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We investigate three force autocorrelation functions 〈F(0) · F(t)〉, 〈F+(0) · F+(t)〉, and 〈F0(0) · F0(t)〉 and the
friction coefficient γ for the Rayleigh model (a massive particle in an ideal gas) by analytic methods and
molecular-dynamics (MD) simulations. Here, F and F+ are the total force and the Mori fluctuating force,
respectively, whereas F0 is the force on the Brownian particle under the frozen dynamics, where the Brownian
particle is held fixed and the solvent particles move under the external potential due to the presence of the
Brownian particle. By using ensemble averaging and the ray representation approach, we obtain two expressions
for 〈F0(0) · F0(t)〉 in terms of the one-particle trajectory and corresponding expressions for γ by the time
integration of these expressions. Performing MD simulations of the near-Brownian-limit (NBL) regime, we
investigate the convergence of 〈F(0) · F(t)〉 and 〈F+(0) · F+(t)〉 and compare them with 〈F0(0) · F0(t)〉. We show
that for a purely repulsive potential between the Brownian particle and a solvent particle, both expressions for
〈F0(0) · F0(t)〉 produce 〈F+(0) · F+(t)〉 in the NBL regime. On the other hand, for a potential containing an
attractive component, the ray representation expression produces only the contribution of the nontrapped solvent
particles. However, we show that the net contribution of the trapped particles to γ disappears, and hence we
confirm that both the ensemble-averaged expression and the ray representation expression for γ are valid even if
the potential contains an attractive component. We also obtain a closed-form expression of γ for the square-well
potential. Finally, we discuss theoretical and practical aspects for the evaluation of 〈F0(0) · F0(t)〉 and γ .
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I. INTRODUCTION

While Brownian motion has inspired researchers from
various fields of science [1], as a canonical example of
stochastic processes, it has also served as an archetypal
model in nonequilibrium statistical mechanics. One of the
fundamental questions is how the dynamics of Brownian
particles can be described without knowing the dynamics
of the entire system. The microscopic theory of Brownian
motion addresses how mesoscopic equations for the Brownian
particles are derived starting from first principles, i.e., without
introducing any a priori stochastic features to a microscopic
system except the concept of an ensemble, and how the
parameters of resulting mesoscopic equations are related with
the microscopic structure of the system.

In this context, the simplest physical system is arguably
a system consisting of a single spherical Brownian particle
of mass M surrounded by solvent particles of mass m; this
system has been extensively studied [2]. In the Brownian limit
m � M , the momentum P of the Brownian particle obeys
Langevin’s phenomenological equation [3],

Ṗ(t) = − γ

M
P(t) + �(t), (1)

where γ is the friction coefficient, �(t) is d-dimensional
Gaussian white noise with noise intensity D, i.e., 〈�(t) ·
�(t ′)〉 = dDδ(t − t ′), and d is the dimension of the space.

A. Microscopic expressions of γ

One of the heuristic scenarios toward Eq. (1) in the
Brownian limit can be suggested by the generalized Langevin
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equation for P, which was derived by Mori [4],

Ṗ(t) = − 1

M

∫ t

0
K(τ )P(t − τ )dτ + F+(t), (2)

where K(t) is the Mori memory kernel and F+(t) is the
corresponding fluctuating force. Assuming that the interaction
between the Brownian particle and each solvent particle
becomes instantaneous on the time scale of the Brownian
particle in the Brownian limit, it is expected that the fluctuating
force F+(t) exerted on the Brownian particle by the solvent
becomes δ-correlated. By the fluctuation-dissipation theorem

K(t) = β

d
〈F+(0) · F+(t)〉, (3)

the memory kernel K(t) also becomes a δ function. Here, β is
the inverse temperature of the system and the brackets denote
the equilibrium average. Hence, in the near-Brownian-limit
(NBL) regime, a Markovian approximation of Eq. (2) due
to the large time-scale separation leads to Eq. (1) and γ is
approximated by the time integral of K(t), which is equal to

γ + = β

d

∫ ∞

0
〈F+(0) · F+(t)〉dt. (4)

There have been similar expressions of the Green-Kubo
type, which relate the friction coefficient γ with the time
integrals of some force autocorrelation functions. Kirkwood
has proposed the following expression [5]:

γ ∗ = β

d

∫ τ ∗

0
〈F(0) · F(t)〉dt, (5)

where F(t) is the total force exerted on the Brownian particle.
Since the time integral would vanish if the upper time limit
is increased to infinity, a cutoff τ ∗ is introduced under the
assumption that the time integral presents a plateau and its
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value does not depend on the precise value of τ ∗. It has been
demonstrated that the thermodynamic limit, where the number
of the solvent particles tends to infinity, is essential for the
existence of τ ∗ [6,7].

Another expression which we also consider in this paper
is given from the frozen dynamics, where the infinite mass
limit M → ∞ is taken so that the Brownian particle is
held fixed and the solvent particles move under the external
potential due to the presence of the Brownian particle. Under
a certain assumption on the time scales of the bath, Mazur and
Oppenheim have performed a detailed analysis [8] to show
that in the Brownian limit, the friction coefficient γ is given
by

γ0 = β

d

∫ ∞

0
〈F0(0) · F0(t)〉dt, (6)

where F0(t) is the force exerted on the fixed Brownian particle
in the frozen dynamics.

In addition, the value of γ can also be estimated from
the momentum autocorrelation function in the NBL regime
through the relation

〈P(0) · P(t)〉 = dM

β
e−γ t/M, (7)

which is derived from Eq. (1).
Molecular-dynamics (MD) simulation studies using these

relations and corresponding theories have been extensively
performed on the system of a single Brownian particle (or
a trace particle with different mass and size) in a simple
fluid. However, since MD simulations in the NBL regime
require high computational cost, it was not until recently that
systematic investigations using long-time and large-size MD
simulations were attempted [7,9,10]. Specifically, the increase
in computational cost of the MD simulation with smaller mass
ratio m/M is not only due to the larger time-scale separation
in the system, but also to a larger number of solvent particles
that are necessary to satisfy the condition M � Nm, where N

is the number of solvent particles. For this reason, determining
a precise value of γ from a direct MD simulation approach is
not a routine computation of this juncture.

The primary objective of this paper is to systematically
explore the limiting behavior of the system in the NBL regime.
More specifically, the main physical quantities of interest
are the total force autocorrelation function 〈F(0) · F(t)〉 and
the fluctuating force autocorrelation function 〈F+(0) · F+(t)〉
in the NBL regime as well as the frozen dynamics force
autocorrelation function 〈F0(0) · F0(t)〉. We investigate the
convergence of the total force and fluctuating force auto-
correlation functions in the Brownian limit and compare
them with the frozen dynamics force autocorrelation function.
Long-time and large-size MD simulations with carefully
chosen MD parameters are performed so that the tails of the
force autocorrelation functions are clearly compared and the
numerical integration of the force autocorrelation functions
provides numerically reliable values. Compared to recent
related numerical studies [7,9,10], we use all methods of
obtaining the friction coefficient (i.e., the time integration
of the three force autocorrelation functions and the decay
rate of the momentum autocorrelation function) and adopt

a synergistic approach with analytic methods, which will be
described below.

B. Rayleigh model

We introduce the noninteracting bath assumption to our
system, which allows us an alternative analytic approach.
Under this assumption, no solvent particle interacts with the
other solvent particles, and solvent particles interact only with
the Brownian particle. Hence, in the frozen dynamics, the
dynamics of each solvent particle is decoupled from those of
the other solvent particles. This feature enables us to derive
analytic expressions for 〈F0(0) · F0(t)〉, which are given in
terms of a one-particle trajectory. A numerical evaluation
of the analytic expression for the frozen dynamics force
autocorrelation function allows us to adjust MD simulation
parameters. Also, the numerical results with no statistical
errors help us to interpret the MD simulation results more
clearly. We note that there is a trade-off with the introduction
of the noninteracting bath assumption. The system becomes
analytically more manageable but it loses some physically
interesting features, such as the hydrodynamic effect of the
bath [11]. However, the system still legitimately describes
a certain physical phenomenon, i.e., Brownian motion in a
gaseous medium.

The Rayleigh model (a massive particle in an ideal gas)
has been extensively studied with the assumption of elastic
collisions. An explicit expression of the friction coefficient
γ in the Brownian limit has been derived by various methods
[12–15], and the velocity autocorrelation function and the Mori
memory kernel in the NBL regime have also been investigated
[16]. Mathematically rigorous results have been available for
the one-dimensional model with various limiting procedures
toward the Brownian limit [17], and some multidimensional
extensions [18] and subsequent generalizations to introduce
rotational motion to the Brownian particle [19] and to impose
a reflecting boundary to the system [20] have followed. Some
progress in the generalization of the interaction structure other
than elastic collisions and multiple Brownian particles has
been recently made by Kusuoka and Liang [21]. The Rayleigh
model has also been studied in the context of the adiabatic
piston with nonequilibrium conditions [22–26] and the reactive
Rayleigh gas [27].

An equally important objective of this paper is to compre-
hensively understand the version of the Rayleigh model where
an internal structure of interaction is considered, compared to
the version of the Rayleigh model where only elastic collisions
are considered. As specific examples, we consider four
typical interaction potentials: the hard-sphere (HS) interaction
and the square-well (SqW) potential as analytic examples,
and the Lennard-Jones (LJ) and Weeks-Chandler-Andersen
(WCA) potentials as numerical examples. First, for a general
short-ranged interaction potential, we derive two expressions
for the force autocorrelation function 〈F0(0) · F0(t)〉 of the
frozen dynamics and corresponding expressions for the friction
coefficient γ . The first one is obtained from the ensemble
average, whereas the other is from the time average and is
given in terms of the ray representation following Kusuoka
and Liang’s approach [21]. Then, we apply these results to the
four potentials. For the HS interaction and the SqW potential,
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closed-form expressions for γ are obtained. For the WCA
and LJ potentials, we numerically evaluate the expressions
and compare them with the MD simulation results. Based
on the results for the four potential cases, theoretical and
practical aspects for the evaluation of 〈F0(0) · F0(t)〉 and γ

are presented.
The rest of the paper is organized as follows. In Sec. II,

the system is defined and previous theoretical results are
summarized. In Sec. III, the ensemble-averaged expressions
for 〈F0(0) · F0(t)〉 and γ are derived. In Sec. IV, some
relevant portion of Kusuoka and Liang’s work is presented
with a physical explanation followed by the ray representation
expressions for 〈F0(0) · F0(t)〉 and γ . In Sec. V, analytic results
for the HS interaction and the SqW potential are derived. In
Sec. VI, numerical results for the WCA and LJ potentials are
presented and discussed. In Sec. VII, we provide a summary
with some discussion.

II. SYSTEM AND KNOWN RESULTS

A. System

We consider a system consisting of a single spherical
Brownian particle of mass M and a total of N noninteracting
solvent particles of mass m. The dimension of the space
and the inverse temperature of the system are denoted by
d (d = 2 or 3) and β, respectively. X and P denote the
position and momentum of the Brownian particle, respectively,
and xN = (x1,x2, . . . ,xN ) and pN = (p1,p2, . . . ,pN ) denote
those of the solvent particles. The interaction potential U (r)
between the Brownian particle and a solvent is a function
of inter-particle distance. We assume that the potential is
short-ranged with a cutoff radius R0. The Hamiltonian H of
the system is written as

H =
N∑

n=1

[
pn · pn

2m
+ U (|xn − X|)

]
+ P · P

2M
. (8)

Although all particles, including the Brownian particle, have
point masses and only their translational motions are consid-
ered, the form of U (r) may introduce the size of the Brownian
particle. That is, for example, for the LJ and WCA potentials
with parameters ε and σ , we may think that the radius of the
Brownian particle is σ .

