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The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces
memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed
to simplify the formulation of coarse-grained (CG) models and numerical implementations. However,
when the time scales of a system are not clearly separated, the memory effects become strong and
the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into
CG modeling by preserving non-Markovian interactions between CG variables, and the memory
kernel is evaluated directly from microscopic dynamics. For a specific example, molecular dynamics
(MD) simulations of star polymer melts are performed while the corresponding CG system is defined
by grouping many bonded atoms into single clusters. Then, the effective interactions between CG
clusters as well as the memory kernel are obtained from the MD simulations. The constructed
CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics
(NM-DPD). Quantitative comparisons between the CG models with Markovian and non-Markovian
approximations indicate that including the memory effects using NM-DPD yields similar results
as the Markovian-based DPD if the system has clear time scale separation. However, for systems
with small separation of time scales, NM-DPD can reproduce correct short-time properties that are
related to how the system responds to high-frequency disturbances, which cannot be captured by the
Markovian-based DPD model. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935490]

I. INTRODUCTION

Atomistic simulation techniques allow precise represen-
tation of molecular structures and have become standard
computational tools nowadays for studying molecular
systems.1 In particular, direct molecular dynamics (MD)
simulation can capture all the atomistic details of a molecular
system, however, it is computationally prohibitive and
impractical to produce large-scale or long-time effects in many
applications of biological systems and soft matter physics.2–4

The reason is that the size of a MD system is limited by
the number of atoms that can be included in the simulation,
typically 104-108 corresponding to a length-scale on the order
of tens of nanometers, and the maximum time step in MD
simulations is limited by the smallest oscillation period of
the fastest atomic motions in a molecule, which is typically
several femtoseconds.5 However, it may not be necessary
to explicitly take into account all the atomistic details of
materials when only mesoscopic structures of molecules or
their macroscopic properties are of practical interest. To this
end, coarse-grained (CG) approaches drastically simplify the
atomistic dynamics by eliminating fast degrees of freedom
and preserving the behaviors of slow qualities.2,3 As a
result, the CG modeling provides an economical simulation
path to capture observable properties of complex fluids on
larger spatial and temporal scales beyond the capability of
conventional atomistic simulations. With increasing attention

a)Electronic mail: george_karniadakis@brown.edu

on macromolecules, biomaterials, and soft matter research,
CG modeling has become a rapidly expanding methodology
in recent years.2–4

Specification of the interactions between CG variables
is the basis for construction of CG models. Given a target
static property, such as the radial distribution function (RDF)
for the center-of-mass (COM) of each molecule in a fully
atomistic simulation, an effective CG potential can be obtained
numerically by solving an inverse problem via optimization,
for example, the iterative Boltzmann inversion method,6 the
inverse Monte Carlo method,7 the force matching method,8

or the multiscale coarse-graining methodology.9 Moreover, in
a particle-based system in a canonical (constant-temperature)
ensemble, thermostats are often used with the purpose of
maintaining the temperature constant (on average).10 In
general, the dynamic properties of molecular fluids relate
closely to the parameters of applied thermostat. To achieve
certain averaged dynamic properties, such as the kinematic
viscosity and the diffusion coefficient of the molecule,
the parameters of the thermostat are usually fine-tuned in
CG simulations.11 However, besides the averaged dynamic
properties, there is no guarantee that the artificially tuned
thermostat reproduces a faithful dynamic property of its
corresponding atomistic simulation, such as, the velocity
autocorrelation function (VACF) of the molecule. Contrary
to the inverse techniques, the Mori-Zwanzig (MZ) projection
formalism12,13 provides a forward path to constructing CG
models directly from microscopic dynamics. By defining
CG variables and eliminating irrelevant degrees of freedom,

0021-9606/2015/143(24)/243128/13/$30.00 143, 243128-1 © 2015 AIP Publishing LLC
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the CG interactions can be directly evaluated from the
microscopic dynamics by mapping the microscopic system
to a CG system using the MZ projection operator. In
particular, the collective dynamics resulting from a projection
of an underlying microscopic dynamics is governed by three
terms.13 The first term represents a conservative interaction
due to the change of microscopic configuration. Another term
is a random interaction generated by unresolved variables
during the coarse-graining process. The last one is a history-
dependent term determined by an integral of a memory
kernel. The three components of CG interaction are consistent
with the framework of dissipative particle dynamics (DPD).14

Therefore, in the present work we use DPD as the CG model
resulting from a projection of an underlying microscopic
dynamics.

In the recent past, several research groups have practiced
coarse-graining under the MZ formalism.15–21 In particular,
a Markovian assumption is often employed so that the
implementation of the MZ formalism can be significantly
simplified. This simplification is reasonable for many
applications, where the time scales are well separated.
However, the Markovian assumption is not universally valid
and its corresponding coarse-graining implementation may
unfaithfully represent the original MZ formalism for certain
applications. To this end, Yoshimoto et al.21 derived the
equation of motion for non-Markovian DPD. For construction
of non-Markovian CG models being a faithful representation
of its underlying microscopic model, an accurate evaluation
of the memory kernel is crucial. Furthermore, since the
thermodynamic properties of molecular fluids highly depend
on the temperature, it is also crucial to implement the second
fluctuation-dissipation theorem (FDT)22 correctly in non-
Markovian CG simulations so that the temperature of the
system can be maintained constant. In the present work, we
apply two different approaches to evaluate the memory kernel
from the trajectories of atomistic simulations. Furthermore,
for the CG simulations, we reproduce the non-Markovian
property in DPD, and two colored noise generators for
satisfying the second FDT are provided and compared. As
an example, a MD system of star polymer melts whose
molecules can be faithfully coarsened into CG particles is
selected as demonstration for the implementation. The VACF
of molecules is considered as a crucial dynamic property
for validation. At first, we shall show if the non-Markovian
DPD (NM-DPD) can recover the results of Markovian DPD
and MD at low density (ρ = 0.4), where the time scales of
VACF and force autocorrelation function (FACF) in the MD
system are apparently separated. Subsequently, we shall show
if the NM-DPD can represent the MD more faithfully than
the Markovian DPD at high density (ρ = 0.7), where the two
time scales of VACF and FACF are of the same order.

The remainder of this paper is organized as follows: In
Section II, we briefly introduce the theoretical background for
projecting a microscopic system to a coarse-grained system
using the MZ formalism. Section III describes in detail how
to practically evaluate the CG interaction and the memory
kernel directly from atomistic simulations. Section IV presents
the scheme for incorporation of the memory effects into a
DPD model and provides quantitative comparisons between

Markovian DPD and NM-DPD, and also their accuracy in
reproducing the MD system. Finally, we conclude with a brief
summary and discussion in Section V.

