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In small vessels blood is usually treated as a Newtonian fluid down to diameters
of ∼200 µm. We investigate the flow of red blood cell (RBC) suspensions driven
through small tubes (diameters 10–150 µm) in the range marking the transition from
arterioles and venules to the largest capillary vessels. The results of the simulations
combined with previous simulations of uniform shear flow and experimental data show
that for diameters less than ∼100 µm the suspension’s stress cannot be described as
a continuum, even a heterogeneous one. We employ the dissipative particle dynamics
(DPD) model, which has been successfully used to predict human blood bulk viscosity
in homogeneous shear flow (Fedosov et al. Proc. Natl Acad. Sci. USA, vol. 108,
2011, pp. 11772–11777). In tube flow the cross-stream stress gradient induces an
inhomogeneous distribution of RBCs featuring a centreline cell density peak, and a
cell-free layer (CFL) next to the wall. For a neutrally buoyant suspension the imposed
linear shear-stress distribution together with the differentiable velocity distribution
allow the calculation of the local viscosity across the tube section. The viscosity across
the section as a function of the strain rate is found to be essentially independent
of tube size for the larger diameters and is determined by the local haematocrit (H)
and shear rate. Other RBC properties such as asphericity, deformation, and cell-flow
orientation exhibit similar dependence for the larger tube diameters. As the tube size
decreases below ∼100 µm in diameter, the viscosity in the central region departs from
the large-tube similarity function of the shear rate, since H increases significantly
towards the centreline. The dependence of shear stress on tube size, in addition to the
expected local shear rate and local haematocrit, implies that blood flow in small tubes
cannot be described as a heterogeneous continuum. Based on the analysis of the DPD
simulations and on available experimental results, we propose a simple velocity-slip
model that can be used in conjunction with continuum-based simulations.
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1. Introduction
In this work the flow of red blood cell (RBC) suspensions in small tubes is

investigated by means of dissipative particle dynamics (DPD) simulations and, where
possible, the results are compared with available experimental data from the literature.
The modelled RBCs have previously been well-characterized with a number of single-
cell tests (Fedosov, Caswell & Karniadakis 2010a,c). In plane Couette-flow simulations
of their suspensions have yielded non-Newtonian viscosities (Fedosov et al. 2011)
in excellent agreement with in vitro viscosities of both healthy human whole blood
and washed erythrocyte suspensions (ESs), as measured in three different laboratories
over a time span of ∼15 years (Merrill et al. 1963; Chien et al. 1966; Skalak,
Keller & Secomb 1981). RBC membrane properties from which a shear-rate time
scale can be derived were not measured for these data. Nonetheless the plots of
relative viscosity versus the dimensional shear rate (s−1) in Fedosov et al. (2011,
figure 1) for both healthy whole blood and for resuspended washed ESs point to
two independent conclusions: (i) within experimental error, the measured values define
single curves; this indicates that in healthy blood average RBC membrane properties
do not vary enough to affect the shear-rate time scale whether due to variations
between individuals or to age distributions of RBCs; (ii) the blood suspension model
of Fedosov et al. (2011), which contains only monodisperse RBCs and ignores the
other components (white cells, platelets, etc.), predicts the experimental data rather
well; this suggests that this model can be a good candidate for the simulation of
flow problems relevant to the circulation. Poiseuille flow in tubes is the simplest
of this class, lending itself both to well-posed flow simulations and to reproducible
experiments. The simulations of plane Couette flow (Fedosov et al. 2011) confirm
the expectation of uniform concentration of cells or the haematocrit (H) across
the gap. In Poiseuille flow the cross-stream stress gradient is known, for example
(Moyers-Gonzalez & Owens 2010), to give rise to migration across the streamlines for
suspended particles of any kind, the magnitude of the effect being dependent on the
particle-to-channel size ratio. For fully developed blood flow in circular tubes the main
consequence of migration is the formation of a cell-free layer (CFL) at the wall and
a concentration peak at the centreline. Analytical approaches (Sharan & Popel 2001)
have attempted to model this effect as a two-phase flow consisting of Newtonian fluid
(plasma) in the CFL and in the rest of the cross-section a non-Newtonian suspension
spatially uniform in H.

The main objective of this work is to investigate whether the assumptions built into
such models of blood flow in small tubes are supported by results from the simulations
of our multiscale model of blood suspensions. The tube flows of these suspensions
(Fedosov et al. 2010d) are expensive to simulate, and therefore it is desirable to
know when simplified approaches are feasible. As the tube size is reduced toward
the RBC diameter the CFL becomes the dominant feature, and the assumption of a
core of homogeneous flow will become increasingly tenuous. Hence, our goal is to
determine the effective range of such approximations. Blood in uniform shear flow and
in tube flow has previously been simulated by both particle methods and continuum
treatments. Freund & Orescanin (2011) investigated flow in a tube of diameter 11 µm
using a Stokes-flow continuum model suspension simulated by the boundary integral
method, and very recently Alizadehrad et al. (2012) have also presented Navier–Stokes
simulations for tube of diameter in the range 10–50 µm. The particle-based multi-
particle collision dynamics (MPCD) method was employed by McWhirter, Noguchi &
Gompper (2009) to simulate blood flow in micro-capillaries of radius 4.8 µm. Dupin
et al. (2007) have applied the lattice-Boltzmann (LB) method to study flow of a
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RBC suspension in a nearly square (≈30 µm) channel. A number of two-dimensional
simulations have been published; we do not cite them here because we are not aware
of methods for comparing them quantitatively to three-dimensional simulations or to
physical experiments.

Here the DPD method is used to study the flow of RBC suspensions driven through
small tubes (diameters 10–150 µm, tube haematocrits (HT) 30 and 45 %). Unlike other
works, the effects of cell aggregation (rouleaux) have been investigated.

The paper is organized as follows. In § 2 we analyse our simulation data with
plots of the distributions of variables across the tube section. In § 3 we investigate
the scaling of derived variables, such as viscosity, to uncover the way in which these
suspension flows change as the tube diameter decreases. We also use dimensional
analysis to examine the dimensional flow–resistance correlations of Pries, Neuhaus &
Gaehtgens (1992), which suggest that the apparent viscosity of blood relative to the
plasma viscosity is essentially independent of the driving pressure gradient. We also
develop a simple velocity-slip model that predicts the velocity profile in tubes from
10 µm and above and can be used in conjunction with continuum-based simulations.
We conclude in § 4 with a brief summary.

2. Simulation results
In this section simulation results for blood flow in tubes with diameters between

10 and 150 µm are presented. We have used the DPD method (see Appendix) for the
blood flow simulations and employed the methods of Fedosov et al. (2010a, 2011)
to model single RBCs and their suspensions. The steady tube flow simulations were
carried out with the specification of: (i) the driving force f per unit mass applied
to each DPD particle, which is equivalent to a suddenly applied constant pressure
gradient; (ii) the tube radius R; (iii) the suspending solvent viscosity µ and its density
ρ; and (iv) the tube haematocrit HT (RBC volume fraction), a RBC concentration
measure. We define two important integrals to evaluate the tube haematocrit HT

and the discharge haematocrit HD from the local haematocrit H(r) and velocity u(r)
distributions

πR2HT = 2π
∫ R

0
H(r)r dr, πR2UHD = 2π

∫ R

0
H(r)u(r)r dr, (2.1)

where U = 2/R2
∫ R

0 u(r)r dr is the bulk velocity. Both of these average haematocrits
are experimentally measurable. In steady flow experiments HD is equal to the specified
feed value. After stopping the flow the haematocrit within the tube, HT , can be
measured by centrifugation of the suspension, or by spectroscopic determination of
its total haemoglobin (Barbee & Cokelet 1971), which is accurate for sufficiently
long tubes. Thus, in experiments HD is normally specified and HT is measured. In
simulations, HT is specified by introduction of the necessary number of RBCs into the
tubular computational volume, while HD must be derived from the output. We also
define the pseudo-shear rate as ¯̇γ = U/(2R), which serves as a characteristic strain rate
of the flow.