In the frozen dynamics, the Brownian particle is held fixed
at a certain position X and the solvent particles move under
the bath Hamiltonian

H0 =
N∑

n=1

[
pn · pn

2m
+ U (|xn − X|)

]
. (9)

Since H0 is the sum of one-particle Hamiltonians, the motion
of each solvent particle becomes independent in the frozen
dynamics. To distinguish from the frozen dynamics, we refer
to the dynamics under the system Hamiltonian H as the full
dynamics.

We introduce two statistical averages. The full-system
equilibrium average of a physical quantity θ is defined as

〈θ〉 =
∫

θρ dX dP dxN dpN, (10)

where ρ is the equilibrium distribution

ρ = e−βH

/ ∫
e−βH dX dP dxN dpN . (11)

On the other hand, the bath equilibrium average is defined as

〈θ〉b =
∫

θ ρb dxN dpN, (12)

where ρb is the bath equilibrium distribution

ρb = e−βH0

/∫
e−βH0 dxN dpN . (13)

Note that the bath equilibrium average can be defined for the
full dynamics as well as for the frozen dynamics. For the
former case, 〈θ〉b is a function of X and P. If 〈θ〉b does not
depend on X, 〈θ〉 is equal to the average of 〈θ〉b over the
Maxwell distribution of P. For notational simplicity, we drop
the subscript for 〈F0(0) · F0(t)〉b throughout the paper, i.e.,
〈F0(0) · F0(t)〉 ≡ 〈F0(0) · F0(t)〉b.

B. Force autocorrelation functions and their time integrals

As stated in Sec. I, three force autocorrelation functions
〈F(0) · F(t)〉, 〈F+(0) · F+(t)〉, and 〈F0(0) · F0(t)〉 and their time
integrals are investigated in this paper. While F(t) is the
force exerted on the Brownian particle in the full dynamics,
F0(t) is the force in the frozen dynamics. In other words,
for the Liouville operators iL and iL0 corresponding to H

and H0, respectively, F(t) = eiLtF and F0(t) = eiL0tF. On the
other hand, F+(t) is defined for the full dynamics through
the generalized Langevin equation, Eq. (2). We note that
for the theoretical results summarized in this subsection, the
noninteracting bath assumption is not necessary.

Before stating the relations of these force autocorrelation
functions in the Brownian limit, we specify the limiting
procedure toward the Brownian limit to be considered in this
section. The infinite mass limit M → ∞ has been mainly
considered in the physics literature. In this limiting procedure,
all parameters except the mass M of the Brownian particle are
assumed to be fixed. However, as Español and Zúñiga pointed
out [6], it has been implicitly assumed that the thermodynamic
limit N → ∞ is taken before the infinite mass limit. This is
clearly seen through the relation (see Ref. [6])

〈P · P〉 = d

β

MNm

M + Nm
≡ d

β
μ, (14)

which shows that the condition M � Nm should be satisfied
in order to have 〈P · P〉 = β−1dM . Hence, we also assume
that the condition is valid along the infinite mass limit so that
μ ≈ M .

In the infinite mass limit, 〈F(0) · F(t)〉 and 〈F+(0) · F+(t)〉
coincide. This can be shown by the relation of the Laplace
transforms of these force autocorrelation functions (see
Ref. [6]),

C̃+(s) = C̃(s)

[
1 − βC̃(s)

dμs

]−1

, (15)

where C̃(s) and C̃+(s) are the Laplace transforms of C(t) =
〈F(0) · F(t)〉 and C+(t) = 〈F+(0) · F+(t)〉, respectively. By
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letting μ → ∞ (i.e., M → ∞ after N → ∞), we see that
C̃(s) and C̃+(s) coincide.

Mazur and Oppenheim have investigated the asymptotic
form [28] of 〈F(0) · F(t)〉 in the Brownian limit under the
assumption that correlation functions which are governed
by the frozen dynamics are short-lived [8]. This assumption
means that there is a characteristic time τb of the bath such
that, for t > τb,

〈A0(t1)eiL0tB0(t2)〉b = 〈A0(t1)〉b〈B0(t2)〉b, (16)

where A0(t1) = eiL0t1A and B0(t2) = eiL0t2B. By using projec-
tion operator techniques [29] with the projection operator 〈〉b,
they have derived an exact equation for P, which is different
from Eq. (2). For the corresponding fluctuating force F+

MO(t),
they have shown that 〈F+

MO(0) · F+
MO(t)〉b has a well-behaved

series expansion in powers of the mass ratio m/M with
〈F0(0) · F0(t)〉, the lowest-order term. They have also obtained
an asymptotic form of 〈F(0) · F(t)〉b, containing a slowly
decaying contribution proportional to M−1e−γ0t/M . By taking
the Maxwellian average to 〈F(0) · F(t)〉b, we have the same
form for 〈F(0) · F(t)〉,

〈F(0) · F(t)〉 ≈ 〈F0(0) · F0(t)〉 − dγ 2
0

βM
e−γ0t/M. (17)

We note that from Eq. (17) it can be shown that
∫ ∞

0 〈F(0) ·
F(t)〉dt = 0.

Under the same assumption for the time scale τb, Hynes
et al. have shown that the autocorrelation function of the Mori
fluctuating force F+(t) has the following form [30]:

〈F+(0) · F+(t)〉 = dM

β
[i
11(t) + �11(t)]. (18)

The first term β−1dMi
11(t) is equal to the Maxwellian
average of the Mazur-Oppenheim fluctuating force autocor-
relation function 〈F+

MO(0) · F+
MO(t)〉b and thus it has a well-

behaved series expansion. On the other hand, the second
term β−1dM�11(t) is proportional to M−3e−3γ0t/M . The
exponential decay term, however, does not change the behavior
of the time integral significantly in this case, because its
contribution to γ + in Eq. (4) is O(M−2). Therefore, in
the Brownian limit, 〈F+(0) · F+(t)〉 and its time integral γ +
converge to 〈F0(0) · F0(t)〉 and γ0 (i.e., γ ), respectively.

III. ENSEMBLE-AVERAGED EXPRESSIONS FOR
〈F0(0) · F0(t)〉 and γ

As discussed in Sec. II B, the frozen dynamics force au-
tocorrelation function 〈F0(0) · F0(t)〉 provides the asymptotic
form [28] of 〈F+(0) · F+(t)〉 in the Brownian limit and its time
integral is equal to γ . In this section, under the noninteracting
bath assumption, we derive ensemble-averaged expressions
for 〈F0(0) · F0(t)〉 and γ , which are expressed by one-particle
ensemble-averaged quantities.

A. Expression for 〈F0(0) · F0(t)〉
Since 〈F0(0) · F0(t)〉 does not depend on the fixed position

of the Brownian particle, we assume that the Brownian particle
is fixed at the origin. We denote the force exerted on a
solvent particle located at x by f(x), i.e., f(x) = −U ′(|x|) x

|x| .

For the solvent with initial configuration {xN,pN }, the net
force F0(0) exerted on the Brownian particle by the solvent
is given as −∑N

i=1 f(xi). Likewise, F0(t) = −∑N
i=1 f(xi(t)),

where xi(t) = eiL0txi . Then, we have the following form:

〈F0(0) · F0(t)〉 = N〈f(x1) · f(x1(t))〉b. (19)

The cross terms 〈f(xi) · f(xj (t))〉b with i �= j disappeared in
Eq. (19), since xi and xj (t) are independent and 〈f(xi)〉b =
0 by the symmetry of ρb. The average with respect to ρb

can be reduced to the average with respect to one-particle
Boltzmann distribution. With the subscript 1 dropped, Eq. (19)
is expressed as follows:

〈F0(0) · F0(t)〉 = N

V ∗

∫
dp φ(p)I (p,t), (20)

where V is the volume of the system and

I (p,t) =
∫

V

dx e−βU (|x|)f(x) · f(x(t)), (21a)

φ(p) =
(

β

2πm

)d/2

e− β

2m
p·p, (21b)

V ∗ =
∫

V

dx e−βU (|x|). (21c)

As expected, 〈F0(0) · F0(t)〉 is proportional to the number
density of the solvent. We note that for a sufficiently large
value of V and a short-ranged potential U (r), N/V ≈ N/V ∗.

Since the interaction potential U is a function of the
interparticle distance with cutoff R0, Eq. (20) can be further
simplified. For d = 2, by introducing new variables r , θ , u, and
φ, we parametrize x = (r cos θ,r sin θ ) and p = (u cos(θ +
φ),u sin(θ + φ)). Then, f(x) · f(x(t)) is a function of r , u, and
φ, but does not depend on θ . Also, for φ and −φ, f(x) · f(x(t))
has the same value. Hence, we obtain

〈F0(0) · F0(t)〉 = 2aβ

m

∫ ∞

0
du

∫ π

0
dφ

∫ R0

0
dr

× e−β[ u2

2m
+U (r)]ruf(x) · f(x(t)), (22)

where a is the number density of the solvent particles and f(x) ·
f(x(t)) is calculated for x = (r,0) and p = (u cos φ,u sin φ).
Similarly, for d = 3, we obtain

〈F0(0) · F0(t)〉 = 8π2a

(
β

2πm

)3/2 ∫ ∞

0
du

∫ π

0
dφ

∫ R0

0
dr

× e−β[ u2

2m
+U (r)]r2u2 sin φ f(x) · f(x(t)).

(23)

Note that since the trajectory under U (r) is on a plane, we can
use the same function f(x) · f(x(t)) as d = 2.

B. Expression for γ

From Eqs. (6) and (20), we can obtain an expression for γ .
Since

∫ t

0 f(x(s))ds = p(t) − p, we have

γ = aβ

d
lim
t→∞

∫
dp φ(p)

∫
V

dx e−βU (|x|)f(x) · [p(t) − p].

(24)
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σ

R0

FIG. 1. (Color online) A typical trajectory of a solvent particle
trapped in the well of the (truncated) LJ potential is depicted by the
red line. The solid circle of radius σ indicates the Brownian particle,
whereas the dotted circle of radius R0 = 2.5σ indicates the interaction
range.

For a purely repulsive potential, p∞ = limt→∞ p(t) is always
well-defined, since every trajectory quickly leaves the interac-
tion range and the momentum no longer changes after it leaves
the interaction range. Hence, we can take the limit t → ∞
inside by replacing p(t) with p∞. For a potential containing an
attractive component, however, some trajectories are trapped
in the potential well and the corresponding solvent particles
interact with the Brownian particle forever and p∞ is not
well-defined. For the LJ potential, for example, if

|p|2
2m

+ U (|x|) = |p⊥|2
2m

|x|2
r2∗

+ U (r∗), (25)

where p⊥ is defined so that p = p‖ + p⊥ and x · p⊥ = 0 has
a root r∗ in the interval (|x|,R0), the particle cannot escape
from the potential well; see Fig. 1. However, we can show that
the net contribution of the trapped particles to γ disappears.
The ensemble average of the product of f(x) and p(t) over the
trapped particles becomes decoupled as t tends to infinity so
that it shrinks to zero. Also, the ensemble average of f(x) · p
over the trapped particles is zero by the time-reversal property.
Hence, we obtain

γ = aβ

d

∫∫
nontrapped

dx dp φ(p)e−βU (|x|)f(x) · (p∞ − p).