II. THEORETICAL BACKGROUND

Consider an atomistic system consisting of numerous
atomic particles. The idea of coarse-graining is to divide the
atomistic system into K clusters where each cluster contains
many atomic particles. If the atomistic details are not of
practical interest, the dynamics of the system can be described
by the evolutions of proper CG variables, i.e., the coordinate
R and momentum P of the COM of the clusters. The equation
of motion (EOM) of the CG particles obtained from the Mori-
Zwanzig projection is in a form of the generalized Langevin
equation,18–21,23

d
dt

PI =
1
β

∂

∂RI
lnω(R)

− β

K
X=1

 t

0
ds
[δFQI (t − s)][δFQX(0)]T

 PX(s)
MX

+ δFQI (t), (1)

where β = 1/kBT with kB the Boltzmann constant and T the
thermodynamic temperature. Also, R = {R1,R2, . . . ,RK} is
a phase point in the CG phase space, and ω(R) is defined
as a normalized partition function of all the microscopic
configurations at phase point R. On the right-hand side of
Eq. (1), the first term represents the conservative force due
to the change of potential energy. The last term δFQI (t) is the
random component, which considers the unresolved degrees
of freedom during the CG procedure. The second term of
Eq. (1) is the friction force containing an integral of memory
kernel Ψ(t) = β


[δFQI (t)][δFQX(0)]T
�
.

In principle, the force on a molecule I depends on
all the COM coordinates R as well as their microscopic
configurations. Although the EOM given by Eq. (1) based
on the MZ formalism is accurate, a direct computation
of the many-body interactions and the memory kernel in
Eq. (1) is difficult, even for a simple system derived from
a one-dimensional harmonic chain.17,24 To this end, we use
two approximations to make Eq. (1) resulting from the MZ
formalism practical. First, we assume that the non-bonded
interactions between neighboring clusters in the microscopic
system are pairwise decomposable, and hence the total force
consists of pairwise forces, e.g., FI ≈


J,I FI J and δFQI ≈

J,I δFQI J. Second, we neglect the many-body correlations
between different pairs, and assume that the pairwise force
FI J between two clusters I and J depends only on the relative
COM positions RI and RJ and is independent of the positions
of the rest of clusters.

With negligible many-body correlation and using the
pairwise decomposition, Eq. (1) can be written into pairwise
form (the detailed derivation is provided in Appendix A),

d
dt

PI =

J,I

FI J(t)

=

J,I


⟨FI J⟩ −

 t

0
KI J(t − s)VI J(s)ds + δFQI J(t)


, (2)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.148.231.12 On: Wed, 25 Nov 2015 14:16:36



243128-3 Li et al. J. Chem. Phys. 143, 243128 (2015)

where FI J is the instantaneous force and its ensemble
average is denoted as ⟨FI J⟩, and the matrix KI J(t)
= β⟨[δFQI J(t)][δFQI J(0)]T⟩ is the pairwise memory kernel of
dissipation. Let the difference of the instantaneous force
from the mean force be the fluctuating force δFI J(t)
= FI J(t) − ⟨FI J⟩. By multiplying VT

I J(0) on both sides of
Eq. (2), we have

⟨δFI J(t)VT
I J(0)⟩ = −

 t

0
KI J(t − s)⟨VI J(s)VT

I J(0)⟩ds, (3)

where the third term ⟨δFQI J(t)VT
I J(0)⟩ disappears because

δFQI J(t) has no correlation with velocity. The reason is
that the random force δFQI J(t) comes from the orthogonal
dynamics in the MZ procedure, and hence it is viewed as
noise uncorrelated with resolved components. The temporal
correlations ⟨δFI J(t)VT

I J(0)⟩ and ⟨VI J(t)VT
I J(0)⟩ can be

computed from atomistic simulations, and hence the memory
function KI J(t) for pairwise systems can be obtained by
solving Eq. (3). Moreover, since the random force δFQ(t)
= e−QiLtδF where Q is the orthogonal projection operator in
the MZ procedure and L the Liouville operator,18 using zeroth-
order approximation,25 e.g., e−QiLt � e−iLt, we can compute
the force-force correlation CI J(t) = β⟨δFI J(t)δFT

I J(0)⟩ as
an alternative approximation of the memory kernel KI J(t).
We note that CI J(t) is the zeroth-order approximation of
KI J(t), which could be valid for short memory but would
become questionable for long memory.25,26 In Section IV,
the difference between using KI J(t) and CI J(t) in NM-DPD
simulations will be discussed.

The second fluctuation-dissipation theorem22 requires that
the random force δFQI J(t) in Eq. (2) is temporally correlated
with the correlation function KI J(t),

⟨[δFQI J(t)][δFQI J(0)]T⟩ = kBTKI J(t), (4)

which is also the definition of the memory kernel in Eq. (2).
Generation of colored noises for the random force satisfying
the second FDT is crucial to maintain the NM-DPD system at a
desired temperature, which guarantees that the CG simulation
is able to reproduce the correct CG dynamics consistent
with its underlying atomistic system. In the present paper,
two different colored noise generators are tested and their
performances in CG simulations are discussed in Appendix B.

III. COARSE-GRAINING PROCEDURE

To demonstrate the coarse-graining procedure, we
construct MD systems of star polymer melts to provide the
multiscale dynamics to be coarse-grained. In particular, the
entire molecule of a star polymer in the MD system is
coarse-grained into a single CG particle during the coarse-
graining process, whereby the MD system is projected into a
corresponding CG system, as shown in Fig. 1. Then, the
effective interactions between CG particles are evaluated
through the method described in Section II.

A. Microscopic model

In practice, MD systems are constructed in a computa-
tional box filled with star polymers, which are represented as

FIG. 1. A molecular dynamics (MD) system of star polymer melts is pro-
jected into a corresponding coarse-grained (CG) system, in which the entire
molecule of a star polymer in the MD system is coarsened into a single CG
particle.

chains of beads connected by short springs. Each molecule of
the star polymer has 10 arms with 1 monomer per arm, hence
the total number of monomers per star polymer is Nc = 11.
We note that increasing the arm length of star polymer will
introduce many-body correlations between different pairs,
which makes the interpretation of results complicated. In
the present study, we focus on the failure of the Markovian
approximation induced by poorly separated time scales in
the multiscale dynamics. Therefore, we simplify the problem
and exclude the many-body correlations by choosing the star
polymer with short arms.