The modelled cells are suspended in the solvent as neutrally buoyant bodies. Most
of the results of this paper deal with unaggregated suspensions of healthy RBCs
whose viscoelastic membrane properties have previously been converted by Fedosov
et al. (2011) into model parameters, which are held constant in all simulations.
For aggregating suspensions inter-cellular adhesive forces must be included in the
model; their specification is also identical to that of Fedosov et al. (2011). The
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FIGURE 1. (Colour online) Axial velocity profiles: (a) D = 20 µm for HT = 0.3, ¯̇γ =
54.84 s−1 and for HT = 0.45, ¯̇γ = 52.93 s−1; (b) D = 100 µm for HT = 0.3, ¯̇γ = 41.2 s−1

and for HT = 0.45, ¯̇γ = 31.15 s−1. The data for HT = 0.3 are also fitted with parabolic curves
(dashed) and the tangent lines (dashdot) at the wall with slopes τw/µ, while the vertical
dashed line indicates the CFL thickness.

DPD simulations of the RBC suspensions in Poiseuille flow yield the continuum field
variables calculated as statistical time averages of particle variables. These include flow
velocity, haematocrit, cell density (CD) and orientation, and will be presented as radial
distributions across tube sections.

2.1. Velocity and shear rate distributions
Figure 1 shows the time-averaged axial-velocity distribution u(r). The dashed lines
(shown in blue online) are quadratic fits of the numerical data for HT = 0.3, and
for diameters less than ∼50 µm the velocity profiles were found to be markedly
non-parabolic. For larger tubes, D = 100 µm and D = 150 µm, the profiles are well
represented with parabolas, except for the near-wall region, a CFL, where plasma
properties dominate. For illustration we plot the wall values of du/dr = τw/µ =
1PR/(2Lµ) for HT = 0.3 in figure 1 indicated by the dash-dotted lines (shown in
cyan online) drawn from the wall. Here, τw is the wall shear stress which is calculated
directly from an imposed pressure drop 1P along the tube length L, since the layer
next to the wall is void of RBCs and its viscosity is equal to µ.

The velocity distributions appear to be very smooth since they reflect the statistical
averages over all particles including those of the solvent and cells. This permits the
calculation of shear rate profiles, and also of local viscosity from the imposed shear
stress distributions (Fedosov, Caswell & Karniadakis 2010b). Figure 2 presents the
shear rate distributions for different tube diameters calculated numerically from the
velocity data for HT = 0.3. For the 100 µm tube, except for the core region r/R< 0.2,
the shear rate is linear up to the CFL boundary. For all tube diameters the shear
rate distributions can be roughly divided into three regions: (i) a non-Newtonian flow
region near the centreline with low shear rates <60 s−1; (ii) a linear region between
the centreline and CFL; and (iii) a linear region near the wall indicative of a CFL.
For the large tube size (D = 100 µm), these three regions are very apparent: a non-
Newtonian flow near the centreline, followed by a linear region with shear rates up to
250 s−1, and then a nearly linear region within the CFL with large shear rates.
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FIGURE 2. (Colour online) Shear rate distributions for blood flow in tubes of various
diameters at HT = 0.3. For D = 100 µm the vertical dashed lines indicate the CFL thickness
near the wall and the limit of the linear portion of the distribution near the centreline. The
inset with a big arrow pointing to small values of r/R shows a snapshot of RBCs taken around
the tube centreline, while the other inset illustrates RBCs close to the CFL and the arrows
inside this inset indicate the direction of local shear flow. Both insets are visualizations
from the case D = 100 µm. The pseudo-shear rates are ¯̇γ = 54.84 s−1 for D = 20 µm,
¯̇γ = 48.81 s−1 for D= 40 µm and ¯̇γ = 41.2 s−1 for D= 100 µm.

2.2. Local CD and haematocrit

RBCs in blood flow in tubes or microvessels migrate towards the centreline yielding
the CFL next to the wall (Goldsmith, Cokelet & Gaehtgens 1989; Cokelet &
Goldsmith 1991). This leads to a variation in local RBC density and haematocrit
affecting the velocity profiles and flow transport. Figure 3 shows snapshots of the
blood flow cut near the centre of the tube for D = 40 and 100 µm. The figures show
instantaneous distributions, orientations and deformations of RBCs, but do not capture
the non-stationary motions of both the cells and the solvent. The RBC snapshots
qualitatively indicate that the CD and haematocrit at the tube centre are higher than
those away from the centreline. To support this statement we plot time-averaged, local
cell-centre density and haematocrit for different HT and D values in figures 4 and 5.

For the smallest tube diameter (10 µm) we observe a significant increase of H(r)
in the tube centre (figure 5a), which reflects crowding of RBCs around the centreline.
However, the CD distributions in figure 4(a) for D= 10 µm are strikingly different for
HT = 0.3 and 0.45. Note that the cell-centre distributions contain information about an
average RBC structure within the suspension which may occur in the flow. Thus, the
pronounced peak in the CD distribution for D = 10 µm and HT = 0.3 indicates that
most RBCs attain a parachute shape and move in trains such that the cell centres are
narrowly distributed around the tube centreline. In contrast, the CD distribution for
D = 10 µm and HT = 0.45 shows the preferred average positions of cell centres to lie
between the tube wall and centreline, which is consistent with the so-called zig-zag



Blood flow in small tubes 219

(a) (b)

(c) (d)

FIGURE 3. (Colour online) Central cut-plane snapshots along the tube axis for D = 40 µm
(a,b) and 100 µm (c,d) at HT = 0.3: (a,c) half-tube images; (b,d) thin slices across the cut.
CFL thickness is shown by dashed lines parallel to the walls. The pseudo-shear rates are
¯̇γ = 48.81 s−1 for D= 40 µm and ¯̇γ = 41.2 s−1 for D= 100 µm.
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FIGURE 4. (Colour online) Radial RBC density distributions normalized by the mean
prescribed density: (a) D = 10–40 µm and (b) D = 100 and 150 µm for HT = 0.3 and 0.45.
The pseudo-shear rates are ¯̇γ = 54.8, 54.84, 48.81, 41.2 and 46.9 s−1 for the cases D = 10,
20, 40, 100 and 150 µm at HT = 0.3 and ¯̇γ = 45.84, 52.93, 45.56 and 31.2 s−1 for the cases
D= 10, 20, 40 and 100 µm at HT = 0.45.

motion of RBCs across the flow as observed by Gaehtgens, Dührssen & Albrecht
(1980) and simulated by McWhirter et al. (2009).