(26)

As we did in Sec. III A, Eq. (26) is further simplified; for
d = 2,

γ = aβ2

m

∫ ∞

0
du

∫ π

0
dφ

∫ R0

0
dr

× e−β[ u2

2m
+U (r)]ruI(x,p)f(x) · (p∞ − p), (27)

and for d = 3,

γ = 8

3
π2aβ

(
β

2πm

)3/2 ∫ ∞

0
du

∫ π

0
dφ

∫ R0

0
dr

× e−β[ u2

2m
+U (r)]r2u2 sin φ I(x,p)f(x) · (p∞ − p), (28)

where I(x,p) = 0 if the trajectory is trapped and it is equal to
1 otherwise.

IV. RAY REPRESENTATION APPROACH

In this section, an alternative method of studying the
microscopic theory of Brownian motion is discussed and
then applied to obtain a microscopic formula for the frozen
dynamics force autocorrelation function. It was devised for
the Rayleigh model, and microscopic formulas for the friction
coefficient γ and the noise intensity D have been derived in
terms of the ray representation by Kusuoka and Liang [21].
Instead of considering the ensemble of the solvent and taking
the ensemble average (as we did in Sec. III), they have obtained
their results by time-averaging for a given realization of the
initial solvent configuration. For mathematical convenience,
some restrictive assumptions on the interaction potential and
the initial solvent configuration have been made. Under these
assumptions, for a sufficiently small mass ratio m/M , every
incoming solvent particle penetrates the Brownian particle.
However, the penetration of solvent particles into the Brownian
particle is not valid for our solid Brownian particle case.
Specifically, neither the interaction potentials we consider
in this paper nor the Boltzmann distribution satisfies the
assumptions. Here we discuss and examine the validity of
the ray representation approach beyond the original Kusuoka
and Liang’s assumptions [21].

Specifically, in this section, we use a different limiting
procedure from the infinite mass limit, which has been
used in Kusuoka and Liang’s work. Roughly speaking, we
consider m → 0 rather than M → ∞ to achieve the Brownian
limit m/M → 0. Since the momentum of the Brownian
particle obeys the Ornstein-Uhlenbeck process without scaling
under this limit, this limit is more favorable for presenting
mathematically rigorous statements and proofs; it has also
been used in Refs. [18–20]. However, we can also use the
infinite mass limit with the ray representation approach, and
the main results under the infinite mass limit are presented
below in Sec. IV F.

We first present some relevant parts of Kusuoka and Liang’s
work with an emphasis on physical meaning. In Sec. IV A,
a system and a limiting procedure to be considered in this
section are introduced. The ray representation and the adiabatic
trajectory are explained in Secs. IV B and IV C, respectively. In
Sec. IV D, Kusuoka and Liang’s result for the noise intensity D

is presented in a heuristic way. Then, we derive a microscopic
expression for the frozen dynamics force autocorrelation
function in Sec. IV E. In Sec. IV F, we present the expressions
for 〈F0(0) · F0(t)〉 and γ under the infinite mass limit with
further simplified forms.

A. System description

We consider a Brownian particle of mass M surrounded
by an infinite number of solvent particles of mass m in
d-dimensional space (d = 2 or 3). The position and velocity
of the Brownian particle at time t are denoted by X(t) and
V(t), respectively, while the positions and velocities of the
solvent particles are denoted by xi(t) and vi(t), respectively,
with i = 1,2, . . . . The Brownian particle interacts with each
solvent particle via a short-ranged interaction potential U ,
but there is no interaction between the solvent particles. We
further assume that the interaction potential is a function of
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the interparticle distance between the Brownian particle and
a solvent particle, i.e., U = U (r), and that the potential has a
cutoff R0, i.e., U (|X − xi |) = 0 if |X − xi | > R0. We use the
notation ∇U (x) = U ′(|x|) x

|x| for x ∈ Rd .
Since the total energy of the system is given as

1

2
M|V|2 +

∑
i

(
1

2
m|vi |2 + U (|xi − X|)

)
,

the equations of motion for the Brownian particle are given as

Ẋ(t) = V(t), (29a)

V̇(t) = − 1

M

∑
i

∇U [X(t) − xi(t)]. (29b)

Note that the sum is over all solvent particles, but it actually
contains a finite number of particles at each time since U (r) is
a short-ranged potential. On the other hand, the equations of
motion for each solvent particle are given as

ẋi(t) = vi(t), (30a)

v̇i(t) = − 1

m
∇U [xi(t) − X(t)]. (30b)

The only randomness we introduce to the system is the initial
conditions of the solvent particles. While the initial conditions
for the Brownian particle, i.e., X(0) = X0 and V(0) = V0, are
deterministic, the initial configuration of the solvent particles
in the 2d-dimensional (x,v) space is given by the Poisson field
with intensity

λ(dx,dv) = a√
m

e−βU (|x−X0|)
(

mβ

2π

)d/2

e− 1
2 βm|v|2dx dv,

(31)

where a is introduced as a density parameter and β is the
inverse temperature of the solvent. The number of the particles
that are found in the volume element dx dv obeys the Poisson
distribution with mean λ(dx,dv) and is independent of those in
other nonoverlapping volume elements. By integrating λ over
v, we see that the number density of the solvent particles
beyond the interaction range of the Brownian particle has
mean a/

√
m. In turn, by integrating λ over x, we see that

the velocity distribution of the solvent particles obeys the
Maxwell-Boltzmann distribution. Hence, the initial solvent
configuration obtained from the Poisson field is a realization
of the solvent configuration in equilibrium.

The Brownian limit we consider in this section is achieved
by decreasing m to zero with M fixed. Meanwhile, we fix the
parameters a and β and the interaction potential U (r). As we
see in Eq. (31), however, as the Brownian limit is achieved,
the system contains a larger number of solvent particles in
a unit volume and the solvent particles become lighter and
faster. In other words, as m goes to zero, the velocities of
the solvent particles increase like O(1/

√
m) and so does the

number density of the solvent.
Comparison of the two settings considered in Secs. II A

and IV A follows. Two different settings of the systems (i.e., a
finite number of solvent particles in a finite volume versus an
infinite number of solvent particles in a whole space) do not
make any essential difference, if sufficiently large values of N

and V are used in the previous setting and the number densities
of the solvent particles are the same. On the other hand, the two
limiting procedures are not equivalent and result in Langevin
equations with different values of γ and D. To derive the
Langevin equation from the infinite mass limit considered in
the previous section, the momentum P and time t need to be
scaled. For the limiting procedure considered in this section,
no scaling is required. However, we note that a system with a
nonzero mass ratio m/M � 1 can be interpreted by either of
the two limiting procedures.

In the rest of Sec. IV, we assume that the interaction
potential is purely repulsive. In this case, every solvent particle
interacts with the Brownian particle for a finite time and then
leaves the interaction range. On the other hand, if the potential
contains an attractive component, some solvent particles are
trapped in the potential well and it is less likely for them to
escape from the well as the mass ratio m/M has a smaller
value. Some comments for this case are made in this section if
necessary, but the overall discussion takes place in Sec. VI.

B. Ray representation

The initial conditions of the solvent particles can be
equivalently expressed by the ray representation. This is
based on the observation that every incoming solvent particle
undergoes a free motion until it interacts with the Brownian
particle. Hence, its trajectory can be labeled as a corresponding
free motion—a ray.

For a solvent particle with initial position x and initial
velocity v at time t = 0, we consider free motion x + tv. We
denote t̄ as the time when the position becomes the closest to
the origin and x̄ as the position of the particle at this moment;
see Fig. 2. Hence, the scalar t̄ and vector x̄ satisfy

v · (x + t̄v) = 0, (32a)

x̄ = x + t̄v. (32b)

Note that t̄ may have a negative value. Also, since v in-
creases like O(1/

√
m) as m → 0, we introduce the normalized

velocity

ṽ = √
mv. (33)

x
x-

x v

v

ṽ

FIG. 2. Schematic diagram for the ray representation. The dotted
line indicates the trajectory of free motion of a particle with initial
position x (point A) and initial velocity v at time t = 0, which is
parametrized by x + tv. The ray representation of (x,v) is given by
(t̄ ,x̄,ṽ), where x̄ is the closest point (point B) on the line to the
origin O (i.e., x̄ ⊥ v), t̄ is the time when the particle arrives at x̄ (i.e.,
x + t̄v = x̄), and ṽ is the normalized velocity of v (i.e., ṽ = √

mv).

032129-6



MICROSCOPIC THEORY OF BROWNIAN MOTION . . . PHYSICAL REVIEW E 87, 032129 (2013)

Then, our ray representation of (x,v) is given as (t̄ ,x̄,ṽ). We
note that bar notation is used for ray representation, whereas
a tilde is used to indicate that a variable is scaled.

There is a one-to-one correspondence between the two
representations, i.e., between (x,v) with v �= 0 and (t̄ ,x̄,ṽ)
with ṽ �= 0 and ṽ · x̄ = 0. For ṽ �= 0, we define Eṽ to be
the hyperplane perpendicular to ṽ, i.e., Eṽ = {x̄ : ṽ · x̄ = 0}.
Due to the constraint, the dimension of Eṽ is d − 1. We
denote a volume element on Eṽ by d̄ x̄. We also define a
(2d − 1)-dimensional space

E = {(x̄,ṽ) : ṽ �= 0, x̄ · ṽ = 0}. (34)

We note that the volume element d̄x̄ in Eṽ and the space E

appear in the microscopic formulas for the noise intensity D

and the autocorrelation function of F0; see Eqs. (53) and (60).
From the ray representation of the initial solvent configura-

tion, one can approximate the times when each solvent particle
interacts with the Brownian particle, which is advantageous
for our problem. If a solvent particle with ray representation
(t̄ ,x̄,ṽ) interacts with the Brownian particle, the interaction
time is approximated as t̄ and this approximation becomes
more accurate as m has a smaller value. To see this clearly, we
introduce a region centered at the origin, which is assumed to
be bounded but sufficiently large so that the Brownian particle
moves within the region; see Fig. 3. Since the solvent is an
ideal gas, the solvent particle undergoes free motion until
it enters the interaction range of the Brownian particle. We
denote the time interval when the free motion x + t ṽ/

√
m

stays in the region by (t̄ − ε1,t̄ + ε2), and the time interval
when the solvent particle interacts with the Brownian particle
by (t∗,t∗ + ε3). Clearly, t∗ is contained in (t̄ − ε1,t̄ + ε2),
and εi (i = 1,2,3) are O(

√
m). Hence, we can approximately

consider that the interaction occurs at time t̄ with a short
duration of order

√
m. Note that this argument is heuristic

FIG. 3. A typical trajectory of a solvent particle that interacts with
the Brownian particle. Point O denotes the origin of the space, while
the solid circle B denotes the Brownian particle. The smaller circle
indicates the interaction range of the Brownian particle while the
larger circle indicates some bounded region containing the origin and
the Brownian particle. For a solvent particle with its ray representation
(t̄ ,x̄,ṽ), we denote the times when the free motion x + t ṽ/

√
m (drawn

by the dotted line) enters and exits the region by t̄ − ε1 and t̄ + ε2,
respectively, and the times when the particle enters and exits the
interaction range by t∗ and t∗ + ε3, respectively.

and it implicitly assumes that the Brownian particle moves
much more slowly than the solvent particles and that each
solvent particle interacts with the Brownian particle at most
once, which is valid for a small value of m.