A purely repulsive Weeks-Chandler-Andersen (WCA)
potential27 is employed to compute the excluded volume
interactions between monomers,

VWCA(r) =



4ε
(
σ

r

)12
−
(
σ

r

)6
+

1
4


, r ≤ 21/6σ

0, r > 21/6σ
, (5)

where ε sets the energy scale and σ the length scale of
the monomers. Also, a finitely extensible nonlinear elastic
(FENE) potential28 is adopted for the bond interaction between
connected monomers,

VB(r) =



−1
2

kr2
0 ln

�
1 − (r/r0)2� , r ≤ r0

∞, r > r0

, (6)

where k = 30ε/σ2 is the spring constant and r0 = 1.5σ
determines the maximum length of the spring.29 Such a FENE
spring is stiff and short enough so that bond crossing can be
prevented in the MD system.30

MD simulations of star polymer melts are performed
in a canonical ensemble (NVT) with the Nosé-Hoover
thermostat.31,32 More specifically, 1000 molecules of star
polymer are filled into periodic cubic boxes of length
L = (1000Nc/ρ)1/3 to model the polymer melts, in which ρ is
the number density of monomers. Unless otherwise specified,
all the results in the present paper are expressed in the reduced
LJ units, i.e., the length, mass, energy, and time units are set as
σ = 1, m = 1, ϵ = 1, and τ = σ(m/ε)1/2, respectively. Also,
the temperature of the MD systems is maintained at kBT = 1.0
and the time step used in the velocity-Verlet integrator10 is
δt = 1.0 × 10−3τ.
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To examine the importance of memory effects in the
coarse-graining procedure, two cases are considered: one has
apparent time scale separation while the other has small
separation of time scales. In particular, the MD simulations of
polymer melts at two different monomer densities ρ = 0.4 and
0.7 are performed. Figure 2 plots the VACF and FACF of COM
at two different monomer densities. It is clearly shown that, at
lower monomer density ρ = 0.4, the correlation time scales of
VACF and FACF are τv = 10.30 and τf = 0.44, respectively.
Here, the magnitude of τv and τf takes the time when
normalized VACF and FACF decrease to 10−2. In this case, the
ratio of the time scales defined as κ = τv/τf = 23.41 indicates
a clearly separated time scale of momentum and force, in
which the memory effects are less important and a Markovian
behavior can be expected. However, at higher monomer
density ρ = 0.7, the time scales of τv = 0.61 and τf = 0.22
result in κ = τv/τf = 2.77, which means that the correlation
time scales of VACF and FACF become comparable and the
Markovian approximation becomes inaccurate.

Moreover, the molecules in the two MD systems follow
different diffusion processes. Figure 3 shows the mean squared
displacement (MSD) of the COM of star polymer at monomer
densities ρ = 0.4 and ρ = 0.7. At short time scales, the
molecules in both systems experience the ballistic regime
where the MSD approaches (3kBT/M)t2. Then, the molecules
in the MD system of ρ = 0.4 have normal diffusion in which
the MSD is proportional to the length of time, i.e., MSD ∼ t.
However, in the MD system of ρ = 0.7, the star polymers
undergo a sub-diffusion process distinguished by MSD ∼ t0.57

before a normal diffusion is reached at long time scales. With
these two significantly different cases, we will practically
coarsen the MD systems of polymer melts into corresponding
CG systems to demonstrate how to evaluate the memory
kernel from atomistic simulations and how to incorporate the
memory effects in CG simulations correctly.

B. Coarse-grained force field

Consider a pair of molecules I and J in MD systems and
let eI J be the radial unit vector directed along center-to-center
from J to I. In general, the total force FI J between the
two molecules I and J is not parallel to the radial vector

FIG. 2. Velocity autocorrelation function (VACF) and force autocorrelation
function (FACF) of the center-of-mass of star polymers at different monomer
densities ρ = 0.4 and 0.7 (results from MD simulations).

FIG. 3. Mean squared displacement (MSD) of the center-of-mass of star
polymers at different monomer densities ρ = 0.4 and 0.7 (results from MD
simulations).

eI J because the molecule of star polymer consists of many
discrete monomers. Here, we define three directions as shown
in Fig. 4 for description of pairwise interactions between
clusters I and J, where the symbol “∥” denotes the direction
parallel to eI J, “⊥1” for the direction along the perpendicular
velocity component V⊥1

I J = VI J − (VI J · eI J)eI J and “⊥2” for
the direction orthogonal to both eI J and VI J.

As shown in Eq. (2), the evolution of a CG particle
is governed by three types of interaction. First of all, we
need to sample the intermolecular mean force from atomistic
simulations by averaging the total forces between different
molecules of star polymer. Since the instantaneous pairwise
force FI J has no preference in the plane orthogonal to eI J,
the average pairwise force ⟨FI J⟩, which is taken as the
conservative force, has only radial component23

⟨FI J⟩ = FC
IJ = FC

IJ(RI J)eI J, (7)

where eI J = (RI − RJ)/RI J with RI J = |RI − RJ |. The
distance-dependent function FC

IJ(RI J) represents the magni-
tude of the conservative force FC

IJ.
To compute the value of FC

IJ at various distances from MD
trajectories, the distance between two molecules is divided into
many bins with width of ∆. Then, the magnitude of FC

IJ(RI J)
is obtained by averaging ⟨FI J · eI J⟩ over all those pairs with a
center-to-center distance between RI J − ∆/2 and RI J + ∆/2.
Figure 5 shows the distance dependence of the conservative
force FC

IJ(RI J) at the monomer densities ρ = 0.4 and 0.7. It
indicates that the conservative force changes slightly when

FIG. 4. A schematic illustration of the three directions for description of
pairwise interactions between clusters I and J , in which the symbol “∥”
represents the direction parallel to eI J , “⊥1” for the direction along the
perpendicular velocity component V⊥1

I J =VI J − (VI J ·eI J)eI J and “⊥2” for
the direction orthogonal to both eI J and VI J .
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FIG. 5. Distance dependence of the conservative force FC
IJ(R I J) at the

monomer densities ρ = 0.4 and 0.7. The inset shows a global view of the
fitting functions.

the monomer density increases from ρ = 0.4 to ρ = 0.7. For
easier numerical implementation of CG simulations, the raw
data of FC

IJ(RI J) obtained directly from MD simulations are
fitted by a bell-shaped function, i.e., FC

IJ(RI J) = 759.69(1
+ 4RI J/3.32)(1 − RI J/3.32)4 for ρ = 0.4 and FC

IJ(RI J)
= 946.05(1 + 4RI J/3.28)(1 − RI J/3.28)4 for ρ = 0.7. Here,
the cutoff radius beyond which the pairwise interactions
vanish is set to be Rcut = 3.32 for ρ = 0.4 and Rcut = 3.28 for
ρ = 0.7. The inset of Fig. 5 provides a global view of these
fitting functions, which will be used as the conservative force
for DPD simulations in Section IV.