For intermediate tube diameters (20–40 µm) the main features of the CD
distributions (figure 4a) are an increase of the CD around the centreline and a peak
next to the CFL region. A larger CD at the tube centre is again due to RBC structure
or close packing. At the tube centre, shear rates are small allowing for a closer
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FIGURE 5. (Colour online) Local haematocrit distributions normalized by HT : (a) D =
10–40 µm and (b) D = 100 and 150 µm for HT = 0.3 and 0.45. The pseudo-shear rates
are ¯̇γ = 54.8, 54.84, 48.81, 41.2 and 46.9 s−1 for the cases D= 10, 20, 40, 100 and 150 µm at
HT = 0.3 and ¯̇γ = 45.84, 52.93, 45.56 and 31.2 s−1 for the cases D = 10, 20, 40 and 100 µm
at HT = 0.45.

packing of cells, and therefore RBCs are transported downstream within a certain
quasi-persistent structure. This is also reflected by the flat plug-like velocity profile of
the flow around the tube centre in figure 1(a). Also, note that the increase in CD and
H(r) around the centreline is much more pronounced for the lower simulated HT value.
However, away from the tube centre shear rates increase which leads to cell mixing
and any close-packed structure is destroyed. In the region between the centre and CFL
both CD and H(r) are lower than those in the tube centre. Also, within this region the
cell suspension appears to be nearly uniform in the radial direction, which is reflected
by nearly flat CD and H(r) distributions in figures 4(a) and 5(a). Finally, a peak next
to the CFL reflects another property of the flow. It appears that next to the CFL most
RBCs are aligned with the flow and form a layer of aligned RBCs. Since RBC centres
in this layer have similar radial positions, a peak in the CD distributions is observed.
However, this property is virtually absent in the H(r) distributions where the peaks
next to the CFL nearly subside.

For the larger tubes (D = 100 and 150 µm) similar features in the CD and H(r)
distributions, as discussed above, are found and shown in figures 4(b) and 5(b).
Thus, a central peak gives way to a plateau value close to the bulk HT , while the
distributions vanish abruptly as the CFL is approached. In agreement with the results
for the small tube diameters, the variations in the CD and H(r) distributions become
smaller as HT is increased.

2.3. RBC deformation and orientation
The profiles of concentration and velocity reflect the changes of shape and orientation
of the RBCs as they are transported by the flow. Snapshots of cells in the planes
cut along the tube axis are illustrated in figure 3. They provide visual correlations
of cell shapes and orientations corresponding to the haematocrit and velocity profiles
and show how these characteristics vary across the section. Quantitative analysis of
cell shape changes along the radius can be performed using the RBC gyration tensor
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FIGURE 6. (Colour online) Asphericity distributions for different tube diameters: (a)
HT = 0.3 and (b) HT = 0.45. The horizontal dashed line denotes the equilibrium RBC
asphericity equal to approximately 0.15. The pseudo-shear rates are ¯̇γ = 54.8, 54.84, 48.81,
41.2 and 46.9 s−1 for the cases D = 10, 20, 40, 100 and 150 µm at HT = 0.3 and ¯̇γ = 45.84,
52.93, 45.56 and 31.2 s−1 for the cases D= 10, 20, 40 and 100 µm at HT = 0.45.

(Mattice & Suter 1994). We define cell asphericity as follows

A= [(λ1 − λ2)
2+ (λ2 − λ3)

2+ (λ1 − λ3)
2]/(2R4

g), R2
g = λ1 + λ2 + λ3, (2.2)

where λ1 6 λ2 6 λ3 are the eigenvalues of the gyration tensor. While the eigenvalues
λi characterize cell shapes along the main directions defined as the tensor eigenvectors,
cell asphericity shows how far a cell shape departs from a sphere such that A= 0 for a
sphere and A= 1 for an infinitely long thin cylinder.

The asphericity distributions are presented in figure 6 for various tube diameters
and HT values. The horizontal dashed line corresponds to the asphericity of a RBC in
equilibrium. The RBC asphericity falls below its equilibrium value at almost all radial
positions, except right next to the CFL. This indicates that RBCs tend to deform into a
more spherical shape. Moreover, the asphericity distributions for larger tube diameters
(D > 40–50 µm) show three distinct regions: (i) a centreline region, where A is nearly
constant; (ii) the region between the centre and CFL, where A increases monotonically
with a nearly constant slope; and (iii) A increases steeply next to the CFL. It is also
clear that for large enough D the function of A(r) converges to a common curve and
therefore becomes independent of the tube diameter. Next to the CFL, cells are subject
to the highest shear rates, which lead to their elongation shown in figure 7 by the
largest eigenvalue λ3. The cell elongation distributions show that RBCs are slightly
compressed in the centre of the tube and become more stretched than in equilibrium
at the mid-point as we approach the CFL region due to shear rate increase. The λ3

distributions can be also qualitatively divided into the three regions similarly to the A
distributions above.

To identify RBC orientation in the tube flow we also plot the cell orientation
angle θ in figure 8, which is calculated as the angle between the cell normal and
the tube axis. The cell normal is defined by the eigenvector corresponding to the
smallest eigenvalue λ1 of the gyration tensor of each cell. The smallest eigenvalue
characterizes the RBC thickness in the equilibrium biconcave configuration, while the
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FIGURE 7. (Colour online) The largest eigenvalue (λ3) of the RBC gyration tensor for
different tube diameters: (a) HT = 0.3 and (b) HT = 0.45. The horizontal dashed line denotes
the equilibrium value of λ3 equal to approximately 4.77. The pseudo-shear rates are ¯̇γ = 54.8,
54.84, 48.81, 41.2 and 46.9 s−1 for the cases D= 10, 20, 40, 100 and 150 µm at HT = 0.3 and
¯̇γ = 45.84, 52.93, 45.56 and 31.2 s−1 for the cases D= 10, 20, 40 and 100 µm at HT = 0.45.
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FIGURE 8. (Colour online) RBC orientation relative to the shear planes or tube axis for
different tube diameters: (a) HT = 0.3 and (b) HT = 0.45. The pseudo-shear rates are
¯̇γ = 54.8, 54.84, 48.81, 41.2 and 46.9 s−1 for the cases D = 10, 20, 40, 100 and 150 µm
at HT = 0.3 and ¯̇γ = 45.84, 52.93, 45.56 and 31.2 s−1 for the cases D = 10, 20, 40 and
100 µm at HT = 0.45.

other two larger eigenvalues correspond to the cell radius. Hence, λ1-eigenvector is a
good measure of cell orientation provided cell distortions are not extreme, as might
occur in tubes of capillary size with diameters smaller than 8–10 µm. Cell-orientation
angles relative to the shear planes show similarity of orientation for the larger tubes.
Except for the smallest tube D = 10 µm, the orientations are all larger than 45◦, the
principal direction of the shear rate tensor.
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FIGURE 9. (Colour online) Velocity (a) and local haematocrit (b) distributions with and
without aggregation inter-cellular interactions for D = 20 and 40 µm with HT = 0.3. The
pseudo-shear rates are ¯̇γ = 46.8 s−1 for D= 20 µm and ¯̇γ = 40.3 s−1 for D= 40 µm.