Now we express the Poisson field for the initial config-
uration of the solvent in terms of the ray representation.
Since we can label the initial configuration of the solvent
particles by {(xi ,vi)}, we can also express it in terms of the
ray representation, i.e., {(t̄i ,x̄i ,ṽi)}. We define N (dt̄,d̄ x̄,dṽ)
as the corresponding Poisson field on (t̄ ,x̄,ṽ) space, and we
want to find its intensity λ̄(dt̄,d̄ x̄,dṽ). We assume that the
initial position of the Brownian particle is at the origin, i.e.,
X0 = 0. For sufficiently small m, if a solvent particle is initially
positioned inside the interaction range (i.e., |x| � R0), then it
leaves the interaction range in a very short time and then no
longer affects the movement of the Brownian particle. Thus,
if we are interested in a long-time average, the initial solvent
configuration near the Brownian particle does not need to be
imposed precisely. We approximate λ(dx,dv) in Eq. (31) by
the following intensity λ0(dx,dv):

λ0(dx,dv) = a√
m

(
mβ

2π

)d/2

e− 1
2 βm|v|2dx dv. (35)

Note that λ0 is the intensity of the Poisson field for a free ideal
gas since U (r) = 0 everywhere in this case. Since ṽdt̄ ⊥ d̄x̄
and v = m−1/2ṽ, we can express the volume elements

dx = 1√
m

|ṽ|d̄ x̄ dt̄, (36a)

dv = m−d/2dṽ, (36b)

and thus we obtain the intensity of the Poisson field

λ̄(dt̄,d̄ x̄,dṽ) = a

m

(
β

2π

)d/2

e− 1
2 β|ṽ|2 |ṽ| dt̄ d̄x̄ dṽ. (37)

Note that Eq. (37) is obtained from Eq. (35) rather than
Eq. (31). For a purely repulsive potential, the difference
between the initial configurations near the Brownian particle
affects the dynamics of the Brownian particle only for the
initial time, the duration of which is of the order of

√
m. On

the other hand, if the interaction potential has an attractive
component, a particle initially located inside the potential well
may be trapped depending on its initial velocity and stay for
an infinite time as m tends to zero. Hence, in this case, a
different initial configuration may cause different dynamics
of the Brownian particle for a long time. Thus, we should
treat the contribution of those particles precisely and may not
approximate λ(dx,dv) by λ0(dx,dv).

Since N (dt̄,d̄ x̄,dṽ) is a random discrete measure concen-
trated on {(t̄i ,x̄i ,ṽi)}, an integral with respect to N (dt̄,d̄ x̄,dṽ)
is interpreted as follows:∫

(0,t]×E

N (dū,d̄ x̄,dṽ)A(ū,x̄,ṽ) =
∑

0<t̄i�t

A(t̄i ,x̄i ,ṽi). (38)

Its compensated field is denoted by N0(dt̄,d̄ x̄,ṽ), i.e.,

N0(dt̄,d̄ x̄,dṽ) = N (dt̄,d̄ x̄,dṽ) − λ̄(dt̄,d̄ x̄,dṽ). (39)
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C. Adiabatic trajectory ψ

As discussed in Sec. IV B, if the system is near the Brownian
limit, a solvent particle interacts with the Brownian particle for
a very short time. An adiabatic approximation is considered
in order to estimate how this instantaneous collision affects
the motion of the Brownian particle. In other words, while the
Brownian particle interacts with a certain solvent particle, we
assume that its position does not change, and we observe the
motion of the solvent particle. Then, the equations of motion
of the solvent particle are decoupled from those of the other
solvent particles.

For a solvent particle with its ray representation (t̄ ,x̄,ṽ), the
interaction occurs near time t = t̄ and its duration is O(

√
m).

Hence, we introduce a scaled time

s̃ = t − t̄√
m

. (40)

We also assume that the Brownian particle is held fixed
while the interaction occurs, i.e., X(s̃) = X(t̄). The adia-
batic trajectory ψ(s̃) = ψ(s̃; x̄,ṽ,X(t̄)) of the solvent particle
satisfies

d2

ds̃2
ψ(s̃) = −∇U [ψ(s̃) − X(t̄)]. (41)

The initial conditions of Eq. (41) are given by the fact that
before the particle enters the interaction range (i.e., s̃ has a
sufficiently large negative value), it satisfies

ψ(s̃) = x̄ + s̃ṽ. (42)

Under the adiabatic assumption, the total impulse exerted
on the Brownian particle during the interaction is given as

A(t̄ ,x̄,ṽ) = √
m

∫ ∞

−∞
∇U [ψ(s̃; x̄,ṽ,X(t̄)) − X(t̄)]ds̃. (43)

We note that the actual integration is over a finite time interval
when the particle stays in the interaction range.

D. Noise intensity D

Now we approximate the random force exerted on the
Brownian particle. The underlying idea is as follows. In the
Brownian limit, a solvent particle with its ray representation
(t,x̄,ṽ) interacts with the Brownian particle instantaneously at
time t . The impulse exerted on the Brownian particle by the
solvent particle is approximated by A(t,x̄,ṽ). We approximate
the force exerted on the Brownian particle at time t by the sum
of δ impulses (occurring at time t) having intensity A(t,x̄,ṽ).

By defining

H(t) =
∫

(0,t]×E

N (du,d̄ x̄,dṽ)A(u,x̄,ṽ), (44)

we approximate the time integral of the random force exerted
on the Brownian particle up to time t . Hence, the random force
itself is approximated by the (formal) time derivative of H(t),
i.e.,

Fδ(t) = Ḣ(t), (45)

where we used superscript δ to emphasize that the force
consists of the sum of δ peaks by its definition. We can
show that in the Brownian limit, the quadratic variation of

H(t) is deterministic (i.e., independent of the realization of
the initial solvent configuration) and it grows linearly with
time. However, in order to obtain an expression for the slope
of the quadratic variation versus time, it suffices to calculate
E[|H(t)|2], where E[ ] denotes the expectation over the initial
solvent configurations.

We decompose H(t) into H0(t) + H1(t), where

H0(t) =
∫

(0,t]×E

N0(du,d̄ x̄,dṽ)A(u,x̄,ṽ), (46a)

H1(t) =
∫

(0,t]×E

λ̄(du,d̄ x̄,dṽ)A(u,x̄,ṽ). (46b)

Due to the symmetry properties of the potential U and the
intensity λ̄, we have H1(t) = 0 and thus H(t) = H0(t). By the
Itô isometry, we have

E[|H(t)|2] =
∫

(0,t]×E

λ̄(du,d̄ x̄,dṽ)E[|A(u,x̄,ṽ)|2]. (47)

We note that the dependencies on m of A (proportional to√
m) and λ̄ (proportional to m−1) cancel in Eq. (47); the latter

equation can be further simplified. The time dependence of
A(u,x̄,ṽ) is only through the position X(u) of the Brownian
particle, and the integral∫

E

λ̄(u,d̄ x̄,dṽ)|A(u,x̄,ṽ)|2

does not depend on X(u) due to the translational invariance
of λ̄. Thus, it is a constant with respect to u. Hence, we may
evaluate it with the assumption that the Brownian particle is at
the origin. By introducing

Ã(x̄,ṽ) =
∫ ∞

−∞
∇U (ψ(s̃; x̄,ṽ,0))ds̃, (48)

E[|A(u,x̄,ṽ)|2] is replaced by m|Ã(x̄,ṽ)|2 in Eq. (47), and we
obtain from Eq. (37)

E[|H(t)|2] = dDt, (49)

where

D = a

d

(
β

2π

)d/2 ∫
E

|Ã(x̄,ṽ)|2e− 1
2 β|ṽ|2 |ṽ|d̄x̄ dṽ. (50)

By comparing Eq. (49) with the relation

E[|H(t)|2] =
∫ t

0
du

∫ t

0
du′E[Fδ(u) · Fδ(u′)], (51)

we have

E[Fδ(t) · Fδ(t ′)] = dDδ(t − t ′), (52)

which means that D is actually the noise intensity of Fδ .
Equation (50) can be written as follows:

D = a

d

∫
E

∣∣∣∣
∫ ∞

−∞
∇U (ψ(s̃; x̄,ṽ,0))ds̃

∣∣∣∣
2

ρ̄(x̄,ṽ)d̄x̄ dṽ, (53)

where

ρ̄(x̄,ṽ) =
(

β

2π

)d/2

e− 1
2 β|ṽ|2 |ṽ|. (54)
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Hence, D is expressed as the average of the square of the
total momentum change after each collision over the rays with
weight ρ̄.

As mentioned above, the quadratic variation of H(t) is dDt

in the Brownian limit and D is obtained from this relation.
Hence, for each initial solvent configuration, almost surely,
we can obtain D from the time average, which means that the
use of the expectation E[ ] is not essential.

E. Time-averaged expression for 〈F0(0) · F0(τ̃ )〉
For a small value of m � M , the frozen dynamics force

autocorrelation function has a time scale of order
√

m. By
using the tilde notation τ̃ for microscopic time, we denote
the autocorrelation function by 〈F0(0) · F0(τ̃ )〉. As we did in
Sec. IV D, we derive a microscopic expression for 〈F0(0) ·
F0(τ̃ )〉 by taking the time average of E[F0(t) · F0(t + τ̃ )], i.e.,

〈F0(0) · F0(τ̃ )〉 = lim
T →∞

1

T

∫ T

0
E[F0(t) · F0(t + τ̃ )]dt. (55)

Since F0(t) is the sum of the forces exerted by the col-
liding solvent particles at time t , i.e., F0(t) = −∑

i fi(t),
F0(t) · F0(t + τ̃ ) is decomposed into two parts:

F0(t) · F0(t + τ̃ ) = I1 + I2, (56)

where I1 contains the overlap of the forces of the same particle,
i.e.,

∑
i fi(t) · fi(t + τ̃ ), and I2 contains the overlap of the

forces of different particles, i.e.,
∑∑

i �=j fi(t) · fj (t + τ̃ ). For
a colliding particle with ray representation (t,x̄,ṽ), the total
overlap between the force and its translation by time τ̃ is given
in terms of the following function:

B̃(τ̃ ,x̄,ṽ) =
∫ ∞

−∞
∇U (ψ(s̃; x̄,ṽ,0)) · ∇U (ψ(s̃ + τ̃ ; x̄,ṽ,0))ds̃.

(57)

In other words, we have

I1dt = m

∫
E

N (dt,d̄x̄,dṽ)B̃(τ̃ ,x̄,ṽ), (58)

and thus, by Eqs. (37) and (54), we obtain

E[I1] = a

∫
E

B̃(τ̃ ,x̄,ṽ)ρ̄(x̄,ṽ)d̄ x̄ dṽ. (59)

On the other hand, by the independence of two colliding
particles and the isotropy of λ̄, we have E[I2] = 0. Therefore,
E[F0(t) · F0(t + τ̃ )] = E[I1] is stationary and we obtain the
following expression for 〈F0(0) · F0(τ̃ )〉:

〈F0(0) · F0(τ̃ )〉 = a

∫
E

B̃(τ̃ ,x̄,ṽ)ρ̄(x̄,ṽ)d̄x̄ dṽ. (60)

Now we show that Kusuoka and Liang’s microscopic
expression [21], Eq. (53), can be derived from Eq. (60) by
using Mazur and Oppenheim’s result [8]. From Eq. (6) and the
fluctuation-dissipation relation Dβ = 2γ , we have

D = 2

d

∫ ∞

0
〈F0(0) · F0(τ̃ )〉dτ̃ . (61)

Since

2
∫ ∞

0
B̃(τ̃ ,x̄,ṽ)dτ̃ =

∣∣∣∣
∫ ∞

−∞
∇U (ψ(s̃; x̄,ṽ,0))ds̃

∣∣∣∣
2

, (62)

we retrieve Eq. (53) from Eqs. (60) and (61).
We also discuss the validity of Eq. (60). Since ρ̄ is obtained

from λ̄ and, in turn, λ̄ is obtained from λ0 rather than λ, the
validity of the expression depends on whether λ is correctly
approximated by λ0. As we discussed in Sec. IV B, for a purely
repulsive potential, the difference of the initial configurations
near the Brownian particle does not affect the long-time
dynamics and thus the approximation is valid. On the other
hand, for a potential containing an attractive component, we
cannot neglect the initially trapped particles, which will stay
in the potential well forever in the frozen dynamics. Clearly,
the contribution of such particles is not considered in Eq. (60)
since their trajectories cannot be expressed by the adiabatic
trajectory ψ , which describes a solvent particle entering and
then leaving the potential range. Actually, 〈F(0) · F(τ̃ )〉 in
Eq. (60) contains only the contribution of the incoming solvent
particles, and it results from the Poisson field whose intensity
is given as follows:

λ1(dx,dv) = λ0(dx,dv)I(x), (63)

where I(x) = 1 if |x| > R0 and I(x) = 0 otherwise. Note that
if λ1(dx,dv) is assumed for the Poisson field, then there is no
trapped particle in the frozen dynamics.