The non-conservative forces between two CG particles
consist of a dissipative force FD

IJ =
 t

0 KI J(t − s)VI J(s)ds and
a random force δFQI J(t), as shown in Eq. (2). For a particle-
based system in thermal equilibrium, the random force δFQI J(t)
is related to the dissipative force by the second FDT given by
Eq. (4). To obtain CG force field that governs the motion of CG
particles, the memory kernel K(t) should be evaluated from
MD trajectories. In practice, the memory kernel K(t) can be
either approximated by the temporal autocorrelation function
of fluctuating force CI J(t) = β⟨δFI J(t)δFT

I J(0)⟩, or obtained
by solving Eq. (3) with computed correlations ⟨δFI J(t)VT

I J(0)⟩
and ⟨VI J(t)VT

I J(0)⟩.
In general, the fluctuating force δFI J between clusters

I and J is three-dimensional as shown in Fig. 4. However,
δFI J has no preference in the plane orthogonal to eI J because
of the spherical symmetry of star polymers. Therefore, we
ignore the difference between the perpendicular directions ⊥1
and ⊥2, and decompose the fluctuating force δFI J into two
orthogonal parts,

δFI J = (eI JeTI J) · δFI J + (1 − eI JeTI J) · δFI J

= δF∥I J + δF⊥I J, (8)

where δF∥I J is the radial component along vector eI J and δF⊥I J
is the perpendicular component whose modulus is equally
distributed on directions⊥1 and⊥2. Since the two components
δF∥I J and δF⊥I J are orthogonal to each other, the temporal
correlations are approximated by the sum of two orthogonal
terms,

CI J(t) ≈ β⟨[δF∥I J(t)][δF∥I J(0)]T⟩ + β⟨[δF⊥I J(t)][δF⊥I J(0)]T⟩
= C ∥I J(t)eI JeTI J + C⊥I J(t)(1 − eI JeTI J), (9)

where the fluctuating forces δF∥I J(t) and δF⊥I J(t) as well as
their temporal correlations can be evaluated directly from the
MD simulations. Similarly, the memory kernel KI J(t) is also
approximated by KI J(t) ≈ K ∥I J(t)eI JeTI J + K⊥I J(t)(1 − eI JeTI J).
Since the directions ⊥1 and ⊥2 have equivalent contribution
to C⊥I J(t) and K⊥I J(t), we have C⊥1

I J(t) = C⊥I J(t)/2 and K⊥1
I J(t)

= K⊥I J(t)/2.
Figure 6 illustrates the temporal correlations of fluctuating

force C ∥I J(t) and C⊥I J(t), and also the computed memory kernels
K ∥I J(t) and K⊥I J(t) for polymer melts at a monomer density
of ρ = 0.4. These correlations and memory kernels for the
MD system of ρ = 0.7 are presented in Fig. 7. It should be
noted that the force-force autocorrelation function CI J(t) and
the memory kernel KI J(t) are functions of both time and
intermolecular distance. To compute the pairwise correlations
and memory kernels at different distances, the intermolecular
distance RI J is divided into many bins with a width of
∆, which is similar to the computation of the conservative
force FC

IJ(RI J). Then, the values of CI J(R, t) and KI J(R, t)
are obtained by computing the force-force correlations and
cross correlations appear in Eq. (3) over the pairs with a
distance R − ∆/2 < RI J(t) < R + ∆/2. For instance, C ∥I J(R, t)
is computed through

C ∥I J(R, t) = β ⟨[δF∥I J(t)][δF∥I J(0)]T⟩���R−∆/2<RI J<R+∆/2
. (10)

We note that the bin size ∆ should be selected properly.
Because of the diffusion of molecules, the intermolecular
distance RI J changes continuously. On the one hand, using
small bin size means that only short time correlations can be
obtained, and on the other hand, large bin sizes will reduce
the spatial resolution of CI J(R, t) and KI J(R, t). To balance
the time length of correlations and their spacial resolution, a
bin size ∆ = 0.05 is used in the present study.

IV. INCORPORATING MEMORY EFFECTS
IN DPD SIMULATIONS

Once the conservative force and the memory kernel of
dissipation are obtained from atomistic simulations, a CG
system can be constructed that takes into account such a
force field. In the present work, DPD is employed as such
a CG system. More specifically, DPD is a particle-based
mesoscopic method in which the particles interact through
conservative, dissipative, and random forces.14 Since the
interactions between DPD particles are pairwise, the total
momentum of the system is strictly conserved. Moreover,
Español33 and Marsh et al.34 reported that the hydrodynamic
equations of a DPD system recover the continuity and
Navier-Stokes equations, which means that DPD can provide
the correct hydrodynamic behavior of fluids at mesoscale.
Therefore, DPD and its extensions35–37 have been successfully
applied to simulations of biological systems37,38 and complex
fluids.39 However, these DPD models cannot consider the
correlations of fluctuating force. In this section, we first apply
the Markovian approximation to simplify the dissipative term
in Eq. (2), which results in an EOM consistent with the
formulations of the conventional DPD model. Subsequently,
we discuss how to incorporate the memory effects in a
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FIG. 6. Dependence of correlation
functions (a1) C ∥I J(R I J, t), (a2)
C⊥I J(R I J, t), and memory kernels (b1)
K ∥I J(R I J, t), (b2) C⊥I J(R I J, t) on
time and intermolecular distance in a
MD system of polymer melts at the
monomer density ρ = 0.4.

FIG. 7. Dependence of correlation
functions (a1) C ∥I J(R I J, t), (a2)
C⊥I J(R I J, t), and memory kernels (b1)
K ∥I J(R I J, t), (b2) C⊥I J(R I J, t) on
time and intermolecular distance in a
MD system of polymer melts at the
monomer density ρ = 0.7.
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NM-DPD model when the Markovian assumption becomes
inaccurate.