2.4. Effect of RBC aggregation

The existence of interactive adhesive forces between healthy human RBCs is well-
established (Chien et al. 1967). In RBC suspensions undergoing very low deformation
rates or in equilibrium, these weak forces induce aggregation of RBCs into structures
of stacked discoids or rouleaux which affect the measurable flow properties of the
blood (Merrill et al. 1966). In particular, the model of this work (Fedosov et al.
2011) has been used to predict the whole range of experimental values of the Couette
viscosity (CV) for both aggregating whole blood and non-aggregating ESs. As the
shear rate decreases the CV of whole blood steeply increases relative to that of ESs;
in the model this corresponds to the inclusion or exclusion of inter-cellular aggregating
forces derived from the Morse potential

UM(r)= De[e2β(r0−r) − 2eβ(r0−r)], (2.3)

where r is the distance between cell-membrane vertices of adjacent cells, r0 and De are
the zero force distance and well depth of UM(r), respectively, while β determines the
range of interaction. For healthy RBCs in homogeneous Couette flow we previously
(Fedosov et al. 2011) determined the Morse parameters to be De = 0.3, r0 = 0.3,
β = 1.5 with cut-off distance rM = 1.1. These yield maximum adhesive forces between
two cells in the range 3–7 pN.

Figure 9 shows the velocity and H(r) profiles for tube diameters D= 20 and 40 µm
with attractive inter-cellular forces (dashed lines) and without such forces (solid lines).
The H(r) profiles indicate that the effect of adhesion is most pronounced for the
smallest tube, D = 20 µm, is only slight for D = 40 µm, and the increase of HT from
0.3 to 0.45 does not alter this response. The velocity profiles are only slightly changed,
which suggests that the flow in even larger tubes will be insensitive to normal levels
of aggregation. Note that aggregation interactions in whole blood are important for
the shear rates below 5–10 s−1, while at larger shear rates rouleaux structures are
dispersed completely (Merrill et al. 1966; Fedosov et al. 2011). The characteristic
shear rates ( ¯̇γ ) of simulated blood flows are considerably above that threshold, and
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therefore RBC aggregation plays a minor role here. For much smaller pseudo-shear
rates the effect of RBC aggregation is expected to be more pronounced.

2.5. CFL thicknesses

Several types of haematocrit or RBC concentration measures can be introduced, for
example the tube haematocrit HT and the discharge haematocrit HD defined in (2.1).
The difference HD − HT has long been taken as a measure (Fahraeus 1929) of the
effect in which a CFL develops at the wall and becomes more pronounced for smaller
tube diameters. Another effect which is directly connected to the thickness of CFL is
the Fahraeus–Lindqvist effect (Fahraeus & Lindqvist 1931) that describes a decrease
in the apparent blood viscosity with decreasing tube diameter found in experiments of
blood flow in glass tubes (Pries et al. 1992).

The CFL thickness δ is observable in vivo (Pries et al. 1989; Maeda et al. 1996;
Kim et al. 2007) and is of interest in any study of cross-stream mass transport of
the cells moving within the main flow. Experimentally (Bugliarello & Sevilla 1970;
Reinke, Gaehtgens & Johnson 1987; Maeda et al. 1996; Kim et al. 2007) δ is
measured by direct observation of the cells near the wall whose radial excursions
define an irregular edge varying in time along the streamwise direction. The average
edge position is taken to be δ, and Fedosov et al. (2010d) adapted this direct
method in their simulations. The following alternative measures of CFL thickness
are motivated by boundary layer definitions of concentration thickness, and taken to be
thin annuli of thickness δ′/2 and δ′′/2 respectively defined by the integrals,

πδ′RUHD = 2π
∫ R

0
u(r)(H(r)− HT)r dr (2.4a)

πδ′′R(Um − U)HD = 2π
∫ R

0
(Um − u(r))(HT − H(r))r dr (2.4b)

where Um is the maximum flow velocity. By means of (2.1) these integrals can be
expressed simply in terms of HT and HD as

δ′ = R(HD − HT)/HD, δ′′ = δ′U/(Um − U). (2.5)

The boundary layer definitions of CFL thickness given above for circular cross-
sections are also applicable to non-circular tubes for which the direct method yields δ
as a function varying along the perimeter. If the need is for an average value, then the
boundary layer definition has the virtue of simplicity.

Figure 10 shows the relative CFL thicknesses δ/R using the various definitions
above. As expected the relative CFL thickness δ/R decreases with D. The boundary
layer definition (equation (2.4)) of δ′ appears to be a relatively good approximation
for the CFL thickness for tube sizes >20 µm , while δ′′ is about twice as large as δ,
and δ′′/2 also approximates the CFL thickness very well. The experimental values of
Bugliarello & Sevilla (1970) (HD = 0.4 translates into HT ≈ 0.31) and of Maeda et al.
(1996) in figure 10(a) are quite close to the simulated values. Good agreement is also
found for HT = 0.45 in figure 10(b) between several experimental data points (Reinke
et al. 1987; Maeda et al. 1996; Kim et al. 2007) and simulated δ values. The deviation
of experimental measurements from the calculated values is most pronounced for in
vivo measurements (Maeda et al. 1996; Kim et al. 2007). This may be due to several
reasons such as the existence of the glycocalyx layer, inhomogeneous vessel structures
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FIGURE 10. (Colour online) Relative CFL thicknesses as a function of tube diameter D in
micrometres from simulations measured by the direct method and from the identities in (2.5):
(a) HT = 0.3 and (b) HT = 0.45. Several available experimental points are also plotted for
comparison.

(e.g. diameter variations, bifurcations), vessel elasticity and spatial resolution of the
measurements (Pries et al. 1989; Maeda et al. 1996; Kim et al. 2007; Fedosov et al.
2010d).

3. Analysis
3.1. Blood viscosity and its scaling

The volumetric flow rate Q and the bulk velocity U = Q/πR2 are derived from
the integral of the velocity profile across the tube section. For a neutrally buoyant
suspension, the streamwise component of the steady flow equation of motion in terms
of the shear stress τ can be regarded as being driven by a force f or an equivalent
pressure gradient −∂p/∂x as follows

0= 1
r

∂(rτ)

∂r
+ ρf , f =− 1

ρ

∂p

∂x
, (3.1)

where its first integral is

τ = τw(r/R), τw = Rρf /2, (3.2)

and τw is the wall shear stress. The velocity profiles in figure 1 show that as the
tube size decreases the velocity curves become less parabolic, i.e. non-Newtonian. In
the range D = 20–40 µm the flow is distinctly non-Newtonian and the haematocrit
distributions are correspondingly non-uniform (see figure 5). For D= 100–150 µm, the
main flow is nearly parabolic except for the CFL region.