F. Results under the infinite mass limit

We present the ray representation results under the infinite
mass limit, which is considered in Secs. II and III. For the ray
representation, we use momentum p instead of velocity. For
(x̄,p) ∈ E, where E = {(x̄,p) ∈ R2d : x̄ · p = 0, p �= 0}, we
define the adiabatic trajectory ψ(t) = ψ(t ; x̄,p) satisfying

mψ ′′(t) = −∇U (ψ(t)) (64)

and ψ(t) = x̄ + t
m

p for sufficiently negatively large t (i.e.,
before the particle enters the interaction range). The expression
for the frozen dynamics force autocorrelation function is given
as

〈F0(0) · F0(τ )〉 = a

∫
E

B(τ,x̄,p)ρ̄(x̄,p)d̄ x̄ dp, (65)

where a is the number density of the solvent particles,

B(τ,x̄,p) =
∫ ∞

−∞
∇U (ψ(t)) · ∇U (ψ(t + τ ))dt, (66a)

ρ̄(x̄,p) =
(

β

2πm

)d/2 |p|
m

e− β

2m
|p|2 . (66b)

The expression for the friction coefficient is given as

γ = aβ

2d

∫
E

|p∞ − p|2ρ̄(x̄,p)d̄ x̄ dp, (67)

where p∞ = m limt→∞ ψ ′(t).
Since the interaction potential U is a function of in-

terparticle distance, Eqs. (65) and (67) can be further
simplified. For d = 2, x̄ and p can be parametrized as
follows: x̄ = (−r sin φ,r cos φ) and p = (u cos φ,u sin φ) with
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u > 0, 0 � φ < 2π , −R0 � r � R0. Since B(τ,x̄,p) does not
depend on φ, we introduce

B0(τ,r,u) = B(τ,x̄0,p0), (68)

where x̄0 = (0,r) and p0 = (u,0), and we integrate Eq. (65)
over φ to obtain in the two-dimensional case

〈F0(0) · F0(τ )〉 = 2aβ

m2

∫ ∞

0
du

∫ R0

0
dr e− β

2m
u2

u2B0(τ,r,u).

(69)

We also used the fact that B0(τ, − r,u) = B0(τ,r,u). Likewise,
for d = 3, we have

〈F0(0) · F0(τ )〉 = 8π2a

m

(
β

2πm

)3/2 ∫ ∞

0
du

∫ R0

0
dr

× e− β

2m
u2

ru3B0(τ,r,u). (70)

Note that a (2d − 1)-dimensional integration in Eq. (65) is
reduced to two-dimensional integrations in Eqs. (69) and (70).
Similarly, we obtain simplified expressions for γ ; for d = 2,

γ = aβ2

2m2

∫ ∞

0
du

∫ R0

0
dr e− β

2m
u2

u2|p∞ − p|2, (71)

and for d = 3,

γ = 4π2aβ

3m

(
β

2πm

)3/2∫ ∞

0
du

∫ R0

0
dr e− β

2m
u2

ru3|p∞ − p|2.
(72)

V. ANALYTIC RESULTS

In this section, we derive analytic expressions of γ for
the HS interaction and the SqW potential and show that
the ensemble-averaged expression, Eq. (26), and the ray
representation expression, Eq. (67), produce identical results
for each potential. For the numerical values of γ for these
potentials and the comparison with the WCA and LJ potential,
see Figs. 15 and 16. The HS interaction has parameter R as the
radius of the Brownian particle; when the interparticle distance
between a solvent particle and the Brownian particle becomes
R, an elastic collision occurs. The SqW potential we consider
has the following form:

USqW(r) =

⎧⎪⎨
⎪⎩

∞ if r < R1,

−ε if R1 < r < R2,

0 if r > R2.

(73)

The closed-form expression of γ for the three-dimensional
HS system, Eq. (77), has been derived in the following: in
Ref. [12] by the generalized Fokker-Planck equation, by the
calculation of the distribution of changes of momentum of the
Brownian particle, and by the Kirkwood formula; in Ref. [13]
by the density expansion of the momentum autocorrelation
function; and in Ref. [14], by the Boltzmann equation. An
equivalent expression under the limiting procedure considered
in Sec. IV has been derived by a mathematically rigorous
probabilistic method [18].

(a) (b)

FIG. 4. Some variables used in the calculation of γ of the HS
system for (a) the ray representation approach and (b) the ensemble
average.

A. HS interaction

1. Ray representation

For d = 2, we use Eq. (71) and consider a particle with
x̄ = (0,r) and p = (u,0). For nonzero p∞ − p, it suffices
to consider 0 � r � R. By introducing the angle θ , which
satisfies sin θ = r

R
[see Fig. 4(a)], we express the magnitude

of momentum change as follows:

|p∞ − p| = 2u cos θ. (74)

From Eq. (71), we have

γ = 2aRβ2

m2

∫ π
2

0
dθ

∫ ∞

0
du u4 cos3 θ e− β

2m
u2

, (75)

and thus

γ = 2aR

√
2πm

β
. (76)

Similarly, for d = 3, from Eqs. (72) and (74) we obtain

γ = 8

3
aR2

√
2πm

β
. (77)

2. Ensemble average

In Eqs. (27) and (28), f(x) · (p∞ − p) is nonzero only when
r = R. To express this as a δ function, we only need to consider
r � R. To have a collision with the wall, the angle φ should
be in the range of [π − arcsin R

r
,π ]. The angle of incidence is

denoted by χ , which satisfies sin χ = r
R

sin φ; see Fig. 4(b).
The time �t that it takes for the particle to hit the wall is
expressed as follows:

�t = −
(

cos χ + r

R
cos φ

)
mR

u
. (78)

By denoting the momentum change after the collision by �p,
we have

f(x(t)) = �p δ(t − �t), (79)

p(t) = p + �p H (t − �t), (80)

where H (t) is the Heaviside step function, and thus

f(x) · (p∞ − p) = |�p|2δ(�t)H (�t). (81)
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(a) (b)

FIG. 5. Two cases to be considered in the calculation of γ

for the SqW system by the ray representation approach. Panel (a)
corresponds to the case (θ,u) ∈ D1, whereas panel (b) corresponds to
(θ,u) ∈ D2.

To have an instantaneous collision (i.e., �t = 0), the limit r →
R with π

2 � φ � π is considered, which leads to χ → π − φ.
Since ∂�t

∂r
= − m

u cos φ
and |�p| = −2u cos φ under the limit,

we obtain

f(x) · (p∞ − p) = − 4

m
u3 cos3 φ δ(r − R)H (r − R). (82)

Hence, for d = 2, by introducing θ = π − φ, we obtain the
identical integral for γ to Eq. (75) and thus the identical result
to Eq. (76). Similarly, for d = 3, we obtain Eq. (77) from
Eqs. (28) and (82).

B. SqW potential

1. Ray representation

Since we only need to consider 0 � r < R2, we introduce
the angle of incidence to the outer wall, θ , which satisfies
sin θ = r

R2
; see Fig. 5. We also denote the angle of refraction

and the magnitude of refracted momentum by χ and ū,
respectively, which satisfy

1

2m
ū2 − ε = 1

2m
u2, (83a)

ū sin χ = u sin θ. (83b)

The condition sin χ < R1
R2

is equivalent to the condition that the
refracted particle collides with the inner wall. Hence, when
sin θ < R1

R2
, the particle hits the inner wall for all u > 0. If

sin θ > R1
R2

, we define

u∗ = R1

√
2mε√

R2
2 sin2 θ − R2

1

. (84)

If u < u∗, the particle hits the inner wall, otherwise the particle
passes through the interaction range without colliding with the
inner wall. Hence, we calculate the integral

γ = aR2β
2

2m2

∫ π
2

0
dθ

∫ ∞

0
du u2 cos θ e− β

2m
u2 |p∞ − p|2 (85)

by dividing the domain into D1 and D2 defined as follows:

D1 =
{

0 � θ < arcsin
R1

R2
, u > 0

}

∪
{

arcsin
R1

R2
< θ <

π

2
, 0 < u < u∗

}
, (86a)

D2 =
{

arcsin
R1

R2
< θ <

π

2
, u > u∗

}
. (86b)

For the case of a collision with the inner wall [i.e., for
(θ,u) ∈ D1], we denote the angle of incidence on the inner
wall by ω [see Fig. 5 (a)], which satisfies

sin ω = R2

R1
sin χ. (87)

We also denote the momentum changes after refraction,
reflection, and subsequent refraction by �p1, �p2, and �p3,
respectively. Then, the total momentum change is given as
p∞ − p = �p1 + �p2 + �p3, and we have

|�p1| = |�p3| = ū cos χ − u cos θ ≡ A(u,θ ), (88a)

|�p2| = 2ū cos ω ≡ B(u,θ ), (88b)

�p1 · �p2 = �p2 · �p3 = −A(u,θ )B(u,θ ) cos(ω − χ ),

(88c)

�p1 · �p3 = A2(u,θ ) cos 2(ω − χ ). (88d)

Note that we defined A and B as functions of u and θ since
other variables such as ū, χ , and ω are functions of u and θ .
Then, for (θ,u) ∈ D1, we have

|p∞ − p|2 = 2A2[1 + cos 2(ω − χ )]

− 4AB cos(ω − χ ) + B2. (89)

For the case of no collision with the inner wall, the momen-
tum changes �p1 and �p2 after two sequential refractions
satisfy

|�p1| = |�p2| = A(u,θ ), (90a)

�p1 · �p2 = −A2(u,θ ) cos 2χ. (90b)

Hence, for (θ,u) ∈ D2, we have

|p∞ − p|2 = 2A2[1 − cos 2χ ]. (91)

By combining the results for two cases, we obtain a formula
for γ as the sum of two integrals defined in Eqs. (85) and
(86). The expressions for |p∞ − p|2 are given in Eqs. (89) and
(91). The explicit expressions for the intermediate variables as
functions of u and θ are given as follows:

A(u,θ ) =
√

u2 cos2 θ + 2mε − u cos θ, (92a)

B(u,θ ) = 2

√(
1 − R2

2

R2
1

sin2 θ

)
u2 + 2mε, (92b)

cos(ω − χ ) = B(u,θ )
√

u2 cos2 θ + 2mε

2(u2 + 2mε)
+ R2u

2 sin2 θ

R1(u2 + 2mε)
,

(92c)

1 − cos 2χ = 2u2 sin2 θ

u2 + 2mε
. (92d)
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(a) (b) (c) (d)

FIG. 6. Four cases to be considered in the calculation of γ for the SqW system by using the ensemble-averaged expression. Panels (a), (b),
(c), and (d) correspond to the limits E1, E2, E3, and E4, respectively, in the text.