A. Markovian DPD model

Usually, if the typical time scales of random force and
momentum are well separated, the Markovian assumption can
be applied, where the time correlation of random force is
approximated by the Dirac delta function. Then, we have t

0
KI J(t − s)VI J(s)ds = γI J · VI J(t), (11)

where the γI J is the friction tensor. In practice, γI J is
decomposed into two orthogonal terms, which are computed
by

γI J = γ ∥I JeI JeTI J + γ
⊥
I J(1 − eI JeTI J),

γ ∥I J(RI J) =
 τ0

0
K ∥I J(RI J, t)dt,

γ
⊥1
I J(RI J) = 1

2
γ⊥I J(RI J) = 1

2

 τ1

0
K⊥I J(RI J, t)dt,

(12)

where τ0 and τ1 are the cutoff times for the integral of
K(t). More specifically, τ0 = 0.45 and τ1 = 0.25 are used for
the cases ρ = 0.4 and 0.7. We note here that the time step
δt = 0.001 is used for MD simulations and ∆t = 0.005 for
DPD and NM-DPD simulations.

The radial and perpendicular components of the computed
friction coefficients γ ∥I J(RI J) and γ

⊥1
I J(RI J) versus the distance

RI J are presented in Fig. 8. Their values obtained from
the integral of the memory kernel K(t) and the force
correlation function C(t) are quite similar. It is worth noting
that there is no symbol for RI J < 2.2 because the radial
distribution function (RDF) is zero when RI J < 2.2, as shown
in Fig. 9. To simplify the numerical implementation of DPD
simulations, the symbols in Fig. 8 are fitted by a function
f (R) = Λ(1 + χR/Rcut)(1 − R/Rcut)χ with parameters listed
in Table I.

Since the pairwise interactions between DPD particles
have perpendicular components, the rotational motions of
DPD particles should be included to conserve the angular
momentum of the DPD system.23 Therefore, we consider the
pairwise interactions in all the three directions e∥, e⊥1, and

FIG. 8. Radial and perpendicular components of friction coefficients versus
the intermolecular distance R I J for the MD system of ρ = 0.4. The sym-
bols represent the raw data obtained from γ∥,⊥1(R)=  τ0

0 K ∥,⊥1(R, t)dt or
γ∥,⊥1(R)=  τ0

0 C ∥,⊥1(R, t)dt . The lines are fitting curves with parameters
given in Table I.

FIG. 9. Performance of Markovian DPD model (DPD) and non-Markovian
DPD model (NM-DPD) in reproducing the MD system on the radial distribu-
tion function (RDF) at two different monomer densities ρ = 0.4 and 0.7.

e⊥2 shown in Fig. 4, and also include the rotational motion
of DPD particles. As a result, the time evolution of a DPD
particle is given by23,40,41

dLI

dt
= TI =


J,I

RI J

2
× FI J, (13)

dPI

dt
=

J,I

FI J =

J,I

�
FC
IJ(RI J)eI J

− γ ∥(RI J) · V∥I J − γ⊥1(RI J) · V⊥I J
− γ⊥1(RI J)


RI J

2
× (ΩI +ΩJ)



+σ ∥(RI J)∆t−1/2ξI J · eI J
+
√

2σ⊥1(RI J)∆t−1/2 · dWA
I J · eI J

	
, (14)

whereΩI is the angular velocity of particle I, TI is the torque
and LI = IRI

ΩI the angular momentum. The magnitude of the
rotational inertia of a star polymer is 6.55, which is obtained
by a computation of IRx = ⟨mi( ŷ2

i + ẑ2
i )⟩ = 2

3 ⟨M R2
g⟩. Here,

Rg is the gyration radius of star polymers.23 Also, ξI J is
a Gaussian white noise that is independent for different
pairs and at different times.42 dWA

I J =
1
2 (dWµν

I J − dWνµ
I J ) is

an antisymmetric noise matrix. The relationships [σ ∥(RI J)]2
= 2γ ∥(RI J)kBT and [σ⊥1(RI J)]2 = 2γ⊥1(RI J)kBT are required
so that the fluctuation-dissipation theorem is satisfied and the
DPD system can be maintained at constant temperature.42

TABLE I. Parameters in form ofΛ(1+ χR/Rcut)(1−R/Rcut)χ for fitting the
friction coefficients shown in Fig. 8, and also for the denser polymer melt
ρ = 0.7. Here, Rcut is the cutoff radius beyond which the friction coefficients
are zero.

ρ Based on γ Λ χ Rcut

0.4
C(t)

γ∥(R) 146.18 3.00 3.32
γ⊥1(R) 110.76 3.95 3.32

K(t)
γ∥(R) 84.13 2.02 3.13
γ⊥1(R) 112.85 3.51 3.13

0.7
C(t)

γ∥(R) 112.21 2.17 3.11
γ⊥1(R) 102.30 3.27 3.11

K(t)
γ∥(R) 82.07 1.78 3.10
γ⊥1(R) 42.28 2.62 3.09
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B. Non-Markovian DPD model

Without the Markovian approximation, we have to
preserve the temporal memory of each pair in the NM-DPD
model. To avoid prohibitively computational cost, we assume
that the memory on time is finite, e.g., history length N∆t
where ∆t is the time step of NM-DPD simulations. Therefore,
the time correlations of the fluctuating and random forces are
zero when the time interval is larger than N∆t,

CI J(t) = β

[δFI J(t)][δFI J(0)]T� |t>N∆t = 0,

KI J(t) = β
[δFQI J(t)][δFQI J(0)]T

 |t>N∆t = 0.
(15)

Let the friction coefficients Γ ∥I J,n(R) = K ∥I J(R,n∆t)
and Γ⊥1

I J,n(R) = 0.5K⊥I J(R,n∆t), where the memory kernels
K ∥I J(R,n∆t) and K⊥I J(R,n∆t) should be replaced by the
temporal correlations of fluctuating force C ∥I J(R,n∆t) and
C⊥I J(R,n∆t) when C(t) is taken as an approximation of K(t).
Then, the EOM of NM-DPD particles is given by

dLI

dt
= TI =


J,I

RI J

2
× FI J, (16)

dPI

dt
=

J,I

FI J =

J,I

�
FC
IJ(RI J)eI J

−
N
n=0

∆tΓ ∥I J,n (RI J(t − n∆t)) · V∥I J(t − n∆t)

−
N
n=0

∆tΓ⊥1
I J,n (RI J(t − n∆t)) · V⊥I J(t − n∆t)

−
N
n=0

∆tΓ⊥1
I J,n (RI J(t − n∆t))


RI J

2
× (ΩI +ΩJ)



