lower domain.
Because of the periodic boundary conditions the counteracting heat sources constrain the temperature of the eDPD fluid
at the position where a plate with fixed temperature would be. For the geometry given by Fig. 12(a) the gradient of heat
source in the x-direction vanishes so that the temperature is dependent on only z. With a constant thermal diffusivity λ the
steady state solution of the heat conduction analog of periodic Poiseuille flow is given by:

T (z) = Q z

2λ

(
d − |z|) + T0, (29)

where T0 is the temperature of the eDPD system before heating/cooling, d the half length of the computational domain in
z-direction and λ the thermal diffusivity. Then, the value of thermal diffusivity λ at T0 is computed by:

λ(T0) = 1

2
(λ+ + λ−) = Q d2

16

(
1

Tmax
− 1

Tmin

)
, (30)

where Tmax is the maximum value of the temperature subtracting T0 and Tmin the minimum value subtracting T0, λ+ and
λ− are the thermal diffusivity calculated based on Tmax and Tmin, respectively. The solid lines in Fig. 12(b) are symmetric
parabolas given by Eq. (29) based on constant thermal diffusivity λ(T0). If the thermal diffusivity is constant and indepen-
dent of the temperature, the amplitude of the temperature profile |Tmax| on the right-hand side and |Tmin| on the left-hand
side should have the same value and the computed temperature profiles should coincide with the solid lines. However, the
thermal diffusivity of the fluid is temperature-dependent and variable along the z direction. For z < 0 the temperature of
the eDPD fluid is smaller than T0 due to the heat sink, and the fluid has smaller thermal diffusivity λ− , thus the computed
temperature profile is lower than the solid line. In contrast, for z > 0 the temperature of the eDPD fluid is larger than T0
due to the heat source, and the fluid has larger thermal diffusivity λ+ , thus the computed temperature profile is also lower
than the solid line. That is why a shift in the temperature profile is observed in Fig. 12(b). Considering a small variation
of the temperature, both λ+ and λ− are close to λ(T0) and the value of λ(T0) can be approximated by the average of λ+
and λ− . In the present work, a small heat source Q = q/C v = 1.0 × 10−3 is used to avoid large variation of the temperature.
The mesoscopic heat friction κ is given by Eq. (15) with the computed kinematic viscosity and other eDPD parameters the
same as these used in Section 3.3.

The temperature profiles shown in Fig. 12(b) were obtained by subdividing the computational domain into 51 bins along
z-direction, while the simulations were run for 500 time units and the results were averaged over the last 100 time units.
It can be observed that the computed temperature profiles in Fig. 12(b) are lower than the analytical solution of Eq. (29)
with constant λ because of the variation of thermal diffusivity λ. The change of the temperature is controlled within 5% of
the system temperature T0 shown in Fig. 12(b). The three curves of T0 = 0.91, 1.00 and 1.11 in Fig. 12(b) give λ+ = 0.92,
1.15, 1.23 and λ− = 0.82, 1.12, 1.20, hence the computed thermal diffusivity for each case is λ = 0.870, 1.135 and 1.215,
respectively.

Using the heat conduction analog of periodic Poiseuille flow the thermal diffusivity of eDPD fluid ranging from 273 K
to 373 K was computed, and the result is represented by Prandtl number Pr = υ/λ, which is the ratio of momentum
diffusivity (kinematic viscosity) υ to thermal diffusivity λ. Fig. 13 displays the comparison of the temperature-dependent



Author's personal copy

126 Z. Li et al. / Journal of Computational Physics 265 (2014) 113–127

Prandtl number between the results of eDPD simulations and the experimental data of liquid water. It can be observed that
the Prandtl numbers of eDPD fluid are consistent with the experimental Prandtl numbers. The relative error is less than 5%
of experimental Pr for the entire temperature range of 273 K to 373 K, which verifies the analytical formula of Eq. (15) for
determining the mesoscopic heat friction. It is worth noting that Eq. (15) for determining the mesoscale heat friction κ is
obtained based on a rough assumption of g(r) = 1.0. By using the computed kinematic viscosity the result in Fig. 13 reveals
that Eq. (15) leads to good accuracy for liquid water ranging from 273 K to 373 K even without any correction for g(r).

4. Summary and discussion

An energy-conserving dissipative particle dynamics (eDPD) model for reproducing correctly the temperature-dependent
properties including Schmidt number and Prandtl number has been proposed. The relationships between the dynamic prop-
erties of eDPD fluid and the parameters in the dissipative and random forces have been analyzed. The exponent of the
weighting function was properly chosen as a temperature-dependent variable. To eliminate the effect from the density fluc-
tuations at the wall boundaries, we replaced the real solid wall by effective boundary forces and heat fluxes, which are
extracted from the fluid–solid interactions using the continuum approximation. Simulations of a time-dependent planar
Poiseuille flow and a steady-state heat conduction for reproducing the Fourier law were carried out to validate the present
eDPD formulation and the new method for imposing thermal boundary conditions.

The diffusivity and viscosity of liquid water at various temperatures ranging from 273 K to 373 K were used as a bench-
mark for verifying the model. The results showed that the present model reproduces the correct temperature-dependent
properties including diffusivity and kinematic viscosity consistent with the available experimental data of liquid water.
Moreover, an analytical formula for determining the mesoscopic heat friction has been proposed. The validity of the formula
is confirmed by reproducing the experimental data for Prandtl number of liquid water at various temperatures.

Hence, this work proposes a non-isothermal DPD model which is able to reproduce the correct temperature-dependent
Schmidt numbers and Prandtl numbers, and a method to impose thermal boundary conditions with effective boundary
forces and heat fluxes so that the density fluctuation in the vicinity of the boundary can be effectively eliminated. In
particular, we proposed a methodology to determine the mesoscopic heat friction based on experimental measurements
instead of empirical parameters. Although we test our model with liquid water, the method proposed in the present work
for modeling the correct temperature-dependent properties is not limited to water only and it can be readily extended to
other fluids.

The traditional DPD framework considers only the dissipative and random forces along the inter-particle axis. Pan et al.
[32] and Junghans et al. [33] employed the transverse DPD thermostat to include the non-central dissipative and random
forces, see also the analysis of Lei et al. [34]. The transverse DPD thermostat can be also applied in the non-isothermal
DPD model when the heat flux contributed by viscous heating is correctly modeled, which would be interesting for further
research. However, it is worth noting that the non-central forces should be coupled with the rotation of particles to account
for the conservation of angular momentum of the system.
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