In plane Couette flow the modelled RBC suspensions of this work exhibit non-
Newtonian viscosities (Fedosov et al. 2011) dependent on both the shear rate (γ̇ ) and
H in good agreement with experimental values (Merrill et al. 1963; Chien et al. 1966;
Skalak et al. 1981). In previous simulations (Fedosov et al. 2010b) of Poiseuille flow
of polymer solutions it was found that the non-Newtonian viscosity as a function of
γ̇ and concentration can be extracted from the profiles of velocity and shear stress.
This method contains the local action assumption that stress depends on the local
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FIGURE 11. (Colour online) (a) Relative viscosity (the cell suspension viscosity normalized
by the solvent viscosity) versus shear rate for D = 20, 40, 100 and 150 µm at HT = 0.3.
Experimental values are shown by symbols in solid colour. The vertical dashed line gives the
position of the CFL for D = 150 µm. (b) Relative viscosity with respect to the shear rates
scaled by their values at the CFL transition points.

values of γ̇ and concentration, i.e. the material is assumed to be a continuum locally.
For the neutrally buoyant suspensions of this work the shear stress is prescribed
(equation (3.2)), and the viscosity across the section is calculated from τ/γ̇ with the
shear rate derived from the velocity profiles by numerical differentiation following
the method of Fedosov et al. (2010b). Figure 11(a) shows the relative viscosity (the
RBC suspension viscosity normalized by the solvent viscosity) as a function of the
local shear rate along with the experimental rotational-Couette viscosities of Chien
et al. (1966) and Eckmann et al. (2000). The experimental points are plotted with
symbols at constant shear rates 5.2, 52, 100 and 200 s−1. From figure 2, the two
lowest rates correspond to the nonlinear region near the centreline of the channel, and
from figure 5 for D = 100–150 µm, they correspond to approximately H = 0.5 and
0.4, respectively. The two larger shear rates lie in the linear shear-rate region with
H ≈ 0.34. Since the shear rates of figure 11(a) correspond to the shear-rate profile of
figure 2, the viscosity can be traced from its low shear-rate value at the centreline as
it drops by an order of magnitude to the edge of the CFL and then drops abruptly
to the plasma value. The large viscosity drop across the main flow is counter-intuitive
in view of the nearly parabolic velocity profile of figure 1 and the mildly varying H
in figure 5. However, the main viscosity drop occurs for shear rates γ̇ < 50 s−1 which
correspond to the nonlinear region near the tube centre.

At the CFL edge the relative viscosity abruptly changes the slope and the viscosity
ηcf /µ and shear rate γ̇cf at the abrupt transition are used as scale factors to produce
figure 11(b), where the dimensionless scaled viscosity is plotted as a function of
dimensionless scaled shear rate. Table 1 presents various characteristics at the abrupt
transition. The fourth column gives the experimental relative apparent viscosities
ηapp/µ (Pries et al. 1992). They suggest that Poiseuille flow in small tubes yields
apparent viscosities which lie between the plasma viscosity and the value at the inner
edge of the CFL, and approach the latter as the relative CFL thickness δ/R→ 0. It
will be shown below in figure 13 that the apparent viscosities predicted by the DPD
model are in good agreement with the experimental values of ηapp/µ.
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D (µm) γ̇cf ηcf /µ ηapp/µ δ (µm)

20 140.4 2.72 1.52 2.74
40 208.8 2.36 1.75 2.88

100 262.5 2.51 1.97 3.39
150 331.4 2.33 2.02 3.52

TABLE 1. Scaling parameters for different tube diameters at HT = 0.3 including the shear
rate γ̇cf and viscosity ηcf /µ at the CFL edge. The relative apparent viscosity ηapp/µ (Pries
et al. 1992) and the CFL thickness δ are also included.

The shear rate and viscosity at the abrupt transition in figure 11(a) correspond
closely to the position of the CFL thickness δ. Inspection of the relative viscosity
curves suggests that they have a degree of similarity which implies that the viscosity
is a two-parameter function of the strain rate, and therefore the viscosity curves
in figure 11(a) are rescaled with ηcf and γ̇cf and shown in figure 11(b). In the
vicinity of γ̇cf the scaled curves superpose within numerical accuracy whereas in the
central region they separate. For the larger tubes (D = 100–150 µm) this separation
of the curves is not significant, but for the smaller ones the departure is clear.
Experimental Couette viscosities, given by the function η(γ̇ ,H), define a similarity
viscosity function across the section of the larger tubes in figure 11(a). Moreover, the
asphericity, λ3, and cell-orientation angle distributions presented in figures 6, 7 and
8 show clear similarity for the larger tubes consistent with their viscosities, when
plotted against the scaled shear rate. These similarity relations for various blood flow
properties can be used in a heterogeneous continuum theory such as that proposed by
Moyers-Gonzalez & Owens (2010).

The agreement between simulated viscosity distributions and experimental values
for larger tube diameters is consistent with the local viscosity in Poiseuille flow
being the function η(γ̇ ,H) as that which characterizes spatially homogeneous shear
flow. However, the departures of the viscosity distributions from the experiment for
the smaller tubes suggest that the continuum assumption may not be valid for tube
diameters <100 µm. Thus, the main finding of this work is the quantification of the
transition from a continuum to a non-continuum description as tube size decreases.
Continuum models of materials, whether homogeneous or heterogeneous, are based on
constitutive equations which assume the principle of ‘local action’, which means that
within a material domain the stress is describable in terms of independent variables
associated with each material element. The combination of the constitutive equation
with the conservation laws results is a system of field equations which hold for every
point in the domain, while boundary conditions are imposed on the solutions of the
field equations. In the simple case of steady shear flow, where a RBC suspension
is homogeneous, the viscosity or the stress are function of the shear rate and H. In
contrast, a RBC suspension in Poiseuille flow (e.g. in small vessels) may be very
inhomogeneous and figure 11 shows the increasing departure of the relative viscosity
from Couette data (Chien et al. 1966; Eckmann et al. 2000) as the tube size decreases.
Recall that our model (Fedosov et al. 2011) agrees very well with these data in
uniform shear flow. This means that for small tubes the local viscosity or stress
depends also on tube size, and hence no longer satisfies the principle of local action.
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FIGURE 12. (Colour online) The velocity-to-wall-distance ratio u+/y+ for various tube
diameters at (a) HT = 0.3 and (b) HT = 0.45.

3.2. Velocity distribution in the CFL
The velocity profiles displayed in figure 1 suggest that in the CFL the velocity has an
expansion in y= R− r, the distance from the wall,

u(y)= uy(0)y+ 1/2uyy(0)y2 + O(y3), (3.3)

where uy(0) and uyy(0) are the wall values of the first and second derivatives,
respectively. Adjacent to the wall the value of the viscosity µw is initially assumed
to be the plasma value µ so that uy(0) = τw/µ. At the wall the lines tangent to the
velocity profiles in figure 1 confirm this assumption for HT = 0.3, but the HT = 0.45
near-wall velocity data seem to differ slightly from tangency. It appears that the
effective wall-viscosity can increase beyond the plasma value as the cell packing
density increases. In turbulent pipe flow it has been verified experimentally that the
wall viscosity is indeed the fluid’s molecular viscosity, where wall variables are used
to scale u and y such that very near the wall, in the viscous sublayer, they are O(1).
For the RBC suspension, wall-variable scaling of (3.3) is assumed to be as follows

u+(y+, ycf )= y+(1+ a2ycf + O(y2
cf )), a2 = uyy(0)δ/(2uy(0)), (3.4a)

u+ = u/u∗, y+ = u∗y/ν, u∗ =
√
τw/ρ, ycf = y/δ, (3.4b)

where ν = µ/ρ is the solvent kinematic viscosity. In the turbulent pipe flow, the
description of the viscous sublayer beyond the linear term in expansion (3.3) requires
the next term to be O(y4) (Spalding 1961). For the RBC suspension there is no ‘a
priori’ theoretical reason to decide the order of the next term, and its scale is unknown.
In (3.4) only the common linear term is scaled with the wall variables of turbulent
flow, and the CFL thickness δ is used to scale the terms in parentheses. The validity
of this assumption can be tested at constant HT with a plot of u+/y+ for each tube
size as a function of the single variable ycf . Figure 12 shows the plots of u+/y+ versus
ycf for various tube sizes. For HT = 0.3 the u+/y+ curves come together in the CFL
region, and extrapolate to unity at the wall. However, for HT = 0.45 extrapolation
to the wall yields a wall viscosity ∼10 % higher than the assumed solvent viscosity.
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From the plot, the coefficient a2 in expansion (3.4) is approximately −1/2, and
appears to be independent of tube size. For the larger tubes u+/y+ is a function of
ycf = y/δ alone up to ycf ∼ O(1).