2. Ensemble average

For instantaneous collisions of nontrapped particles, we
consider the following limits:

(E1) r → R2 − 0 with 0 � φ � π
2 .

(E2) r → R1 + 0 with π
2 � φ � π .

(E3) r → R2 + 0 with π
2 � φ � π (with collision with the

inner wall).
(E4) r → R2 + 0 with π

2 � φ � π (without collision with
the inner wall).

To use the expressions we obtained in the ray representation
calculation, we use u as the magnitude of the momentum
outside the potential range and ū as the one inside the potential
range. Hence, the magnitude of the initial momentum is
denoted by ū in cases E1 and E2, whereas it is denoted by
u in cases E3 and E4. Also, the angles of incidence and
refraction when the particle passes through the outer wall
from inside are denoted by χ and θ , respectively. If the
particle hits the inner wall, the angle of incidence is denoted
by ω. For the definition of those variables in each case, see
Fig. 6.

Since the particle is initially located inside the potential
range in cases E1 and E2, there are minima ū

(1)
∗ and ū

(2)
∗ for the

magnitude of the initial momentum in order for the particle to
escape from the interaction range for the two cases. Under the
limits E1 and E2, they are given as

ū(1)
∗ =

√
2mε

cos φ
, (93a)

ū(2)
∗ =

√√√√ 2mε

1 − R2
1

R2
2

sin2 φ
. (93b)

On the other hand, under the limits E3 and E4, the angle
of incidence θ becomes π − φ. For (θ,u) ∈ D1, there is a
collision with the inner wall (i.e., belonging to case E3),
whereas there is no collision (i.e., E4) for (θ,u) ∈ D2.

In case E1, the magnitude of momentum change �p1 after
the refraction is given as

|�p1| = A(u,θ ), (94)

and thus we have

f(x) · (p∞ − p) = 1

m
ū cos φ δ(r − R2)H (R2 − r)|�p1|2.

(95)

The contribution of case (E1) to the integral for γ is given as

γ (1) = aR2β
2

2m2

∫ π
2

0
dχ

∫ ∞

ū
(1)
∗

dū ū2 cos χ A2(u,θ )e−β[ ū2

2m
−ε],

(96)

and by the change of variables from (χ,ū) to (θ,u) we have

γ (1) = aR2β
2

2m2

∫ π
2

0
dθ

∫ ∞

0
du u2 cos θ A2(u,θ )e− β

2m
u2

. (97)

For the other cases, we can similarly express each contri-
bution to γ by an integral for θ and u:

γ (k) = aR2β
2

2m2

∫∫
D(k)

dθ du u2 cos θ e− β

2m
u2

I (k), (98)

where D(1) = D1 ∪ D2, D(2) = D(3) = D1, D(4) = D2,

I (1) = A2, (99a)

I (2) = B2 − 2AB cos(ω − χ ), (99b)

I (3) = A2[1 + 2 cos 2(ω − χ )] − 2AB cos(ω − χ ), (99c)

I (4) = A2[1 − 2 cos 2χ ]. (99d)

Therefore, we obtain the identical expression for γ = γ (1) +
γ (2) + γ (3) + γ (4) to the ray representation approach.

VI. NUMERICAL RESULTS

A. MD setup

For the LJ and WCA potentials, we perform two-
dimensional NV E molecular-dynamics simulations for the
full dynamics to observe the convergence of the total force au-
tocorrelation function and the fluctuating force autocorrelation
function in the Brownian limit. In other words, we numerically
obtain force autocorrelation functions 〈F(0) · F(τ̃ )〉NBL and
〈F+(0) · F+(τ̃ )〉NBL in the near-Brownian-limit (NBL) regime,
which are defined as follows:

〈F(0) · F(τ̃ )〉 = 〈F(0) · F(τ̃ )〉NBL + O

(
m

M

)
, (100a)

〈F+(0) · F+(τ̃ )〉 = 〈F+(0) · F+(τ̃ )〉NBL + O

(
m

M

)
, (100b)

where τ̃ is the microscopic time defined as t/
√

m. These two
functions are introduced for numerical purposes, but we do not
claim that the rate of convergence in Eq. (100) is uniform for
all time scales. We also perform the corresponding frozen
dynamics simulations to obtain the frozen dynamics force
autocorrelation function 〈F0(0) · F0(τ̃ )〉 and then compare the
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MD simulation results with the results evaluated from the
analytic expressions.

The system parameters for the MD simulations are defined
as follows. The mass of a solvent particle is set as m = 0.01
and the number of the solvent particles is set as N = 104. The
simulation domain is a square with side L = 100 and periodic
boundary conditions are imposed. For the full dynamics, the
mass M of the Brownian particle is increased from M = 0.01
to 1. Note that N is chosen sufficiently large so that M

Nm
� 0.01.

The temperature of the system is defined in terms of the average
kinetic energy of the system and the inverse temperature is
given as β = 1. For the interaction potential between the
Brownian particle and a solvent particle, the WCA potential
with parameters σ = 1 and ε = 1 (cutoff R0 = 21/6σ ) is
chosen for a purely repulsive potential and the LJ potential with
parameters σ = 1 and ε = 1 (cutoff R0 = 2.5σ ) is chosen for
a potential with an attractive component. All results are given
in reduced units with ε the unit of energy, σ the unit of length,
and M the unit of mass.

The Brownian particle is initially located at the origin. The
initial positions of the solvent particles are chosen randomly so
that they are distributed uniformly outside the interaction range
of the Brownian particle. The velocities of the solvent particles
are chosen from the Maxwell-Boltzmann distribution. The
time integration is performed by the velocity Verlet algorithm
with time step size �t = 10−4. The temperature scaling is
performed at time t = 100n (n = 1,2, . . . ,10). From t = 103

to 104, the momentum autocorrelation function 〈P(0) · P(t)〉

(t = 10−3n, n = 0, . . . ,104) is calculated and averaged over
the samples, which is used to estimate the exponential
decay rate. From t = 104 to t = 1.5 × 104, the correlation
functions 〈P(0) · P(t)〉, 〈P(0) · F(t)〉, and 〈F(0) · F(t)〉 (t =
10−4n, n = 0, . . . ,104) are calculated and averaged over the
samples. By using those three correlation functions, the Mori
memory kernel K(t) and, thus from Eq. (3), the fluctuating
force autocorrelation function 〈F+(0) · F+(t)〉 are calculated
following the procedure described in Ref. [31].

For each set of the simulation parameters, a total of eight
samples with different initial solvent configurations are pre-
pared in thermal equilibrium through temperature scaling. For
each correlation function 〈A(0) · B(t)〉, we have 〈Ax(0)Bx(t)〉
and 〈Ay(0)By(t)〉, which are equal to 1

2 〈A(0) · B(t)〉. Hence,
from n = 16 samples, we estimate the value of the correlation
function as twice the sample mean, and its standard deviation
σ is estimated as

σ = 2sn√
n
, (101)

where s2
n is the sample variance. The statistical errors of the

simulation results are suppressed within 1% of the maximum
magnitude of the correlation functions; see Figs. 7, 8, and 12
for the statistical errors of the force autocorrelation functions
and Fig. 13 for that of the momentum autocorrelation function.

The effect of the boundary conditions, which are introduced
due to the finite size of the MD simulation domain, is also
investigated. Some artificial effects may be possible due to

FIG. 7. (Color online) Plots of 〈F(0) · F(τ̃ )〉 [in panels (a) and (c)] and 〈F+(0) · F+(τ̃ )〉 [in panels (b) and (d)] for various values of the mass
ratio m/M from 1 to 0.01. The results are obtained from the MD simulations of the full dynamics under the WCA potential for panels (a) and
(b) and under the LJ potential for panels (c) and (d), respectively. The results for m/M = 0.01 (depicted by the red solid lines) are chosen as
〈F(0) · F(τ̃ )〉NBL and 〈F+(0) · F+(τ̃ )〉NBL and used in the succeeding figures. Note that the microscopic time τ̃ = t/

√
m is used and the force

autocorrelations are scaled by the number density a of the solvent particles. In the insets, the standard deviation σ is plotted; see Eq. (101).
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FIG. 8. (Color online) Comparison of 〈F(0) · F(τ̃ )〉NBL and 〈F+(0) · F+(τ̃ )〉NBL with 〈F0(0) · F0(τ̃ )〉 obtained from the frozen dynamics MD
simulation. The results for the WCA potential are plotted in panel (a) and those for the LJ potential are in panel (b). For 〈F(0) · F(τ̃ )〉NBL and
〈F+(0) · F+(τ̃ )〉NBL, the full dynamics MD simulation results for m/M = 0.01 are plotted. In the insets, the standard deviation σ is plotted.

the possibility that a solvent particle which collided with the
Brownian particle can collide again with the Brownian particle
after leaving and reentering the domain. Also, two definitions
of the number density of the solvent particles (i.e., N/V or
N/V ∗) may result in different values, unless the volume of
the Brownian particle is negligible compared to the volume
of the system. To this end, smaller values of the box size L

are used and the results are compared. In addition, we impose
the reflecting boundary conditions for the frozen dynamics
simulations and compare the results to the system with the
periodic boundary conditions. Hence, we confirm that such
effects are negligible in our MD simulation results.

B. Force autocorrelations

We first observe how the total force autocorrelation function
and the fluctuating force autocorrelation function change as the
value of m/M is decreasing. In Fig. 7, these autocorrelation
functions obtained from the full dynamics MD simulations are
plotted for various values of the mass ratio. The microscopic
time τ̃ = t/

√
m is used. Since the magnitude of the force

autocorrelations is proportional to the number density a of
the solvent particles, they are also scaled by a. For both
interaction potentials, it is clearly observed that 〈F(0) · F(τ̃ )〉
and 〈F+(0) · F+(τ̃ )〉 converge. By choosing the results for
m/M = 0.01 as 〈F(0) · F(τ̃ )〉NBL and 〈F+(0) · F+(τ̃ )〉NBL, the
rate of convergence is investigated. For both potentials, the
overall deviation

( ∫ ∞

0
|〈F(0) · F(τ̃ )〉 − 〈F(0) · F(τ̃ )〉NBL|2dτ̃

)1/2

(102)

is decreasing with O(m/M) and the same rate of convergence
is observed for the fluctuating force autocorrelation function.
For the WCA potential, pointwise convergence of both force
autocorrelation functions is clearly observed to be first order in
m/M for all times where the force autocorrelation functions
have nonzero values. For the LJ potential, clear first-order
convergence in m/M is observed for short times τ̃ < 0.2 for
〈F(0) · F(τ̃ )〉 and τ̃ < 0.5 for 〈F+(0) · F+(τ̃ )〉, respectively.
We also observe that although two force autocorrelations
eventually converge to the same time profile (see Fig. 8),
for the intermediate values of m/M the time profiles of

〈F+(0) · F+(τ̃ )〉 are much closer to the limiting time profiles
than 〈F(0) · F(τ̃ )〉 for both potentials.