+

N
n=0

α ∥I J,n (RI J(t − n∆t)) ξI J(n∆t)eI J

+

N
n=0

√
2α⊥1

I J,n (RI J(t − n∆t)) dWA
I J(n∆t) · eI J	 ,

(17)

where V∥I J(t − n∆t) = [VI J(t − n∆t) · eI J(t − n∆t)]eI J(t
− n∆t) is the parallel velocity component and V⊥I J(t
− n∆t) = VI J(t − n∆t) − V∥I J(t − n∆t) the perpendicular ve-
locity component. The coefficients α ∥I J,n and α

⊥1
I J,n are used

to generate colored noise satisfying the second FDT given by
Eq. (4). These coefficients are related to the friction kernels
by N−s

n=0
α ∥I J,nα

∥
I J,n+s = kBT · Γ ∥I J,s,N−s

n=0
α
⊥1
I J,nα

⊥1
I J,n+s = kBT · Γ⊥1

I J,s.
(18)

In practical implementation, the temporal dependence
and distance dependence of the kernel are separated,
i.e., Γ ∥I J(RI J, t) ≈ φ ∥(RI J) · θ ∥(t), and so the relationship of
Eq. (18) can be written asN−s

n=0
α ∥I J,nα

∥
I J,n+s = kBT · φ ∥(RI J)θ ∥I J(s∆t),N−s

n=0
α
⊥1
I J,nα

⊥1
I J,n+s = kBT · φ⊥1(RI J)θ⊥1

I J(s∆t).
(19)

Let η ∥ be the integral of θ ∥(t), that is, η ∥ =
 τ0

0 θ ∥(t)dt. Then,
the distance-dependent function φ ∥(RI J) = γ ∥(R)/η ∥ where
γ ∥(R) is the function listed in Table I. The details of colored
noise generator are described in Appendix B, in which two
different schemes for obtaining the coefficients α ∥I J,n and
α
⊥1
I J,n are tested and their performances are compared.

With the constructed CG force field, DPD and NM-DPD
simulations are performed with 1000 DPD particles in periodic
cubic boxes of length L = (1000Nc/ρ)1/3, where Nc = 11 and
ρ = 0.4 or 0.7. Here, each DPD particle corresponds to a
molecule of star polymer in MD systems. The velocity-Verlet
algorithm10,14 is employed for the numerical integration with a
time step of ∆t = 0.005. By monitoring the temperature in the
simulations, it has been verified that the temperatures of DPD
and NM-DPD systems are maintained at kBT = 1.0, which
indicates correct implementations of FDT and second FDT.

The comparisons on the RDF between Markovian-based
DPD systems, NM-DPD systems, and the MD systems
at different monomer densities are made in Fig. 9. In
particle-based systems, RDF is the primary linkage between
macroscopic thermodynamic properties, such as pressure and
compressibility, and microscopic interactions. Figure 9 shows
that the CG force fields obtained from MD trajectories
reproduce excellent RDFs consistent with the original
MD systems at both ρ = 0.4 and ρ = 0.7. Including non-
Markovian memory in the DPD system does not change its
performance on reproducing RDF. The reason is that the RDF
of a DPD system is only determined by the conservative
force, and the changes of non-conservative force do not affect
RDF, even if the non-Markovian memory is introduced in
the simulations. Moreover, the pressure is not affected by the
inclusion of non-Markovian memory either, for example, the
MD system of ρ = 0.4 has a pressure of P = 0.191 while both
DPD and NM-DPD give P = 0.193.

Now, we examine the dynamics properties of MD,
DPD, and NM-DPD systems by comparing their VACFs.
The behavior of VACF implicitly represents the dynamical
properties of the system. For example, a typical VACF shows
an exponential decay determined by the viscosity, while the
diffusion constant can be obtained by the integral of VACF via
Green-Kubo relations. To examine the VACF of a CG system,
comparing with its underlying MD system will quantify how
well the dynamics of the MD system is reproduced by the CG
model.

For the MD system of star polymer melts at a monomer
density ρ = 0.4, the typical time scale of momentum is
τv = 10.30 while the time scale of fluctuating force is
τf = 0.44, as shown in Fig. 2. The ratio of the time scales
κ = τv/τf = 23.41 indicates an apparent separation of time
scales, and hence the Markovian assumption should be valid
for this MD system. Figure 10 shows the performance of
DPD and NM-DPD models in reproducing the MD system on
VACF, in which Fig. 10(a) uses the force-force autocorrelation
function CI J(t) for computation of the dissipative coefficients
while Fig. 10(b) uses the memory kernel KI J(t). Each figure
has a zoom-in view near t = 0 as an inset. Results indicate that
the VACF of MD system is well reproduced by the Markovian
DPD model. Incorporation of the memory effects into DPD
simulations yields small improvement on VACF at short time,
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FIG. 10. Performance of Markovian
DPD model (DPD) and non-Markovian
DPD model (NM-DPD) in reproducing
the MD system of ρ = 0.4 on the ve-
locity autocorrelation function (VACF)
based on (a) force-force autocorrelation
function CI J(t), and (b) memory ker-
nel KI J(t). Insets: zoom-in view near
t = 0. The ratio of the time scales in the
MD system is κ =τv/τ f = 23.41.

but the improvement is not obvious because the deviation of
Markovian DPD from MD is small.

It is worth noting that the VACFs of MD system start
with a zero initial slope. However, applying the Markovian
assumption completely ignores the temporal correlations of
random forces, which results in an exponential decay of VACF
at short time scales. Therefore, the VACFs of Markovian DPD
model in all the insets of Figs. 10 and 11 have non-zero
slopes at t = 0. The failure to capture short time VACF
indicates that the dynamics of the system involved in high-
frequency processes cannot be correctly produced. However,
by including the non-Markovian memory in the pairwise
interactions, NM-DPD generates much better short time VACF
consistent with the VACF of MD system. Figure 11 shows
that this improvement on short time VACF is obvious in the
case of ρ = 0.7, where the ratio of time scale κ = τv/τf = 2.77
implies a small separation of time scales. It is found that using
CI J(t) or KI J(t) results in little difference on VACF, which
indicates that the force-force autocorrelation function CI J(t)
can be a good approximation of the memory kernel KI J(t) in
pairwise systems.

V. SUMMARY AND DISCUSSION

We applied the MZ projection operator to a microscopic
system to construct corresponding CG systems. In particular,
the CG dynamics resulted from a MZ projection of an
underlying microscopic dynamics is governed by three terms.
The conservative term results from the change of potential
energy. The random term is generated by unresolved degrees
of freedom. The dissipative term depends on history variables

and an integral of the memory kernel of the random term.
In general, including the memory effects is complicated and
the Markovian assumption is often employed to simplify the
formulation of CG models and corresponding implementation.
However, when the time scales of a system are not clearly
separated, the Markovian assumption becomes inaccurate and
the memory effects should be taken into account. To this end,
we studied two significantly different systems to demonstrate
how to evaluate the memory kernel directly from atomistic
simulations and how to incorporate the memory effects in CG
simulations when the Markovian assumption fails.