3.3. Dimensional analysis of global resistance variables

The similarities found between the CFL and the laminar sublayer region in
turbulent pipe flow suggest that resistance relations between global variables might
be described in terms of familiar dimensionless groups. Motivated by turbulent
flow in pipes the mean or bulk velocity is scaled with the friction velocity
u∗ = √τw/ρ and a dimensionless driving force, the ‘friction’ Reynolds number
R+ = Ru∗/ν = R

√
(τw/ρ)/µ, is constructed to be independent of velocity. In turbulent

pipe flow u∗ and R+ are said to be defined in terms of ‘wall’ variables. However, for
suspensions the wall viscosity is an unknown and at higher volume fractions it may
vary from the solvent’s viscosity as was shown above. Tube-size effects investigated
in this work require the inclusion of the ratio S = R/Rcell (Rcell is the cell radius) as a
relevant dimensionless parameter. Other groups can be composed from membrane and
cell properties such as the dimensionless ratio (ρmGmRcell2)/µm

2 where Gm, µm and
ρm are the membrane’s shear modulus, viscosity and surface area density, respectively.
The viscosity contrast µi/µ, where µi is the inner cytosol viscosity is often varied in
simulations. However, in this work these groups are fixed at their healthy human blood
values. Dimensional analysis now suggests the following dimensionless functional
relations:

U+ = U

u∗
= f1(R+, S,HT, . . .),

δ

R
= f2(R+, S,HT, . . .),

HD

HT
= f3(R+, S,HT, . . .),

 (3.5)

where the fi(R+, S,HT, . . .) are unknown functions, and . . . stands for variables held
constant. It is useful to recall that U+ =√8/λ, where λ is the friction factor, and thus
f1(·) is a discharge function of the dimensionless driving force R+ at constant S and
HT . However, while these general relations bear some resemblance to the well-known
resistance correlations for turbulent flow in pipes, the specific forms of the functions
are unlikely to be similar. Omitted from the list of independent variables is one which
contains a characteristic modulus reflecting the RBC membrane elasticity. With fixed
membrane properties the deformation of RBCs is a consequence of the flow driven by
the imposed pressure gradient, already included in R+. In a monodisperse model with
parameters fitted to represent normal human blood at the physiological temperature an
elasticity parameter in the functions (3.5) will be needed only for comparisons with
abnormal human blood or that of other species.

In the limit HT = 0, Poiseuille’s law determines the discharge law to be U+ = R+/4.
For blood the favoured measure of resistance is the apparent viscosity ηapp motivated
by Poiseuille’s law. In terms of both dimensional and dimensionless variables the
apparent viscosity is expressible as ηapp/µ = Rτw/(4Uµ) = R+/(4U+). The familiar
Fahraeus–Lindqvist plot (Fahraeus & Lindqvist 1931; Pries et al. 1992) represents
experimental data of ηapp/µ at constant HD as a function of dimensional D, which
for a monodisperse suspension is equivalent to S. A goal of simulations of RBC
suspensions in tube flow is the determination of the validity of the functional
dependencies implied by (3.5). These dimensionless functional relations are shown
in figure 13 as relative apparent viscosity and HD/HT plotted against D, essentially S
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FIGURE 13. (Colour online) (a) Relative apparent viscosity ηapp/µ and (b) discharge-to-tube
haematocrit ratio HD/HT . Curves are the fits to experimental data (Pries et al. 1992) and
points are from DPD simulations for different tube diameters.
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FIGURE 14. (Colour online) Dimensionless bulk velocity U+ as a function of friction
Reynolds number R+ at (a) HT = 0.3 and (b) HT = 0.45. The dashed lines are calculated
from correlations of Pries et al. (1992), while DPD simulations are shown by filled symbols
for D= 10 µm (triangle), D= 20 µm (diamond), D= 40 µm (gradient), D= 100 µm (square)
and D= 150 µm (circle).

for constant Rcell, and in figure 14 as U+ versus R+. The solid curves in figure 13
and the dashed lines in figure 14 were calculated from the correlations of Pries et al.
(1992).

Figure 14 shows that for the larger tubes D> 100 µm flow resistance at HT = 0.3 is
independent of S, whereas for smaller tubes S must be retained as an independent
variable in the resistance function of (3.5). This is consistent with the viscosity
distributions of figure 11 and with other distributions of single RBC properties shown
in figures 6–8. The correlations of Pries et al. (1992) omit dependence on the driving
pressure gradient or the average strain rate U/D. The dimensionless equivalent for the
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resistance correlations is

ηapp/µ= R+/(4U+)≈ f4(S,HT). (3.6)

where (3.6) is an approximate statement of functional dependence. The experiments
of Reinke et al. (1987) show essentially constant ηapp/µ at normal physiological U/D
values with a rise as rate diminishes. The breadth of the constant ηapp/µ region
depends on the suspending solvent; with suspensions of RBCs in plasma having the
broadest plateau with a fairly abrupt rise at low rates, while RBCs in saline yield
gradually varying functions of U/D. Hence, (3.6) is not valid for the latter. For an
11 µm tube, Freund & Orescanin (2011) demonstrated the rise of ηapp/µ at small U/D.
Unlike the Poiseuille-flow solid line for the Newtonian plasma, the dashed lines in
figure 14 do not extrapolate to the origin, and they would do so only if the resistance
relation in (3.6) becomes functionally exact. The slope of each line in figure 14 is
determined by a point on the relative apparent-viscosity curve in figure 13(a). In Pries
et al. (1992) the relative apparent viscosity correlation with D is derived from the data
taken from a number of sources. It is not clear whether the considerable scatter is due
to the variability inherent in measurements made in different laboratories on a fragile
material, or due to the omission of either the pressure gradient or the average strain
rate as a dependent variable. The omission of the driving pressure gradient from the
correlation of HD/HT is consistent with (3.6). It is well-known that in turbulent flow
at high Reynolds numbers certain hydraulic coefficients become constant, such as the
friction factor at constant finite pipe roughness or the drag coefficient of bluff bodies.
It appears that for tube flow of blood suspensions the ratio ηapp/µ is an essentially
constant hydraulic coefficient over the range of physiological low-friction Reynolds
numbers. (The range of R+ in figure 14 is well below R+ ≈ 65, the turbulence
transition in pipe flow of a Newtonian fluid.)