We compare 〈F(0) · F(τ̃ )〉NBL and 〈F+(0) · F+(τ̃ )〉NBL with
the frozen dynamics autocorrelation function 〈F0(0) · F0(τ̃ )〉
obtained from the frozen dynamics MD simulations in Fig. 8.
As expected from Eq. (15), 〈F(0) · F(τ̃ )〉NBL and 〈F+(0) ·
F+(τ̃ )〉NBL coincide for both potentials. On the other hand,
〈F0(0) · F0(τ̃ )〉 coincides with these two functions for the
WCA potential, but for the LJ potential there is a clear
discrepancy, which results from the initial configuration of the
solvent we imposed in the frozen dynamics MD simulation.
Since the initial positions of the solvent particles are uniformly
distributed outside the interaction range, every solvent particle
initially has positive total energy and no particle is trapped in
the potential well. However, in order that the frozen dynamics
correctly describes the full dynamics in the NBL regime,
the trapped particles should also be considered. This can
be clearly shown by the radial distribution function g(r) of
the interparticle distance r between the Brownian particle
and a solvent. As shown in Fig. 9, even though identical

FIG. 9. (Color online) For the full dynamics (with m/M = 0.01)
and the frozen dynamics MD simulations under the LJ potential, the
radial distribution functions g(r) are plotted. The distance r is the
interparticle distance between the Brownian particle and a solvent
particle. The full dynamics result coincides with e−βU (r), while the
frozen dynamics result agrees well with the curve calculated from the
ray representation approach.
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initial conditions are used for the full dynamics and the
frozen dynamics simulations, the radial distribution function
of the frozen dynamics is quite different from that of the full
dynamics in the NBL regime. In the full dynamics, g(r) has
the form e−βU (r), which indicates that the system is in the
equilibrium state. In the frozen dynamics, g(r) has smaller
values in the potential well region. This is because there is
no contribution from the trapped solvent particles. Since the
full dynamics is a many-body problem whereas the frozen
dynamics is eventually a set of one-body problems, even
if the initial solvent configuration is not in the equilibrium
state, the full dynamics attains the equilibrium state by the
ergodic postulate but the frozen dynamics may fail to do
so. If the initial condition is chosen as described above, the
inconsistency between the initial condition and the equilibrium
state occurs inside the interaction range. The inconsistency
quickly disappears for the WCA potential, but it remains
forever for the LJ potential.

Next we compare the time profiles of the frozen dynamics
force autocorrelation function 〈F0(0) · F0(τ̃ )〉 obtained by
numerical evaluation of the analytic expressions and the frozen
dynamics MD simulation. For the numerical evaluation of
the ensemble-averaged expression, Eq. (22) is used. The
one-particle trajectory x(t) is calculated by the fourth-order
Runge-Kutta method with m = 1 and �t = 10−3. For the
integrations over r and φ variables, the trapezoid rule with 103

subintervals is used. The integration interval for r is chosen
as [0.7,2.5]. Then, for the integration over the u variable,
the Gaussian quadrature [32] with density e−au2

(u > 0) is
employed with 30 quadrature points. Similarly, to numerically
evaluate the ray representation expression, Eq. (69), the fourth-
order Runge-Kutta method with m = 1 and �t = 10−3 is used
for the calculation of the trajectory ψ(t). Also, the trapezoid
rule with 103 subintervals is employed for the integration over
r and then the Gaussian quadrature with 30 quadrature points
is used for the integration over the u variable. Figure 10 shows
that the three methods produce identical results for the WCA
potential, whereas for the LJ potential the ray representation
result and the frozen dynamics MD result coincide but they are
different from the ensemble average result. The coincidence
of the ray representation result and the frozen dynamics MD

result is explained by the initial configuration of the solvent
that is assumed in the ray representation approach to be
identical to the one we imposed in the frozen dynamics MD
simulation; see Sec. IV E. Hence, the discrepancy between
the ray representation result and the ensemble average result
is also attributed to no consideration of the trapped particles
in the ray representation approach. This can be verified by
evaluating the ensemble-averaged expression only over the
nontrapped particles. As expected, the resulting time profile
coincides with the ray representation result. In addition, we
confirm that the radial distribution function obtained from the
ray representation approach coincides with that obtained from
the frozen dynamics MD simulation; see Fig. 9.

Therefore, we have the following relations of the ensemble-
averaged expression, Eq. (20), and the ray representation
expression, Eq. (65), of 〈F0(0) · F0(τ̃ )〉 to the fluctuating
force autocorrelation function 〈F+(0) · F+(τ̃ )〉NBL in the NBL
regime.

(i) For a purely repulsive potential, both expressions
produce 〈F+(0) · F+(τ̃ )〉NBL.

(ii) For a potential containing an attractive component, the
ensemble-averaged expression produces 〈F+(0) · F+(τ̃ )〉NBL,
whereas the ray representation expression produces only the
contribution of the nontrapped particles.

We further confirm these by comparing 〈F+(0) · F+(τ̃ )〉NBL,
ensemble-average results over all particles and only over the
nontrapped particles, and ray representation results for various
values of the potential parameters. Figure 11 shows the results
under the LJ potential for various values of ε. It is observed
that for a larger value of ε, the discrepancy between the
ensemble averages over all particles and over the trapped
particles becomes larger. In other words, the contribution of
the trapped particles to 〈F+(0) · F+(τ̃ )〉NBL increases as the
attractive component of the potential becomes stronger. It is
also observed that the contribution of the trapped particles
complicates the tail behavior of 〈F+(0) · F+(τ̃ )〉NBL with a
longer correlation time length.

We also investigate the long-time behavior of the force
autocorrelation functions, which is shown in Fig. 12. For
the WCA potential, 〈F0(0) · F0(τ̃ )〉 quickly decays to zero
without attaining negative values. This can be explained

FIG. 10. (Color online) Comparison of the curves of 〈F0(0) · F0(τ̃ )〉 obtained by numerical evaluation of the ensemble-averaged expression
[i.e., Eq. (22)], the ray representation expression [i.e., Eq. (69)], and the frozen dynamics MD simulation. The results are shown in panel (a)
for the WCA potential and in panel (b) for the LJ potential, respectively. In panel (b), the ensemble average over the nontrapped particles is
also plotted.
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FIG. 11. (Color online) For various values of the ε parameter of the LJ potential, 〈F+(0) · F+(τ̃ )〉NBL obtained from the full dynamics MD
simulation and 〈F0(0) · F0(τ̃ )〉 obtained from the ensemble-averaged expression are compared, and 〈F0(0) · F0(τ̃ )〉 obtained from the ensemble
average over the nontrapped particles and 〈F0(0) · F0(τ̃ )〉 obtained from the ray representation expression are also compared. The inverse
temperature is fixed as β = 1. In the insets, positive values of the force autocorrelation functions are plotted for short times.

by the fact that every one-particle trajectory x(t) under the
WCA potential quickly escapes from the interaction range
and the two-time force product f(x) · f(x(t)) has non-negative
values for all times. The coincidence of 〈F+(0) · F+(τ̃ )〉NBL

to 〈F0(0) · F0(τ̃ )〉 is observed for all times. On the other
hand, although the overall shape of 〈F(0) · F(τ̃ )〉NBL coincides
with 〈F0(0) · F0(τ̃ )〉 for short times (see Fig. 8), the total
force autocorrelation function has a negative tail, which is
expected from Eq. (17). The magnitude of the negative tail,
which is proportional to the mass ratio, is negligible to the
magnitude at time τ̃ = 0, but due to its existence the time
integral of the total force autocorrelation function eventually
decays to zero. Similarly, for the LJ potential, we confirm the
coincidence of 〈F+(0) · F+(τ̃ )〉NBL to 〈F0(0) · F0(τ̃ )〉 for all
times and observe that 〈F(0) · F(τ̃ )〉NBL has slightly smaller
values than 〈F+(0) · F+(τ̃ )〉NBL and 〈F0(0) · F0(τ̃ )〉. In addi-
tion, we also compare the ensemble average 〈F0(0) · F0(τ̃ )〉
over the nontrapped particles, the ray representation result, and
the frozen dynamics MD simulation result. For both potentials,

the three results agree very well for all times, which confirms
that the ray representation approach only considers the
contribution of the nontrapped particles.

C. Friction coefficient γ

We first estimate the friction coefficient γ from the expo-
nential decay rate of the momentum autocorrelation function
of the Brownian particle. Figure 13 shows the time profile
of 〈P(0) · P(τ̃ )〉, which is obtained from the full dynamics
MD simulation under the LJ potential with m/M = 0.01. In a
wide time interval, 〈P(0) · P(τ̃ )〉 exhibits exponential decay.
By using the nonlinear least-squares Marquardt-Levenberg
algorithm [32] with the form c1 exp(−c2τ̃ ) for 0 � τ̃ � 100,
c2 is estimated as 5.76 × 10−2 and, from Eq. (7), m−1/2γ

is estimated as 5.76. From Eq. (101) with n = 16 samples,
the standard deviation of the estimated value is estimated as
σ = 0.10. The deviation from the exponential decay for short
times is expected from the fact that the second derivative of the

FIG. 12. (Color online) Plots of the tails (i.e., long-time behavior) of the force autocorrelation functions. The results for the WCA potential
are plotted in panel (a), whereas those for the LJ potential are in panel (b). In the upper plot of each panel, plotted are 〈F0(0) · F0(τ̃ )〉 [evaluated
from the ensemble-averaged expression, Eq. (22)], 〈F+(0) · F+(τ̃ )〉NBL, and 〈F(0) · F(τ̃ )〉NBL (obtained from the full dynamics MD simulation).
In the lower plot, three curves of 〈F0(0) · F0(τ̃ )〉 obtained by the following methods are plotted: numerical evaluation of the ensemble average
over the nontrapped particles, numerical evaluation of the ray representation expression, and the frozen dynamics MD simulation. For the MD
simulation results, error bars with 2σ are also plotted.
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FIG. 13. (Color online) The log plot of the momentum autocorre-
lation function 〈P(0) · P(τ̃ )〉. The blue dotted line indicates the straight
line ln c1 − c2τ̃ , where c1 and c2 are evaluated from the nonlinear
least-squares fitting of 〈P(0) · P(τ̃ )〉 with the form c1e

−c2 τ̃ . Error bars
with 2σ are also plotted. Since the magnitude of statistical errors is
comparable for all times, the error bars become longer for longer
times in the log plot. In the inset, the time profile of 〈P(0) · P(τ̃ )〉 is
plotted with c1e

−c2 τ̃ for short times.

momentum autocorrelation function is equal to the negative of
the total force autocorrelation function. Also, the zero slope
of 〈P(0) · P(τ̃ )〉 at τ̃ = 0 is clearly observed. In addition,
the initial value of the momentum autocorrelation function
is 1.98, which is expected from Eq. (14) with N = 104 and
m/M = 0.01. On the other hand, the decay of the momentum
autocorrelation function for long times appears to be algebraic.