For practical implementation, MD simulations of star
polymer melts were performed to provide multiscale dynamics
to be coarse-grained. By grouping many bonded atoms of the
MD system into single CG particles, both the conservative
and non-conservative interactions were evaluated from MD
trajectories. For the MD system having clear time scale
separation, we used the Markovian approximation to obtain a
DPD model. Otherwise, we preserved the temporal memory
of pairwise interactions in a NM-DPD model, where colored
noises are generated by two different schemes to satisfy the
second FDT. Results show that including memory effects
changes the dynamic properties of DPD systems but does
not affect static properties, i.e., radial distribution function
and pressure. Also, it was demonstrated that the Markovian
assumption works well for the system with clear time scale
separation, where NM-DPD model has little improvement on
the VACF compared with Markovian DPD model. However,
when the time scales of a system are not fully separated,
the NM-DPD can reproduce correct short-time properties that
are related to how the system responds to high-frequency

FIG. 11. Performance of Markovian
DPD model (DPD) and non-Markovian
DPD model (NM-DPD) in reproducing
the MD system of ρ = 0.7 on the ve-
locity autocorrelation function (VACF)
based on (a) force-force autocorrelation
function CI J(t), and (b) memory ker-
nel KI J(t). Insets: zoom-in view near
t = 0. The ratio of the time scales in the
MD system is κ =τv/τ f = 2.77.
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disturbances, which cannot be captured by the Markovian-
based DPD model.

The present work provides a clear path to constructing
a CG force field for DPD simulations from atomistic
simulations. On the one hand, we demonstrated that the
Markovian assumption can be safely applied to simplify the
computation of dissipative force when the time scales of
microscopic dynamics are apparently separated. On the other
hand, for the systems without clear separation of time scales,
we suggested a methodology to compute the memory kernel
directly from microscopic dynamics. Moreover, we presented
the procedure for incorporation of the memory effects in
the CG simulations with the correct implementation of the
second FDT. We note that the present results are only a first
step in the direction of including finite memory effects in
coarse-grained modeling. In future work, we plan to apply
the non-Markovian DPD model to macromolecules at a more
aggressive coarse-graining level so that larger clusters may
introduce long memory effects in their effective dynamics.
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APPENDIX A: PAIRWISE DECOMPOSITION

In this appendix, we present the detailed derivations
of the pairwise decomposition for obtaining Eq. (2) from
Eq. (1). By assuming that the non-bonded interactions between
clusters are pairwise decomposable and ignoring the many-
body correlations between different pairs, the first term on the
right-hand side (RHS) of Eq. (1) is approximated by

1
β

∂

∂RI
lnω(R) = ⟨FI⟩ ≈


J,I

FC
IJ(RI J)eI J, (A1)

where FC
IJ(RI J)eI J = ⟨FI J⟩ is the mean force between two

clusters I and J at a separation distance of RI J. Here, eI J is the
unit vector from cluster J to I, FI J is the instantaneous force
exerted by cluster J on cluster I, and ⟨FI J⟩ is the ensemble
average of FI J. It is worth noting that the instantaneous
pairwise force FI J has no preference in the plane orthogonal
to eI J, therefore, the average pairwise force ⟨FI J⟩ has only
non-zero component along the radial direction eI J.

Similarly, the third term on the RHS of Eq. (1) δFQI J(t) is
also decomposed into pairwise random forces,

δFQI (t) ≈

J,I

δFQI J(t). (A2)

According to the Mori-Zwanzig formalism, the random force
δFQI (t) is generated from the orthogonal dynamics, which
depends on the full initial conditions of the microscopic system

being projected. We note that although the random force δFQI J
is difficult to be evaluated in a microscopic dynamics, a
direct computation of the fluctuating force δFI J is relatively
straightforward. Here, the fluctuating force δFI J is defined
as the difference of the instantaneous force FI J from the
mean force ⟨FI J⟩, i.e., δFI J = FI J − ⟨FI J⟩. Then, the force
autocorrelation function CI J(t) = β⟨δFI J(t)δFT

I J(0)⟩ can be
computed from microscopic dynamics as an approximation of
the memory kernel KI J(t) = β⟨[δFQI J(t)][δFQI J(0)]T⟩.

Now, we consider the second term on the RHS of Eq. (1),
which has memory and contains an integral over past values
of variables. If the many-body correlations between different
pairs are ignored, only the terms that contain the correlations
of same pair can survive in the derivation. Therefore, we have

β
[δFQI (t − s)][δFQX(0)]T

 PX(s)
MX

= β

J,I


Y,X

[δFQI J(t − s)][δFQXY(0)]T


VX(s)

= β
[δFQI J(t − s)][δFQI J(0)]T


VI(s)|X=I,Y=J

+ β
[δFQI J(t − s)][δFQJ I(0)]T


VJ(s)|X=J,Y=I

= β
[δFQI J(t − s)][δFQI J(0)]T


VI J(s)

= KI J(t − s)VI J(s), (A3)

where VI J = VI − VJ is the relative velocity of CG particle
I to J, and KI J(t) = β⟨[δFQI J(t)][δFQI J(0)]T⟩ is the pairwise
memory kernel involved in Eq. (2).

APPENDIX B: COLORED NOISE GENERATOR

The thermodynamic properties of a particle-based system
highly depend on its temperature. For a particle in a thermally
equilibrium environment, the dissipative and random forces
exerted on the particle should satisfy the FDT.22 If the
dissipative force is history-dependent, the equation of motion
of the particle is given in the form of generalized Langevin
equation,16

dp(t)
dt
= −

 t

0
θ(t − s)p(s)

m
ds + R(t), (B1)

where θ(t) is a memory kernel and R is the random force.
Then, the second FDT22 should be satisfied so that a constant
temperature is guaranteed,

⟨R(t)R(t ′)T⟩ = kBTθ(t − t ′), (B2)

where kB is the Boltzmann constant and T the temperature.
Let K ≥ 0 be the dimension of the random force R(t), and so
the memory kernel θ(t) would be a K × K matrix. To simplify
the notations, the following derivations are demonstrated for
the one-dimensional case.