3.4. Newtonian fluid approximation with velocity-slip boundary condition
In the simulation of flow in the large vessels, blood is taken to be a Newtonian fluid
with no-slip on the vessel walls. This assumption becomes increasingly tenuous in the
micro-circulation for vessel diameters less than ∼200 µm. The complexities of blood
flow in blood-vessel networks have been reviewed by Popel & Johnson (2005). Flow
in long straight tubes is obviously an idealization of these systems, but it can be
realized in fairly precise quantitative experiments to provide insights into the in vivo
scenario. The DPD simulations of this work are computationally expensive, and this
motivates our investigation to extend the continuum model to allow an approximate
description of blood flow in tubes with diameters smaller than 200 µm. For gases
confined in narrow channels of decreasing size the breakdown of the continuum
model manifests itself as jump conditions at the boundaries. For the velocity the
adherence condition changes to slip flow along channel walls. Here, we present a very
simple, four-parameter slip-flow model for blood suspensions flowing in small tubes of
diameter D driven by a pressure gradient dP/dx. Two additional parameters, namely
the tube haematocrit HT and the plasma viscosity µ, also need to be specified. With
the four specified parameters the correlations of Pries et al. (1992) yield the apparent
viscosity ηapp and haematocrit ratio HD/HT . The latter allows the CFL thickness to
be estimated as δ′ in (2.5). If available, it may be preferable to employ experimental
values of δ and ηapp.

Within the CFL the fluid is taken to be Newtonian with the plasma viscosity µ.
Under the action of the prescribed pressure gradient the velocity ucf (r) is the Poiseuille
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field,

ucf (r)= 1
4µ

dP

dx
(R2 − r2), R− δ < r < R. (3.7)

The first step employs the mean velocity U0 and the centroid position R0 of ucf (r)
within the CFL defined by the integrals,∫ R

R−δ
2πucf (r)r dr = πδ(2R− δ)U0, (3.8a)∫ R

R−δ
2πucf (r)r

2 dr = πδ(2R− δ)R0U0. (3.8b)

The flow beyond R0 is ‘skimmed off’ and hence the tube radius is effectively reduced
to R0 with a slip velocity of ucf (R0) along the adjusted boundary. However, to conserve
the total volumetric flow in the reduced tube the flow skimmed off is accounted for as
a uniform flow across the tube. Hence, the slip velocity is adjusted as follows

Us = ucf (R0)+ φR0/πR2
0, φR0 =

∫ R

R0

ucf (r)2πr dr. (3.9)

Within the reduced tube the fluid is also taken to be Newtonian, but with ‘effective’
viscosity ηeff . The skimmed velocity field usk(r) becomes

usk(r)= 1
4ηeff

dP

dx
(R2

0 − r2)+ Us, 0< r < R0. (3.10)

The total flow rate Q is determined from Poiseuille’s law with ηapp given by the Pries
et al. (1992) correlation, or by integration of the DPD simulation velocity profiles. The
total flow rate in the reduced tube is the integral of usk(r) across the reduced section,
and hence ηeff is determined by the equality,

Q= πR4

8ηapp
dP/dx= πR4

0

8ηeff
dP/dx+ πR2

0Us. (3.11)

The simple velocity-slip model we propose can be summarized as follows.

(i) Specify the values of tube diameter D, pressure gradient dP/dx, tube haematocrit
HT and the blood plasma viscosity µ.

(ii) With the above four parameters above, obtain the apparent viscosity ηapp and
haematocrit ratio HD/HT from the correlation of Pries et al. (1992). The latter
allows the CFL thickness to be estimated by (2.5).

(iii) In the CFL region, compute the mean velocity U0 and the centroid position R0 by
(3.8).

(iv) Compute the slip velocity Us by (3.9) using the centroid position R0.
(v) With Us and R0, approximate the blood velocity profile by (3.10).

In figure 15 the slip-velocity model in the reduced tubes is compared with the
Newtonian no-slip profiles calculated with ηapp and with the DPD simulation velocity
profiles presented above for the original tubes. Table 2 summarizes the results for all
of the tubes of the simulations. The slip-velocity model and the Newtonian no-slip
model are denoted as NewtonianS and NewtonianNS, respectively. The CFL thicknesses
are the direct values δ shown in figure 10 and also given in table 1. The viscosity
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FIGURE 15. (Colour online) Velocity profiles for (a) D = 20 µm and (b) D = 100 µm at
HT = 0.3. Squares (shown in red online) denote DPD simulation results displayed in figure 1.
The dashed curves (shown in blue online) show the profiles of the slip-velocity model
with the wall-slip boundary condition of (3.10) and (3.9). The vertical dashed lines give
the position of the CFL and the radius R0 (equation (3.8)) of the adjusted boundary. The
dash-dotted parabola (shown in green online) is the no-slip velocity profile for a Newtonian
fluid with apparent viscosity calculated from Poiseuille’s law to match the flow rate of the
DPD simulation.

value for Poiseuille flow with no slip (NewtonianNS) is the apparent viscosity which
yields the flow rate Q of the DPD simulated flow. Thus, the viscosity is essentially
the ηapp defined by Pries et al. (1992), since the latter is accurately predicted by
the DPD model as shown in figure 13(a). For the slip-model (NewtonianS) the errors
in Um range from ∼5 to 14 % as the diameter decreases. It was shown above that
flow of the model blood suspension in 20 µm tubes does not satisfy the principle
of local action, but an economic continuum calculation with errors of 10 % may be
acceptable alternative to an expensive mesoscopic simulation. When only the flow rate
is required, then the NewtonianNS model will yield the correct result even though Um

will be greatly overestimated. It might be thought that improved estimates of Us and
R0 are achievable by use of expansion (3.4) in the CFL, since figure 12 shows the
coefficients for the larger tubes to be only weakly dependent on tube size. However,
the result would be a smaller Us, and hence a larger error in Um. Improved accuracy
calls for improved velocity approximations in both the CFL and the main flow, which
in turn calls for the specification of additional parameters. Since the ultimate goal of
these models is their capacity to simulate blood flow in the microcirculation, the next
step in their development is their extension to tapered tubes with non-circular varying
cross-sections.

4. Summary and conclusions
This work has presented results and analysis of DPD simulations of Poiseuille flow

of blood suspensions in small tubes in the size range 10–150 µm. The modelled
suspension of monodispersed RBCs used here was previously applied in the simulation
of homogeneous plane-shear flow by Fedosov et al. (2011). There it was demonstrated
to successfully predict the measured CV of whole human blood and washed ESs. The
important distinction between Poiseuille flow and homogeneous plane-shear flow is the
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cross-stream stress gradient whose effects are analysed and compared with available
experimental measurements. Below we summarize the main findings of this work.

(i) The simulations yield particle variables whose statistical averages are the
continuum field variables (e.g. velocity, haematocrit), which are presented above as
radial distributions across tube sections. The non-uniform cell number-density profiles
reveal the main effects of the cross-stream stress gradient to be a CFL near the tube
wall and a concentration peak near the centreline. The response of the suspended
cells to the variable shear field is derived from their gyration tensors to measure cell
asphericity, deformation and orientation relative to the shear planes. The smoothness
of the velocity profiles allows the calculation of strain-rate distributions by numerical
differentiation. For the larger tubes, these show a region of linear strain-rate variation
beyond the CFL where the haematocrit is nearly constant, whereas for the smaller
tubes the strain-rate profiles are nonlinear over the whole section. The imposed
linear shear-stress distributions and the calculated strain rates yield local viscosity
distributions, which show an abrupt transition at the edge of the CFL. The transition
values of viscosity and shear rate are then used to scale the viscosity and other
variables to demonstrate their similarity for the larger sizes and increasing departures
from similarity with diminishing diameter. In the size range of similar viscosity the
curves are in good agreement with experimental CV correlations evaluated at the local
shear rate and haematocrit.