Next we investigate the following time integrals of the force
autocorrelation functions:

γ ∗(τ̃ ) = β
√

m

d

∫ τ̃

0
〈F(0) · F(s̃)〉ds̃, (103a)

γ0(τ̃ ) = β
√

m

d

∫ τ̃

0
〈F0(0) · F0(s̃)〉ds̃, (103b)

γ +(τ̃ ) = β
√

m

d

∫ τ̃

0
〈F+(0) · F+(s̃)〉ds̃. (103c)

For 〈F0(0) · F0(τ̃ )〉, both the ensemble-averaged expression
and the ray representation expression are used and the cor-
responding time-dependent friction coefficients are denoted
by γ ens

0 (τ̃ ) and γ
ray
0 (τ̃ ), respectively. In Fig. 14, these time-

dependent friction coefficients are plotted for the LJ potential.
Although γ ∗(τ̃ ) appears similar to γ ens

0 (τ̃ ) and γ +(τ̃ ) for
short times, it eventually decays without attaining a stationary
value. On the other hand, γ ens

0 (τ̃ ) and γ +(τ̃ ) have very similar
time profiles and appear to have the same stationary value.
Although the time profile of γ

ray
0 (τ̃ ) is quite different from

that of γ ens
0 (τ̃ ), its stationary value appears to be the same

as that of γ ens
0 (τ̃ ). This confirms that the net contribution of

trapped solvent particles to the value of γ is zero. However,
to determine the precise value of γ from the time integral
γ ens

0 (τ̃ ) or γ +(τ̃ ), τ̃ = 10 is rather short, since 〈F0(0) · F0(τ̃ )〉
or 〈F+(0) · F+(τ̃ )〉NBL still attains nonzero oscillating values
and the corresponding time integral has also an oscillation, the
magnitude of which is not negligible. The value of m−1/2γ is
roughly estimated as 5.8 ± 0.2 for γ ens

0 and γ +. On the other
hand, γ ray

0 (τ̃ ) attains an almost complete plateau for τ̃ > 5 and

FIG. 14. (Color online) Plotted are the time-dependent friction
coefficients γ ens

0 (τ̃ ), γ
ray
0 (τ̃ ), γ +(τ̃ ), and γ ∗(τ̃ ), defined in Eq. (103),

for the LJ potential. The black horizontal line indicates the value
estimated from the exponential decay rate of the momentum autocor-
relation function of the Brownian particle for m/M = 0.01.

m−1/2γ is estimated as 5.79, which is consistent with the value
5.76 with σ = 0.10, estimated from the exponential decay rate
of the momentum autocorrelation function. The time integral
γ̌ ens

0 (τ̃ ) of the ensemble average only over the nontrapped
particles [cf. γ ens

0 (τ̃ )] has the same time profile as γ
ray
0 (τ̃ ) and

hence gives the same value of γ . Note that obtaining γ from
γ̌ ens

0 (τ̃ ) and γ
ray
0 (τ̃ ) is equivalent to the evaluation of Eqs. (27)

and (71), respectively.
We evaluate the values of γ of the WCA and LJ potentials

as a function of ε and compare them with the results of the
HS interaction and the SqW potential. For d = 2, Eqs. (27)
and (71) are used for the ensemble-average result and the
ray representation result, respectively, which produce identical
results. In Fig. 15, the WCA potential result for ε � 3 with
β = 1 is presented. As ε increases, γ also increases. The
friction coefficient γ WCA of the WCA potential with σ = 1 is
compared with the friction coefficient γ HS of the HS system.
For all values of ε, γ WCA is always smaller than γ HS with
R = 21/6σ . For ε = 1, γ WCA is equal to γ HS with R = 0.972σ .
For ε = 1.9, γ WCA is equal to γ HS with R = σ . Similarly, the

4

 4.5

5

 5.5

0  0.5 1  1.5 2  2.5 3

m-1/2γ

ε

HS (R=0.972σ)

HS (R=σ)

WCA

FIG. 15. (Color online) Plot of m−1/2γ as a function of the ε

parameter of the WCA potential. The ray representation expression
for d = 2, Eq. (71), is used. The other parameters are fixed as σ = 1,
β = 1, and a = 1. The values of γ of the HS system with R = 0.972σ

and R = σ are also plotted by the horizontal lines.
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FIG. 16. (Color online) Plot of m−1/2γ as a function of the ε

parameter of the LJ potential. The ray representation expression for
d = 2, Eq. (71), is used. The other parameters are fixed as σ = 1,
R0 = 2.5σ , β = 1, and a = 1. The values of m−1/2γ of the SqW
system with ε = 1, R1 = 1, and different values of R2 (1.5, 2, and 3)
are also plotted by evaluating Eq. (85). Note that as ε → 0, the value
of γ of the SqW system becomes the value for the HS system with
R = R1.

LJ potential result is presented and compared with the SqW
potential result in Fig. 16.

VII. SUMMARY AND DISCUSSION

For the Rayleigh model, the microscopic theory of Brow-
nian motion has been investigated by analytic methods and
extensive MD simulations. For a comprehensive understanding
of the model in the NBL regime, four typical interaction
potentials (the HS interaction, the SqW potential, and the
WCA and LJ potentials) have been considered. The main
physical quantities of interest are the asymptotic form of
the force autocorrelation function of the Brownian particle
in the Brownian limit and the friction coefficient γ in the
Langevin equation. As pointed out in [28], we always use the
term asymptotic form to refer to the Brownian limit rather
than to a long-time limit. To investigate these quantities,
the ensemble-averaged expressions and the ray representation
expressions have been derived and numerically evaluated, and
MD simulations of the full dynamics with small mass ratio
and of the frozen dynamics have been performed.

The theoretical predictions, which have been numerically
confirmed, are summarized as follows. As the mass of the
Brownian particle increases, the total force autocorrelation
function 〈F(0) · F(t)〉 and the fluctuating force autocorrelation
function 〈F+(0) · F+(t)〉 have similar time profiles to the
frozen dynamics force autocorrelation function 〈F0(0) · F0(t)〉
[ensemble average over the bath equilibrium ρb in Eq. (13)].
However, the time integral of 〈F(0) · F(t)〉 eventually decays,
whereas the time integrals of the other autocorrelation func-
tions have the same nonzero stationary value, which is also
equal to the friction coefficient estimated from the exponential
decay rate of the momentum autocorrelation function of the
Brownian particle. Therefore, the asymptotic form of the force
autocorrelation function and the friction coefficient can be
obtained from 〈F0(0) · F0(t)〉.

We have derived two expressions for 〈F0(0) · F0(t)〉,
Eqs. (20) and (65), by using ensemble averaging and the
ray representation approach, respectively. From the property
that the dynamics of each solvent particle is decoupled from
those of the other solvent particles in the frozen dynamics
of the Rayleigh model, these expressions are given in terms
of one-particle trajectory, which enables one to obtain the
desired quantity without performing MD simulations. By time
integration, the corresponding expressions for γ have been
obtained; see Eqs. (26) and (67). For a potential depending only
on the interparticle distance, further simplified expressions
have also been derived. The ensemble-averaged expressions
are reduced to be three-dimensional integrations, whereas
the ray representation expressions are to be two-dimensional
integrations.

We have shown that the ensemble average and the ray
representation approach produce identical results for a purely
repulsive potential, and that these results also agree very well
with the full dynamics and frozen dynamics MD simulation
results. Hence, it has been confirmed that the ray representation
approach is valid for an unbounded potential containing no
attractive component such as the WCA potential, and it is
expected that the analysis performed by Kusuoka and Liang
[21] under restrictive assumptions can be extended to this
case. From the numerical point of view, among the methods
we employed to obtain the asymptotic form of the force
autocorrelation function and the friction coefficient, the most
efficient and numerically reliable one is the ray representation
in this case since each one-particle trajectory needs to be
calculated for a short time and only a two-dimensional
integration needs to be performed. In addition, a Gaussian
quadrature can be used for both integration variables, which
enables one to obtain numerically reliable results with a
relatively small number of trajectory calculations.

For a potential containing an attractive component such
as the LJ potential, however, it has been observed that there
is a clear discrepancy between the ensemble-average result
and the ray representation result for 〈F0(0) · F0(t)〉, and it
has been shown that the ray representation only produces
the contribution of the nontrapped solvent particles. The
initial configuration of the solvent particles which is assumed
in the ray representation is that the solvent particles are
uniformly distributed outside the interaction range, which is
different from the bath equilibrium distribution. Contrary to the
purely repulsive potential case in which the difference quickly
disappears, the difference remains forever in this case since
incoming solvent particles to the interaction range cannot be
trapped by the potential and thus the contribution of the trapped
particles is still missing. The same problem has been observed
when the same initial configuration of the solvent is used for
the full dynamics and frozen dynamics MD simulations and
the results are compared. These discrepancies are attributed to
the fundamental difference between the frozen dynamics and
the full dynamics of the Rayleigh model. While the full
dynamics always attains the equilibrium distribution by the
ergodic postulate, for the frozen dynamics the postulate is
no longer valid and thus the equilibrium may fail to be
achieved even after a long period of time; also, a time average
quantity may be different from the one obtained from the
ensemble average depending on the choice of the initial
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solvent configuration near the Brownian particle. Hence, for
the asymptotic form of the force autocorrelation function,
if the interaction potential has an attractive component, the
only alternative method to the full dynamics MD simulation
would be the numerical evaluation of the ensemble-averaged
expression. The frozen dynamics MD simulation method
with the initial solvent configuration sampled from the bath
equilibrium distribution is not efficient since a single sample
cannot represent the bath equilibrium and thus a large number
of samples should be run. However, if the precise value of the
friction coefficient is the only quantity of interest, which is a
quite usual case, the ray representation approach and the frozen
dynamics MD simulation method can be employed. Actually, it
has been shown that they provide a numerically more reliable
value of γ than their alternative methods. This is based on
the observation that although the contribution of the trapped
particles to the time integral of the force autocorrelation
function is zero, it complicates the tail behavior of the force
autocorrelation function and prevents the time integral from
attaining a stationary value.

Another issue that arises for a potential containing an
attractive component is the possible existence of the non-
trapped trajectories that revolve around the Brownian particle
several times; see Fig. 17. For some initial conditions, the
trajectories revolve infinitely many times and slight changes in
the initial conditions result in large changes in the momentum
change �p = p∞ − p. Hence, �p oscillates very rapidly
as the initial condition approaches these points, and the
analytic expressions we have derived may have some problem
with these singular points. Since the set of singularities has
measure zero and we can find a bound for �p from the
conservation of energy, we can show that all expressions
are well-defined even in this case. However, the numerical
integration of the expressions should be carefully performed
and may need more computation time. For example, the use
of a Gaussian quadrature for all integration variables may not
be efficient due to the nonsmoothness of the integrand. We
note that the SqW potential does not have such complicated
trajectories.

Finally, closed-form expressions of γ for the HS interaction
and the SqW potential have also been derived. Using these
results, it has been analytically confirmed for these potentials
that the ray representation approach yields the identical
expression of γ to the ensemble average. Although not

FIG. 17. (Color online) In the left plot, the contour plot of
limt→∞ f(x) · p(t), which appears in Eq. (26), is presented. The
initial position x and the initial momentum p of the solvent
particle are given as (r,0) and (u cos φ,u sin φ), respectively, and the
value u = 1 is used. The gray region indicates the initial values that
cause the particle trapped in the potential well forever so that the
limit is not defined. The red and blue regions are for positive and
negative values of the limit, respectively. The white lines are for the
contour with zero value and the red dashed and solid lines are for
0.1 and 0.3, respectively. Similarly, the blue dashed and solid lines
are for −0.1 and −0.3. The black points on the boundary of the gray
region and the contour line passing through point A indicate that the
trajectories with these initial conditions are still inside the interaction
range up to t = 10 so that the value of the limit is indecisive from
the numerical calculation of trajectories up to t = 10. In the right
diagram, the trajectory x(t) with the initial condition designated by
point A is plotted until it leaves the interaction range.

included in this paper, expressions for 〈F0(0) · F0(t)〉 can
also be obtained by following similar procedures performed
in Sec. V. For the HS interaction, it can be easily shown
that 〈F0(0) · F0(t)〉 = dDδ(t), where D = 2β−1γ . For the
SqW potential, it can be shown that the expression for the
contribution of the nontrapped particles obtained by ensemble
averaging is equal to the expression obtained by the ray
representation approach.
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