In the numerical implementation, the random forces are
imposed at each time step. Considering discrete time steps
tn = n · δt where n ≥ 0, we define Rn = R(tn) and θn = θ(tn).
As a result, the second FDT given by Eq. (B2) can be rewritten
into its discrete form,

⟨RnRm⟩ = kBTθn−m, (B3)
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FIG. 12. (a) Target correlation function
kBTθ(t) and realistic correlation func-
tion f (t) of colored noises generated
by the DFT-based scheme, and (b) co-
efficients αs obtained from the inverse
Fourier transform shown in Eq. (B6).

which should be satisfied for all the integers m and n. For
finite number of steps, i.e., 0 ≤ n ≤ N , let us write the memory
kernel θn as follows:

θn =

N
n=−N

αsαs+n, (B4)

where αs is a set of undetermined coefficients. Then, we apply
the discrete Fourier transform (DFT) on the memory kernel,

θ̂k =

N
n=−N

θne−ikn2π/N . (B5)

Since θ̂k = |α̂k |2 is greater or equal to zero, by defining
α̂k = θ̂1/2

k
the coefficients αs can be obtained by the inverse

Fourier transform

αs =
1

2N + 1

N
n=−N

α̂keik s2π/N . (B6)

Let Wn be a sequence of independently and identically
distributed normal random variables, we generate the random
forces by

Rn =


kBT
N

s=−N
αsWn+s. (B7)

Then, the resultant random forces are correlated and satisfy
the second FDT, i.e., ⟨RnRm⟩ = kBTθn−m.

A memory kernel θ(t) = exp(−19.30t) cos(28.25t) for
0 ≤ t ≤ 0.39, as plotted in Fig. 12(a), is used to test the DFT-
based colored noise generator. With a periodic extension, the
period Π = 0.78 is used in DFT. Let the time step δt = 0.005,
and so a set of 156 coefficients αs can be obtained directly

by an inverse Fourier transform described in Eq. (B6). These
coefficients αs are shown in Fig. 12(b). As expected, the
correlation of the colored noises and the memory kernel
coincide in Fig. 12(a).

To further test the DFT-based colored noise generator
in practical simulations, we use a simpler version of non-
Markovian DPD model, in which only radial interactions
between DPD particles are considered,

dPi

dt
=

j,i

Fi j =

j,i

�
FC
i j (ri j)ei j

− φ
�
ri j

� N
n=0

δt · θi j,n · V∥i j(t − n∆t)

+ [φ �ri j�] 1
2 R(t)ei j	, (B8)

where R(t) is generated by Eq. (B7), and V∥i j(t)
= [Vi j(t)ei j(t)]ei j(t) is radial component of the relative
velocity Vi j(t).

In our test, a NM-DPD simulation is performed in a
periodic cubic box of length L = 26.37 filled with 1000 DPD
particles. The temperature is set to kBT = 1.0 and the mass
of each DPD particle is m = 11. Also, FC

i j (r) = 795.69(1
+ 4r/rc)(1 − r/rc)4 and φ(r) = 3.66 × 104(1 − r/rc)3.84 with
rc = 3.32, and the time step δt = 0.005. Figure 13(a) shows
time evolution of temperature in the NM-DPD simulation and
its inset presents a FFT analysis of the temperature. It is found
that the temperature is maintained at a constant temperature of
T = 1.0. Therefore, the second FDT is correctly implemented
in the NM-DPD simulation. However, the evolution of
temperature contains a dominant frequency of f = 1.2821
corresponding to an obvious periodicity with a period of

FIG. 13. (a) Evolution of temperature
in a non-Markovian DPD simulation us-
ing the DFT-based colored noise gen-
erator, with an inset showing the FFT
analysis of the temperature, and (b) ve-
locity autocorrelation function (VACF)
of DPD particles in the system.
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FIG. 14. (a) Target correlation function
kBTθ(t) and realistic correlation func-
tion f (t) of generated colored noise us-
ing the OPT-based scheme, and (b) co-
efficients αs for colored noise generator
shown in Eq. (B9).

FIG. 15. (a) Evolution of temperature
in a non-Markovian DPD simulation us-
ing the OPT-based colored noise gen-
erator, and (b) velocity autocorrelation
function (VACF) of DPD particles in
the system.

Π = 0.78, which is the period introduced in DFT. Moreover,
such a periodicity is also observed in the VACF as shown in
Fig. 13(b).

We note the imposed periodicity by DFT-based scheme is
known and hence the extra effects in temperature and VACF
can be removed easily in postprocessing, but the analysis of
artificial effects in particle trajectories would be complicated.
Thus, although the DFT-based scheme can generate colored
noises with correct correlations, the resultant random forces
introduce artificial periodicity that significantly changes the
dynamics of the NM-DPD system. To avoid this problem, we
consider another approach without using DFT.

When the random force Rn is generated by

Rn =


kBT
N
s=0

αsWn+s, (B9)

we can compute the correlation of the random forces by

⟨RnRm⟩ = kBT
N
s=0

N
t=0

αsαtδn+s−m−t

= kBT
N
s=0

αsαn−m+s

= fn−m, (B10)

where fn = kBT
N

s=0 αsαn+s. It is known that the second
FDT requires a correlation of random forces given by
⟨RnRm⟩ = kBTθn−m. To achieve this, numerical optimization
techniques can be used to obtain a set of coefficients αs by
minimization of difference between fn−m and kBTθn−m. In
practice, the globalized bounded Nelder-Mead algorithm43

is used for the optimization. We note, however, that many

other optimization methods can be also used to obtain αs

by defining the test function fn = kBT
N

s=0 αsαn+s and the
target function kBTθn.

Figure 14(a) shows the target function kBTθ(t) together
with the realistic correlations of colored noise f (t), while the
coefficients αs obtained by optimization-based scheme (OPT)
are shown in Fig. 14(b). It can be found that the target function
kBTθ(t) is obtained by the optimization scheme. Actually,
the iterative strategies that take previous results as an initial
guess can be applied to increase the accuracy of optimiza-
tion further. Since the coefficients αs are chosen from ran-
dom variables, there are no apparently dominant frequencies
involved.

Next, the OPT-based colored noise generator is tested
in a practical NM-DPD simulation. Here, we use the same
DPD system of previous test for the DFT-based scheme.
The evolution of temperature in the NM-DPD simulation is
presented in Fig. 15(a). It can be observed that the temperature
fluctuates slightly around T = 1.0, which indicates a correct
implementation of the second FDT. Moreover, a smooth VACF
is shown in Fig. 15(b). No detectable periodicity is introduced
in the NM-DPD system when OPT-based scheme is used.
Therefore, all the NM-DPD simulations in the present work
adopt the OPT-based colored noise generator.
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