(ii) The CFL thickness is the most important measure of non-uniformity, and is
defined as the average edge position of cell surfaces nearest to the wall. Motivated by
boundary layer concepts, two alternative measures of CFL thickness were investigated
which appear to be good approximations for the average edge position. They provide
useful estimates in terms of the tube haematocrit HT , the discharge haematocrit HD

and the maximum-to-bulk velocities ratio.
(iii) For blood flow in tubes the choice of dimensionless groups to represent

resistance and other global variables is motivated by the dimensional analysis of
turbulent pipe flow. The introduction of the friction Reynolds number R+ and the
expression for the apparent viscosity ηapp/µ = R+/(4U+) provides some insight into
the evident success of the dimensional correlations of Pries et al. (1992). For the flow
resistance measured as apparent viscosity, these contain no explicit dependence on the
driving force which is consistent with ηapp/µ being a function only of the size ratio
S and the tube haematocrit HT . Such response is reminiscent of the constancy of the
friction factor in rough pipes at high Reynolds numbers, and the similar behaviour of
the drag coefficient for bluff bodies. The linearity of ηapp/µ with respect to R+ is a
consequence of the low Reynolds numbers of blood flow in small tubes.

(iv) The most important finding of this investigation is that for a blood suspension
flowing in small tubes, and hence in small vessels, the description of the stress as a
continuum, whether homogeneous or heterogeneous, fails once the tube size decreases
to ∼100 µm. This has been demonstrated above with the viscosity distributions of
figure 11 and other flow properties including RBC asphericity, deformation and
orientation in figures 6–8.

(v) The computationally costly DPD simulations described above have revealed
precise information on the non-continuum character of blood suspension flow in small
tubes. However, such computations are not viable for the more complex flows of the
micro-circulation, and it remains a goal to extend to smaller vessels the continuum
methods employed to simulate blood flow in larger vessels. The velocity-slip model
of this work attempts to show that the Navier–Stokes description of the stress
combined with slip at the wall yields fairly accurate velocity fields in the main flow.



236 H. Lei, D. A. Fedosov, B. Caswell and G. E. Karniadakis

Most importantly this result is achieved with the specification of only two parameters,
namely, the plasma viscosity µ and HT , in addition to diameter and driving pressure
gradient. Whether the approximation can be extended to tapered tubes with junctions
and to unsteady flow is a task for future investigation.
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Appendix. Dissipative particle dynamics
Our simulations employ DPD, a mesoscopic simulation method (Hoogerbrugge &

Koelman 1992; Espanol & Warren 1995), where each DPD particle represents a
virtual cluster of atoms or molecules rather than an individual atom. Different from
the molecular dynamics (MD) method, additional dissipative and random forces are
included in the particle interactions due to the eliminated degrees of freedom during
the coarse-graining procedure (Lei, Caswell & Karniadakis 2010). The DPD governing
equations are summarized below.

A.1. DPD governing equations
The standard DPD formulation (Hoogerbrugge & Koelman 1992) with the motion of
each particle governed by

dri = vi dt (A 1a)

dvi = (FC
i dt + FD

i dt + FR
i

√
dt)/m, (A 1b)

where ri, vi and m are the position, velocity and mass of the particle i, and FC
i , FD

i
and FR

i are the total conservative, dissipative and random forces acting on the particle
i, respectively. Under the assumption of pairwise interactions the DPD forces are given
by the sum of the pair interactions with the surrounding particle j, as follows

FC
ij =

{
a(1.0− rij/rc)eij, rij < rc

0, rij > rc
(A 2)

FD
ij =−γwD(rij)(vij · eij)eij, (A 3a)

FR
ij = σwR(rij)ξijeij, (A 3b)

where rij = ri − rj, rij = |rij|, eij = rij/rij and vij = vi − vj. Here rc is the cut-
off radius beyond which all interactions vanish. The coefficients a, γ and σ

represent the strength of the conservative, dissipative and random force, respectively.
The last two coefficients are coupled with the temperature of the system by the
fluctuation–dissipation theorem (Espanol & Warren 1995) as σ 2 = 2γ kBT . Here, ξij are
independent Gaussian random variables with zero mean and unit variance. The weight
functions wD(r) and wR(r) are defined by

wD(rij)= [wR(rij)]2 (A 4a)
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HT D (µm) U (mm s−1) ¯̇γ (s−1) 1P/L (Pa m−1) Um (mm s−1)

0.3 10 0.55 54.8 2.79× 105 0.79
0.3 20 1.1 54.84 1.56× 105 1.69
0.3 20∗ 0.936 46.8 1.31× 105 1.3
0.3 40 1.95 48.81 7.91× 104 3.14
0.3 40∗ 1.61 40.3 6.78× 104 2.42
0.3 100 4.12 41.2 3.16× 104 7.03
0.3 150 7.03 46.9 2.44× 104 12.44
0.45 10 0.46 45.84 2.83× 105 0.63
0.45 20 1.06 52.93 2.06× 105 1.59
0.45 40 1.82 45.56 1.03× 105 2.89
0.45 100 3.12 31.2 3.28× 104 5.31

TABLE 3. Parameters used for the pressure-driven blood flow for different diameters and
HT values. The cases with the superscript ∗ were used for a sensitivity study where
adhesion interactions were applied between the cells.

wR(rij)= (1.0− rij/rc)
k, (A 4b)

where k = 1.0 in the standard DPD method; however, other values of k have been used
to increase the viscosity of the DPD fluid (Fan et al. 2006). In the current work we
chose k = 0.25.

A.2. Multiscale red blood cell model
The average equilibrium shape of a RBC is biconcave as measured experimentally
(Evans & Skalak 1980). The surface area and volume of this RBC are equal to
135 µm2 and 94 µm3, respectively. The RBC membrane is modelled by a network of
springs which corresponds to a triangulation on the membrane surface (Discher, Boal
& Boey 1998; Fedosov et al. 2010a,c). For each single cell, the free energy is defined
by

Vrbc = Vs + Vb + Va + Vv, (A 5)

where Vs represents the viscoelastic bond interaction between the cell vertices such
that proper membrane mechanical properties can be imposed, Vb represents the
bending energy of the cell membrane and Va and Vv represent the area and volume
constraints to mimic the incompressibility of the lipid bilayer and the intracellular
cytosol. More details on the RBC model and the scaling between the model and the
physical units can be found in Fedosov et al. (2010a,c).

A.3. Simulation parameters

The viscosity of blood plasma was taken to be µ = 1.2 × 10−3 Pa s, the length, time
and force units are

1τ = 3.608× 10−4 s (A 6a)
1rc = 0.97 µm (A 6b)

1fDPD = 4.673× 10−14 N (A 6c)

1PaDPD = 4.964× 10−2 Pa. (A 6d)

The parameters we use for the different cases are shown in table 3.
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